88教案网

你的位置: 教案 > 高中教案 > 导航 > 2012届高考数学总复习立体几何考点专项教案

高中立体几何教案

发表时间:2020-11-24

2012届高考数学总复习立体几何考点专项教案。

一名爱岗敬业的教师要充分考虑学生的理解性,高中教师要准备好教案,这是老师职责的一部分。教案可以让学生更好的消化课堂内容,使高中教师有一个简单易懂的教学思路。高中教案的内容具体要怎样写呢?下面是小编帮大家编辑的《2012届高考数学总复习立体几何考点专项教案》,仅供参考,希望能为您提供参考!<jAB88.com/p>第七模块立体几何综合检测
(时间120分钟,满分150分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是()
A.若α⊥β,α∩β=n,m⊥n,则m⊥α
B.若mα,nβ,m∥n,则α∥β
C.若m∥α,n∥β,m⊥n,则α⊥β
D.若n⊥α,n⊥β,m⊥β,则m⊥α
解析:本题考查的是立体几何的知识,属于基础题.选项A错误,本项主要是为考查面面垂直的性质定理.事实上选项A的已知条件中加上mβ,那么命题就是正确的,也就是面面垂直的性质定理.选项B错误,容易知道两个平面内分别有一条直线平行,那么这两个平面可能相交也可能平行.选项C错误,因为两个平面各有一条与其平行的直线,如果这两条直线垂直,并不能保证这两个平面垂直.选项D正确,由n⊥α,n⊥β可得α∥β,又因为m⊥β,所以m⊥α.
答案:D
2.已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()
A.12cm3B.13cm3
C.16cm3D.112cm3
解析:本题考查的是简单几何体的三视图.由三视图的知识可知题中的三视图表示的几何体是三棱锥,且三棱锥的底面三角形的高与底边都为1cm,三棱锥的高为1cm.故体积V=16cm3,选C.
答案:C
3.已知平面α⊥平面β,α∩β=l,点A∈α,Al,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()
A.AB∥mB.AC⊥m
C.AB∥βD.AC⊥β
解析:∵m∥α,m∥β,则m∥l,故AB∥m,AC⊥m,AB∥β都成立,C∈α时,AC⊥β成立,但Cα时AC⊥β不成立.
答案:D
4.已知过球面上A、B、C三点的截面和球心的距离是球半径的14,且||=5,=0,那么球的表面积为()
A.803πB.203πC.3203πD.809π
解析:设球半径为R,球心到截面的距离d=14R,则截面圆半径r=R2-d2=154R,又=0,则AB为截面圆的直径.
∴152R=5,R=2153,∴S球=4πR2=803π.
故选A.
答案:A
5.设x,y,z是空间不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线、z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“x⊥z且y⊥zx∥y”为真命题的是()
A.③④B.①③C.②③D.①②
答案:C
6.已知一个四棱锥的高为3,其底面用斜二测画法所画出的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为()
A.2B.62C.13D.22
解析:因为四棱锥的底面直观图是一个边长为1的正方形,该正方形的对角线长为2,根据斜二测画法的规则,原图是底面的边长为1,高为直观图中正方形的对角线的2倍,即为22的平行四边形.
V=13×1×22×3=22.
应选D.
答案:D
7.已知a=(-1,0,2),平面α过点A(3,1,-1),B(1,-1,0),且α∥a,则平面α的一个法向量是()
A.(4,-3,2)B.(1,34,12)
C.(-4,-3,2)D.(-2,32,1)
解析:设平面α的法向量是n=(x,y,z).
=(-2,-2,1).
则-2x-2y+z=0-x+2z=0,∴x=2zy=-32z,
∴令z=2,则x=4,y=-3,
则平面α的一个法向量为(4,-3,2).故选A.
答案:A
8.如图所示,在正四棱柱ABCD—A1B1C1D1中,E、F分别是AB1,BC1的中点,则以下结论中不成立的是()
A.EF与BB1垂直
B.EF与BD垂直
C.EF与平面ACC1A1平行
D.平面EFB与平面BCC1B1垂直
解析:过E、F分别作EE′⊥AB于E′,FF′⊥BC于F′,连接E′F′,
则EF綊E′F′,E′F′⊥BB1,
E′F′⊥BD.
∴EF⊥BB1,EF⊥BD,
故A、B正确.
又E′F′∥AC,∴EF∥AC,
∴EF∥平面ACC1A1,故C正确.
应选D.
答案:D
9.如图所示,在棱长为2的正方体ABCD—A1B1C1D1中,动点P在ABCD内,且P到直线AA1,BB1的距离之和等于22,则△PAB的面积最大值是()
A.12B.1C.2D.4
解析:连结PA、PB,则PA、PB分别是P到直线AA1、BB1的距离,即PA+PB=22,∵AB=2,故P点的轨迹是以A、B为焦点的椭圆的一部分,当P点为短轴的端点时,△PAB底边AB上的高最大值为1,△PAB的面积最大值为1,故选B.
答案:B
10.(2008海南宁夏卷)某几何体的一条棱长为7,在该几何体的主视图中,这条棱的投影是长为6的线段,在该几何体的左视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为()
A.22B.23C.4D.25
解析:结合长方体的对角线在三个面的投影来理解计算.
如图,设长方体的长宽高分别为m,n,k,由题意得
m2+n2+k2=7,
m2+k2=6n=1,
1+k2=a,1+m2=b,
所以(a2-1)+(b2-1)=6a2+b2=8,
∴(a+b)2=!”#$%()*+,-./012345b2=16a+b≤4,当且仅当a=b=2时取等号.
答案:C
11.如图所示,从平面α外一点P向平面α引垂线和斜线,A为垂足,B为斜足,射线BCα,且∠PBC为钝角,设∠PBC=x,∠ABC=y,则有()
A.xy
B.x=y
C.xy
D.x,y的大小不确定
解析:过A作AD⊥BC,垂足D在CB的延长线上,
连结PD,∴PD⊥BC,
cos∠PBA=ABPB,
cos∠ABD=BDAB,
cos∠PBD=BDPB,
∴cos∠PBAcos∠ABD=cos∠PBD.
又∵∠PBC为钝角,∴∠PBD为锐角,
∴cos∠PBDcos∠ABD,
∴∠PBD∠ABD,
∴x=180°-∠PBD,y=180°-∠ABD,
∴xy.应选C.
答案:C
12.如图所示,顶点为P的圆锥的轴截面是等腰直角三角形,A是底面圆周上的点,B是底面圆内的点,O为底面圆的圆心,AB⊥OB,垂足为B,OH⊥PB,垂足为H,且PA=4,C为PA的中点,则当三棱锥O—HPC的体积最大时,OB的长是()
A.53B.253C.63D.263
解析:∵AB⊥OB,AB⊥OP,
∴AB⊥平面PBO,又AB平面PBA,
∴面PAB⊥面POB.
又∵OH⊥PB,∴OH⊥面PAB,
∵HC面PAB,PA面PAB,
∴OH⊥HC,OH⊥PA,
又C是PA的中点,∴OC⊥PA,∴PC⊥面OHC.
∴VO-HPC=VP-HCO=13S△HOCPC,
PC=2,则当S△HOC最大时,VO-HPC最大.
此时OH=HC,HO⊥HC.
又OC=12PA=2,∴HO=2,∴HO=12OP,
∴∠HPO=30°,∴OB=OPtan30°=263.故选D.
答案:D
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.
13.在三棱锥V—ABC中,当三条侧棱VA、VB、VC之间满足条件________时,有VC⊥AB.
解析:当VC⊥VA,VC⊥VB,
有VC⊥平面VAB,
∵AB平面VAB,
∴VC⊥AB.
填VC⊥VA,VC⊥VB.
答案:VC⊥VA,VC⊥VB
14.已知a,b是异面直线,且a平面α,b平面β,a∥β,b∥α,则平面α与平面β的位置关系是________.
答案:平行
15.一个几何体的三视图及其尺寸(单位:cm)如图所示,则该几何体的侧面积为________cm2.
解析:正确画出几何体的直观图是解答三视图问题的关键.如图,由三视图可得该几何体为一正四棱锥S—ABCD,其中底面为边长为8的正方形,斜高为SH=5,在Rt△SOH中,OH=4,所以SO=3,所以△SBC的面积为:12×SH×BC=12×8×5=20,
故侧面积为20×4=80cm2.
答案:80
16.在正方体ABCD—A1B1C1D1中,点E1、F1分别是线段A1B1、A1C1的中点,则直线BE1与AF1所成角的余弦值是________.
解析:本题考查异面直线所成角的求法.
如图所示,取BC中点G,连结AG,F1G,E1F1,容易证得E1F1GB为平行四边形.
则∠AF1G是异面直线BE1与AF1所成的角或其补角.
设棱长为2,则E1F1=1,AF1=6,GF1=BE1=5,AG=5,
∴由余弦定理
cos∠AF1G=AF21+GF21-AG22AF1GF1=6+5-5230=3010.
答案:3010
三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.如图,在正三棱柱ABC—A1B1C1中,点D在边BC上,AD⊥C1D.
(1)求证:AD⊥平面BCC1B1.
(2)设E是B1C1上一点,当B1EEC1的值为多少时,A1E∥平面ADC1,请给出证明.
证明:(1)在正三棱柱中,CC1⊥平面ABC,
AD平面ABC,∴AD⊥CC1.
又AD⊥C1D,CC1交C1D于C1,
且CC1和C1D都在平面BCC1B1内,
∴AD⊥平面BCC1B1.
(2)由(1),得AD⊥BC.在正三角形ABC中,
D是BC的中点.
当B1EEC1=1,即E为B1C1的中点时,
四边形DEB1B是平行四边形.
∵B1B∥DE,且B1B=DE,又B1B∥AA1,
且B1B=AA1,
∴DE∥AA1,且DE=AA1.
所以四边形ADEA1为平行四边形,所以EA1∥AD.
而EA1平面ADC1,故A1E∥平面ADC1.
18.如图所示,四边形ABCD为矩形,BC⊥平面ABE,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE.
(2)设点M为线段AB的中点,点N为线段
CE的中点,求证:MN∥平面DAE.
证明:(1)因为BC⊥平面ABE,AE平面ABE,
所以AE⊥BC.
又BF⊥平面ACE,AE平面ACE,所以AE⊥BF,
又BF∩BC=B,所以AE⊥平面BCE.
又BE平面BCE,所以AE⊥BE.
(2)取DE的中点P,连结PA、PN,因为点N为线段CE的中点,
所以PN∥DC,且PN=12DC.
又四边形ABCD是矩形,点M为线段AB的中点,
所以AM∥DC,且AM=12DC,
所以PN∥AM,且PN=AM,故四边形AMNP是平行四边形,所以MN∥AP.
而AP平面DAE,MN平面DAE,
所以MN∥平面DAE.
19.如图所示,在四棱柱ABCD—A1B1C1D1中,AB=BC=CA=3,AD=CD=1,平面AA1C1C⊥平面ABCD.
(1)求证:BD⊥AA1;
(2)若E为线段BC的中点,求证:A1E∥平面DCC1D1.
证明:(1)因为BA=BC,DA=BD,
所以BD是线段AC的垂直平分线.所以BD⊥AC.
又平面AA1C1C⊥平面ABCD,
平面AA1C1C∩平面ABCD=AC,BD平面ABCD,
所以BD⊥平面AA1C1C.
因为AA1平面AA1C1C,所以BD⊥AA1.
(2)因为AB=BC=CA=3,DA=DC=1,
所以∠BAC=∠BCA=60°,∠DCA=30°.连接AE.
因为E为BC的中点,所以∠EAC=30°.
所以∠EAC=∠DCA.
所以AE∥DC.
因为DC平面DCC1D1,
AE平面DCC1D1,
所以AE∥平面DCC1D1.
因为棱柱ABCD—A1B1C1D1,
所以AA1∥DD1.
因为DD1平面DCC1D1,
AA1平面DCC1D1,
所以AA1∥平面DCC1D1.
因为AA1平面AA1E,
AE平面AA1E,AA1∩AE=A,
所以平面AA1E∥平面DCC1D1.
因为A1E平面AA1E,所以A1E∥平面DCC1D1.
20.四棱锥P—ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,E点满足=13.
(1)求证:PA⊥平面ABCD.
(2)在线段BC上是否存在点F使得PF∥面EAC?若存在,确定F的位置;若不存在,请说明理由.
(3)求二面角E—AC—D的余弦值.
解:(1)证明:在正方形ABCD中,AB⊥BC.
又∵PB⊥BC,
∴BC⊥平面PAB,∴BC⊥PA.
同理CD⊥PA,∴PA⊥平面ABCD.
(2)当F为BC中点时,
使得PF∥平面EAC,理由如下:
作BC中点F,连结DF交AC于点S,连结ES,PF.
∵AD綊2FC,
∴FSSD=FCAD=12,
又由已知有PEED=12,∴PF∥ES.
∵PF平面EAC,EC平面EAC,∴PF∥平面EAC,即当F为BC中点时,PF∥平面EAC.
(3)解法一:在AD上取一点O使AO=13AD,连结EO,
则EO∥PA,∴EO⊥面ABCD.
过点O做OH⊥AC交AC于H点,连结EH,
则EH⊥AC,
从而∠EHO为二面角E—AC—D的平面角.
在△PAD中,EO=23AP=43,在△AHO中,∠HAO=45°,
∴HO=AOsin45°=2223=23,
∴tan∠EHO=EOHO=22,
∴cos∠EHO=13.
∴二面角E-AC-D的余弦值为13.
解法二:(1)同解法一.
(2)如图以A为坐标原点,AB、AD、AP分别为x轴、y轴、z轴.
建立坐标系,则A(0,0,0),C(2,2,0),P(0,0,2),D(0,2,0),
∴=(0,2,-2),
设E(x,y,z),
由PE=13,
得(x,y,z-2)=13(0,2,-2),
∴x=0y=23z=43,
则E(0,23,43).
设平面AEC的法向量为n=(x,y,z),
则nAE=0nAC=0,即23y+43z=02x+2y=0
取平面AEC的一个法向量n=(2,-2,1),
点F在BC上,设F(2,b,0),
则PF=(2,b,-2),
∵PF∥平面EAC,
∴PF⊥n,即PFn=0,得b=1,
∴当F为BC的中点时,有∥平面EAC.
(3)由(2)知平面EAC的一个法向量为n=(2,-2,1),
平面ACD的法向量为=(0,0,2),
∴cos〈,n〉=APn|AP||n|
=222+(-2)2+122
=13.
故二面角E—AC—D的余弦值为13.
21.如图所示,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,AB=1,AD=2,∠ADC=60°,AF=a(a0),M是线段EF的中点.(1)求证:AC⊥BF;
(2)若二面角F—BD—A的大小为60°,求a的值.
(3)令a=1,设点P为一动点,若点P从M出发,沿棱按照M→E→C的路线运动到点C,求这一过程中形成的三棱锥P—BFD的体积的最小值.
解:∵AB=1,AD=2,∠ADC=60°,∴∠DCA=90°
则CD⊥CA,以CD、CA、CE分别为x轴、y轴、z轴建立空间坐标系,
(1)C(0,0,0),D(1,0,0),A(0,3,0),F(0,3,a),B(-1,3,0),
=(0,3,0),=(1,0,a),=(-1,3,a),
=0,所以AC⊥BF.
(2)平面ABD的法向量n=(0,0,1),平面FBD的法向量m=(x,y,z).
DFm=0BFm=0,m=(-a,-2a3,1)
|cos〈m,n〉|=|mn|1|m|=12,a2=97,a=377.
(3)设AC与BD交于O,则OF∥CM,
所以CM∥平面FBD,
当P点在M或C时,三棱锥P—BFD的体积最小.
(VP—BFD)min=VC—BFD=VF—BCD
=13×12×2×1×sin120°=36.
22.如图所示,在四棱锥P—ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E,F分别为PC,CD的中点.
(1)试证:CD⊥平面BEF;
(2)设PA=kAB,且二面角E—BD—C的平面角大于30°,求k的取值范围.
解析:解法一:(1)由已知DF∥AB,且∠DAB为直角,
故ABFD是矩形,从而CD⊥BF.
又PA⊥底面ABCD,CD⊥AD,故知CD⊥PD.
在△PDC中,E、F分别为PC、CD的中点,故EF∥PD.
从而CD⊥EF,由此得CD⊥而BEF.
(2)连接AC交BF于G,易知G为AC的中点,连接EG,则在△PAC中,易知G为AC的中点,连接EG,则在△PAC中易知EG∥PA.
又因PA⊥底面ABCD,故EG⊥底面ABCD,在底面ABCD中,过G作GH⊥BD,垂足为H,连接EH,则EH⊥BD,
从而∠EHG为二面角E—BD—C的平面角.
设AB=a,则在△PAC中,有EG=12PA=12ka.
以下计算GH,考察底面的平面图(如图).连接GD.
因S△GBD=12BDGH=12GBDF,
故GH=GBDFBD.
在△ABD中,因为AB=a,AD=2a,得BD=5a,
而GB=12FB=12AD=a.DF=AB,
从而得GH=GBDFBD=aa5a=55a.
因此tan∠EHG=EGGH=12ka55a=52k.
由k0知∠EHG是锐角,故要使∠EHG30°,
必须52ktan30°=33,
解之得,k的取值范围为k2155.
解法二:(1)如图,以A为原点,AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴建立空间直角坐标系,设AB=a,则易知点A,B,C,D,F的坐标分别为
A(0,0,0),B(a,0,0),C(2a,2a,0),D(0,2a,0),F(a,2a,0).
从而=(2a,0,0),=(0,2a,0),=0,故⊥.
设PA=b,则P(0,0,b),而E为PC中点.
故E(a,a,b2).
从而=(0,a,b2).
=0,故⊥.
由此得CD⊥面BEF.
(2)设E在xOy平面上的投影为G,过G作GH⊥BD垂足为H,由三垂线定理知EH⊥BD.
从而∠EHG为二面角E—BD—C的平面角.
由PA=kAB得P(0,0,ka),E(a,a,ka2),G(a,a,0).
设H(x,y,0),则=(x-a,y-a,0),
=(-a,2a,0),
由=0得-a(x-a)+2a(y-a)=0,
即x-2y=-a①
又因=(x-a,y,0),且与的方向相同,故x-a-a=y2a,即2x+y=2a②
由①②解得x=35a,y=45a,
从而=(-25a,-15a,0),||=55a.
tan∠EHG=|EG||GH|=ka255a=52k.
由k0知∠EHC是锐角,
由∠EHC30°,得tan∠EHGtan30°,
即52k33.
故k的取值范围为k21515.

延伸阅读

2012届高考数学空间向量与立体几何备考复习教案


一名优秀负责的教师就要对每一位学生尽职尽责,教师要准备好教案为之后的教学做准备。教案可以让学生更好的消化课堂内容,帮助教师更好的完成实现教学目标。那么如何写好我们的教案呢?以下是小编为大家精心整理的“2012届高考数学空间向量与立体几何备考复习教案”,希望对您的工作和生活有所帮助。

专题四:立体几何
第三讲空间向量与立体几何

【最新考纲透析】
1.空间向量及其运算
(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的线性运算及其坐标表示。
(2)掌握空间向量的线性运算及其坐标表示。
(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。
2.空间向量的应用
(1)理解直线的方向向量与平面的法向量。
(2)能用向量语言表述直线与直线,直线与平面,平面与平面的垂直、平行关系。
(3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理)。
(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用。

【核心要点突破】
要点考向1:利用空间向量证明空间位置关系
考情聚焦:1.平行与垂直是空间关系中最重要的位置关系,也是每年的必考内容,利用空间向量判断空间位置关系更是近几年高考题的新亮点。
2.题型灵活多样,难度为中档题,且常考常新。
考向链接:1.空间中线面的平行与垂直是立体几何中经常考查的一个重要内容,一方面考查学生的空间想象能力和逻辑推理能力;另一个方面考查“向量法”的应用。
2.空间中线面的平行与垂直的证明有两个思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量来论证。
例1:(2010安徽高考理科T18)如图,在多面体中,四边形是正方形,∥,,,,,为的中点。
(1)求证:∥平面;
(2)求证:平面;
(3)求二面角的大小。
【命题立意】本题主要考查了空间几何体的线面平行、线面垂直的证明、二面角的求解的问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。
【思路点拨】可以采用综合法证明,亦可采用向量法证明。
【规范解答】
(1)
(2)
(3)
【方法技巧】1、证明线面平行通常转化为证明直线与平面内的一条直线平行;
2、证明线面垂直通常转化为证明直线与平面内的两条相交直线垂直;
3、确定二面角的大小,可以先构造二面角的平面角,然后转化到一个合适的三角形中进行求解。
4、以上立体几何中的常见问题,也可以采用向量法建立空间直角坐标系,转化为向量问题进行求解证明。应用向量法解题,思路简单,易于操作,推荐使用。
要点考向2:利用空间向量求线线角、线面角
考情聚焦:1.线线角、线面角是高考命题的重点内容,几乎每年都考。
2.在各类题型中均可出现,特别以解答题为主,属于低、中档题。
考向链接:1.利用空间向量求两异面直线所成的角,直线与平面所成的角的方法及公式为:
(1)异面直线所成角
设分别为异面直线的方向向量,则
(2)线面角
设是直线的方向向量,是平面的法向量,则
2.运用空间向量坐标运算求空间角的一般步骤为:
(1)建立恰当的空间直角坐标。(2)求出相关点的坐标。(3)写出向量坐标。(4)结合公式进行论证、计算。(5)转化为几何结论。
例2:(2010辽宁高考理科T19)已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
【命题立意】本题考查了空间几何体的线面与面面垂直、线面角的求解以及几何体的计算问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。
【思路点拨】建系,写出有关点坐标、向量的坐标,
计算的数量积,写出答案;
求平面CMN的法向量,求线面角的余弦,求线面角,写出答案。
【规范解答】
设PA=1,以A为原点,射线AB、AC、AP分别为x,y,z轴正方向建立空间直角坐标系,如图。
则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,,0)
(I)
【方法技巧】(1)空间中证明线线,线面垂直,经常用向量法。
(2)求线面角往往转化成直线的方向向量与平面的法向量的夹角问题来解决。
(3)线面角的范围是0°~90°,因此直线的方向向量与平面法向量的夹角的余弦是非负的,要取绝对值。
要点考向3:利用空间向量求二面角
考情聚焦:1.二面角是高考命题的重点内容,是年年必考的知识点。
2.常以解答题的形式出现,属中档题或高档题。
考向链接:求二面角最常用的办法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角。
其计算公式为:设分别为平面的法向量,则与互补或相等,
例3:(2010天津高考理科T19)
如图,在长方体中,、分别是棱,
上的点,,
求异面直线与所成角的余弦值;
证明平面
求二面角的正弦值。
【命题立意】本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力。
【思路点拨】建立空间直角坐标系或常规方法处理问题。
【规范解答】方法一:以A为坐标原点,AB所在直线为X轴,AD所在直线为Y轴建立空间直角坐标系(如图所示),设,依题意得,,,
易得,,于是,
所以异面直线与所成角的余弦值为。
证明:已知,,
于是=0,=0.因此,,,又
所以平面
(3)解:设平面的法向量,则,即
不妨令X=1,可得。由(2)可知,为平面的一个法向量。
于是,从而
所以二面角的正弦值为
要点考向4:利用空间向量解决探索性问题
考情聚焦:立体几何中已知结论寻求结论成立的条件(或是否存在问题),能较好地考查学生的逻辑推理能力和空间想象能力,是今后考查的重点,也能很好地体现新课标高考的特点。
例4:(2010福建高考理科T18)如图,圆柱OO1内有一个三棱柱ABC-A1B1C1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径。
(I)证明:平面A1ACC1平面B1BCC1;
(II)设AB=AA1,在圆柱OO1内随机选取一点,记该点取自三棱柱ABC-A1B1C1内的概率为p。
(i)当点C在圆周上运动时,求p的最大值;
(ii)记平面A1ACC1与平面B1OC所成的角为()。当p取最大值时,求cos的值。
【命题立意】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,以及几何体的体积、几何概型等基础知识;考查空间想象能力、推理论证能力、运算求解能力;考查数形结合思想、化归与转化思想、必然与或然思想。
【思路点拨】第一步先由线线垂直得到线面垂直,再由线面垂直得到面面垂直;第二步首先求出长方体的体积,并求解三棱柱的体积的最大值,利用体积比计算出几何概率。立体几何中我们可以利用向量处理角度问题,立体几何中涉及的角:有异面直线所成的角、直线与平面所成的角、二面角等。关于角的计算,均可归结为两个向量的夹角。对于空间向量,有,利用这一结论,我们可以较方便地处理立体几何中的角的问题。
【规范解答】(I)平面,平面,,又是的直径,,又,平面,而平面,所以平面平面;
(II)(i)设圆柱的底面半径为,则,故圆柱的体积为,设三棱柱ABC-A1B1C1,的体积为,所以,所以当取得最大值时取得最大值。又因为点在圆周上运动,所以当时,的面积最大,进而,三棱柱ABC-A1B1C1,的体积最大,且其最大值为,故的最大值为;
(ii)由(i)知,取最大值时,,于是,以为坐标原点,建立空间直角坐标系,则平面,是平面的一个法向量,设平面的法向量为,由于,,
所以平面的一个法向量为,,。
【方法技巧】立体几何中我们可以利用空间向量处理常见的问题,本题的(II)(i)也可以采用向量法进行证明:以为坐标原点,建立空间直角坐标系,设圆柱的底面半径为,,则,故圆柱的体积为,设三棱柱ABC-A1B1C1,的体积为,所以,所以当取得最大值时取得最大值。,所以当时的的面积最大,进而,三棱柱ABC-A1B1C1,的体积最大,且其最大值为,故的最大值为;

【高考真题探究】
1.(2010广东高考理科T10)若向量=(1,1,x),=(1,2,1),=(1,1,1),满足条件=-2,则=.
【命题立意】本题考察空间向量的坐标运算及向量的数量积运算.
【思路点拨】先算出、,再由向量的数量积列出方程,从而求出
【规范解答】,,由
得,即,解得
【答案】2
2.(2010浙江高考理科T20)如图,在矩形中,点分别在线段
上,.沿直线将翻折成,使平面.
(Ⅰ)求二面角的余弦值;
(Ⅱ)点分别在线段上,若沿直线将四边形向上翻折,使与重合,求线段的长。
【命题立意】本题主要考察空间点、线、面位置关系,二面角等基础知识,考查空间向量的应用,同时考查空间想象能力和运算求解能力。
【思路点拨】方法一利用相应的垂直关系建立空间直角坐标系,利用空间向量解决问题;方法二利用几何法解决求二面角问题和翻折问题。
【规范解答】方法一:(Ⅰ)取线段EF的中点H,连结,因为=及H是EF的中点,所以,又因为平面平面.
如图建立空间直角坐标系A-xyz,则(2,2,),C(10,8,0),F(4,0,0),D(10,0,0).故=(-2,2,2),=(6,0,0).设=(x,y,z)为平面的一个法向量,所以。
取,则。
又平面的一个法向量,故。
所以二面角的余弦值为
(Ⅱ)设,则,,
因为翻折后,与重合,所以,,
故,,得,,
所以。
3.(2010陕西高考理科T18)如图,在四棱锥P—ABCD中,底面ABCD是矩形PA⊥平面ABCD,AP=AB=2,BC=,E,F分别是AD,PC的中点.
(Ⅰ)证明:PC⊥平面BEF;
(Ⅱ)求平面BEF与平面BAP夹角的大小。
【命题立意】本题考查了空间几何体的的线线、线面垂直、以及二面角的求解问题,考查了同学们的空间想象能力以及空间思维能力以及利用空间向量解决立体几何问题的方法与技巧。
【思路点拨】思路一:建立空间直角坐标系,利用空间向量求解;思路二:利用几何法求解.
【规范解答】解法一(Ⅰ)如图,以A为坐标原点,AB,AD,AP所在的直线分别为x,y,z轴建立空间直角坐标系.∵AP=AB=2,BC=,四边形ABCD是矩形.
∴A,B,C,D的坐标为A(0,0,0),B(2,0,0),C(2,,0),D(0,,0),P(0,0,2)
又E,F分别是AD,PC的中点,
∴E(0,,0),F(1,,1).
∴=(2,,-2)=(-1,,1)=(1,0,1),
∴=-2+4-2=0,=2+0-2=0,
∴⊥,⊥,
∴PC⊥BF,PC⊥EF,,
∴PC⊥平面BEF
(II)由(I)知平面BEF的法向量
平面BAP的法向量
设平面BEF与平面BAP的夹角为,

∴,∴平面BEF与平面BAP的夹角为
4.(2010重庆高考文科T20)如题图,四棱锥中,
底面为矩形,,,
点是棱的中点.
(I)证明:;
(II)若,求二面角的平面角的余弦值.
【命题立意】本小题考查空间直线与直线、直线与平面的位置关系,
考查余弦定理及其应用,考查空间向量的基础知识和在立体几何中的应用,考查空间想象能力,推理论证能力,运算求解能力,考查数形结合的思想,考查化归与转化的思想.
【思路点拨】(1)通过证明线线垂直证明结论:线面垂直,(II)作出二面角的平面角,再利用三角函数、余弦定理等知识求余弦值.或建立空间直角坐标系,利用向量的坐标运算证明垂直和求出有关角的三角函数值.
【规范解答】(I)以为坐标原点,
射线分别为轴、轴、轴的正半轴,
建立空间直角坐标系.如图所示.
设设,则,,,。于是,,,则,
所以,故.
(II)设平面BEC的法向量为,由(Ⅰ)知,,故可取.设平面DEC的法向量,则,,由,得D,G,
从而,,故,所以,,可取,则,从而.
【方法技巧】(1)用几何法推理证明、计算求解;(2)空间向量坐标法,通过向量的坐标运算解题.
5.(2010江西高考文科T20)
如图,与都是边长为2的正三角形,
平面平面,平面,.
(1)求直线与平面所成的角的大小;
(2)求平面与平面所成的二面角的正弦值.
【命题立意】本题主要考查空间几何体的线线、线面与面面垂直关系及平行关系,考查空间线面角、二面角的问题以及有关的计算问题,考查空间向量的坐标运算,考查数形结合思想,考查考生的空间想象能力、推理论证能力、划归转化能力和运算求解能力。
【思路点拨】本题主要有两种方法,法一:几何法(1)直接找出线面角,然后求解;
(2)对二面角的求法思路,一般是分三步①“作”,②“证”,③“求”.其中“作”是关键,“证”
是难点.法二:建立空间直角坐标系,利用空间向量中的法向量求解.

【规范解答】取CD中点O,连OB,OM,则OB⊥CD,OM⊥CD,又平面平面,则MO⊥平面.
以O为原点,直线OC、BO、OM为x轴,y轴,z轴,建立空间直角坐标系如图.
OB=OM=,则各点坐标分别为O(0,0,0),C(1,0,0),M(0,0,),B(0,-,0),A(0,-,2),
(1)设直线AM与平面BCD所成的角为.
因(0,,),平面
的法向量为.则有
,所以.
(2),.
设平面ACM的法向量为,由得.
解得,,取.又平面BCD的法向量为,

设所求二面角为,则.
6.(2010四川高考理科T18)
已知正方体的棱长为1,点是棱的中点,
点是对角线的中点.
(Ⅰ)求证:为异面直线和的公垂线;
(Ⅱ)求二面角的大小;
(Ⅲ)求三棱锥的体积.
【命题立意】本题主要考查异面直线、直线与平面垂直、
二面角、正方体、三棱锥体积等基础知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决数学问题的能力,转化与化归的数学思想.
【思路点拨】方法一:几何法问题(Ⅰ),分别证明,即可.
问题(II)首先利用三垂线定理,作出二面角的平面角,然后通过平面角所在的直角三角形,求出平面角的一个三角函数值,便可解决问题.
问题(Ⅲ)选择便于计算的底面和高,观察图形可知,和都在平面内,且,故,利用三棱锥的体积公式很快求出.
方法二:建立空间直角坐标系,利用空间向量中的法向量求解.
【规范解答】(方法一):(I)连结.取的中点,则为的中点,连结.
∵点是棱的中点,点是的中点,
由,得.
∵,∴.
∴.∴.
又∵与异面直线和都相交,
故为异面直线和的公垂线,
(II)取的中点,连结,则,
过点过点作于,连结,则由三垂线
定理得,.
∴为二面角的平面角.
.
在中.
故二面角的大小为.
(III)易知,,且和都在平面内,
点到平面的距离,
∴.
(方法二):以点为坐标原点,建立如图所示的空间直角坐标系,
则,,,,,
(I)∵点是棱的中点,点是的中点,
∴,,,,.
,,
∴,,
又∵与异面直线和都相交,
故为异面直线和的公垂线,
(II)设平面的一个法向量为,
,.

取,则..
取平面的一个法向量.

由图可知,二面角的平面角为锐角,
故二面角的大小为.
(III)易知,,设平面的一个法向量为,
,,

取,则,从而.
点到平面的距离.
.

【跟踪模拟训练】
一、选择题(每小题6分,共36分)
1.已知点A(-3,1,-4),则点A关于x轴的对称点的坐标为()
(A)(-3,-1,4)
(B)(-3,-1,-4)
(C)(3,1,4)
(D)(3,-1,-4)
2.在正三棱柱ABC—A1B1C1中,D是AC的中点,AB1⊥BC1,则平面DBC1与平面CBC1所成的角为()
(A)30°(B)45°(C)60°(D)90°
3.设动直线与函数和的图象分别交于、两点,则的最大值为()
A.B.C.2D.3
4.在直角坐标系中,设,,沿轴把坐标平面折成的二面角后,的长为()
A.B.C.D.
5.矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B-AC-D,则四面体ABCD的外接球的体积为()
A.B.C.D.
6.如图:在平行六面体中,为与的交点。若,,则下列向量中与相等的向量是()
(A)(B)
(C)(D)
二、填空题(每小题6分,共18分)
7.,,是空间交于同一点的互相垂直的三条直线,点到这三条直线的距离分别为,,,则,则__。
8.平行六面体ABCD-A1B1C1D1中,AB=2,AA1=2,AD=1,且AB、AD、AA1两两之间夹角均为600,则=
9.将正方形沿对角线折成直二面角后,有下列四个结论:
(1);(2)是等边三角形;
(3)与平面成60°;(4)与所成的角为60°.
其中正确结论的序号为_________(填上所有正确结论的序号).
三、解答题(共46分)
10.如图,在四棱锥P—ABCD中,底面是边长为2的菱形,∠BAD=60°,对角线AC与BD相交于点O,,E、F分别是BC、AP的中点.
(1)求证:EF∥平面PCD;
(2)求二面角A—BP—D的余弦值.
11.某组合体由直三棱柱与正三棱锥组成,如图所示,其中,.它的正视图、侧视图、俯视图的面积分别为+1,,+1.
(1)求直线与平面所成角的正弦;
(2)在线段上是否存在点,使平面,若存在,确定点的位置;若不存在,说明理由.
12.如图,三棱柱中,面,
,,,为的中点。
(I)求证:面;
(Ⅱ)求二面角的余弦值
参考答案
1.【解析】选A.∵点A关于x轴对称点的规律是在x轴上的坐标不变,在y轴,z轴上的坐标分别变为相反数,∴点A(-3,1,-4)关于x轴的对称点的坐标为(-3,-1,4).
2.【解析】选B.以A为坐标原点,AC、AA1分别为y轴和z轴建立空间直角坐标系.设底面边长为2a.侧棱长为2b.
3.D
4.D
5.C
6.A
7.64
8.3
9.(1)(2)(4)
10.解:(1)证明:取PD的中点G,连接FG、CG
∵FG是△PAD的中卫县,∴FG,
在菱形ABCD中,ADBC,又E为BC的中点,
∴CEFG,∴四边形EFGC是平行四边形,
∴EF∥CG
又EF面PCD,CG面PCD,
∴EF∥面PCD
(2)法1:以O为原点,OB,OC,OP所在直线分别为、、轴建立如
图所示的空间直角坐标系。
则0(0,0,0),A(0,,0),B(1,0,0)(0,0,)
=(1,,0)=(0,,)
设面ABP的发向量为,则
,即即

又,,
∴OA⊥面PBD,∴为面PBD的发向量,
∴=(0,,0)
.
所以所求二面角的余弦值为
法2:在菱形ABCD中,AC⊥BD,
∵OP⊥面ABCD,AC面ABCD,
∴AC⊥OP,OPBD=0,
∴AC⊥面PBD,AC⊥BP,
在面PBD中,过O作ON⊥PB,连AN,PB⊥面AON,则AN⊥PB。
即∠ANO为所求二面角的平面角
AO=ABcos30°=
在Rt△POB中,


∴cos∠。
所以所求二面角的余弦值为
11.【解析】
12.解:(1)连接B1C,交BC1于点O,则O为B1C的中点,
∵D为AC中点∴OD∥B1A
又B1A平面BDC1,OD平面BDC1
∴B1A∥平面BDC1
(2)∵AA1⊥面ABC,BC⊥AC,AA1∥CC1
∴CC1⊥面ABC则BC⊥平面AC1,CC1⊥AC
如图以C为坐标原点,CA所在直线为X轴,CB所在直线为Y轴,所在直线为轴建立空间直角坐标系则C1(0,0,3)B(0,2,0)D(1,0,0)C(0,0,0)
∴设平面的法向量为由得
,取,则
又平面BDC的法向量为
cos
∴二面角C1—BD—C的余弦值为
【备课资源】
1.已知两条异面直线a、b所成的角为40°,直线l与a、b所成的角都等于θ,则θ的取值范围是()
(A)[20°,90°](B)[20°,90°)
(C)(20°,40°](D)[70°,90°]
【解析】选A.
取空间任一点O,将直线a,b,l平移到过O点后分别为a′,b′,l′,则l′与a′,b′所成的角即为l与a,b所成的角.当l′与a′,b′共面时θ最小为20°.当l′与a′,b′确定的平面垂直时,θ最大为90°.故θ的取值范围为[20°,90°].
3.如图甲,直角梯形ABCD中,AB∥CD,∠DAB=,点M、N分别在AB,CD上,且MN⊥AB,MC⊥CB,BC=2,MB=4,现将梯形ABCD沿MN折起,使平面AMND与平面MNCB垂直(如图乙).
(1)求证:AB∥平面DNC;
(2)当DN的长为何值时,二面角D-BC-N的大小为30°?

2012届高考数学第一轮立体几何专项复习:习题课


一名合格的教师要充分考虑学习的趣味性,高中教师要准备好教案,这是老师职责的一部分。教案可以让上课时的教学氛围非常活跃,有效的提高课堂的教学效率。那么如何写好我们的高中教案呢?下面是由小编为大家整理的“2012届高考数学第一轮立体几何专项复习:习题课”,供大家参考,希望能帮助到有需要的朋友。

习题课

【课时目标】1.能熟练应用直线、平面平行与垂直的判定及性质进行有关的证明.2.进一步体会化归思想在证明中的应用.

a、b、c表示直线,α、β、γ表示平面.
位置
关系判定定理
(符号语言)性质定理
(符号语言)
直线与平面平行a∥b且__________a∥αa∥α,________________a∥b
平面与平面平行a∥α,b∥α,且________________α∥βα∥β,________________a∥b
直线与平面垂直l⊥a,l⊥b,且____________l⊥αa⊥α,b⊥α____
平面与平面垂直a⊥α,____α⊥βα⊥β,α∩β=a,
__________b⊥β
一、填空题
1.不同直线m、n和不同平面α、β.给出下列命题:
①α∥βmαm∥β;②m∥nm∥βn∥β;
③mαnβm,n异面;④α⊥βm∥αm⊥β.
其中假命题的个数为________.
2.下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确命题的为________.
3.若a、b表示直线,α表示平面,下列命题中正确的有________个.
①a⊥α,b∥αa⊥b;②a⊥α,a⊥bb∥α;③a∥α,a⊥bb⊥α.
4.过平面外一点P:①存在无数条直线与平面α平行;②存在无数条直线与平面α垂直;③有且只有一条直线与平面α平行;④有且只有一条直线与平面α垂直,其中真命题的个数是________.
5.如图所示,正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总是保持AP⊥BD1,则动点P的轨迹是________.
6.设a,b为两条直线,α,β为两个平面,下列四个命题中,正确的命题是________.
①若a,b与α所成的角相等,则a∥b;
②若a∥α,b∥β,α∥β,则a∥b;
③若aα,bβ,a∥b,则α∥β;
④若a⊥α,b⊥β,α⊥β,则a⊥b.
7.三棱锥D-ABC的三个侧面分别与底面全等,且AB=AC=3,BC=2,则二面角A-BC-D的大小为______.
8.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”,在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是________.
9.如图所示,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各个面上的射影可能是________.(填序号)
二、解答题
10.如图所示,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中点,求证:
(1)DE=DA;
(2)平面BDM⊥平面ECA;
(3)平面DEA⊥平面ECA.

11.如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B.
(1)证明:平面AB1C⊥平面A1BC1;
(2)设D是A1C1上的点且A1B∥平面B1CD,求A1DDC1的值.

能力提升
12.四棱锥P—ABCD的顶点P在底面ABCD中的投影恰好是A,其三视图如图:
(1)根据图中的信息,在四棱锥P—ABCD的侧面、底面和棱中,请把符合要求的结论填写在空格处(每空只要求填一种):
①一对互相垂直的异面直线________;
②一对互相垂直的平面________;
③一对互相垂直的直线和平面________;
(2)四棱锥P—ABCD的表面积为________.(棱锥的表面积等于棱锥各面的面积之和)

13.如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF,EF∥AB,EF⊥FB,BF=FC,H为BC的中点.
(1)求证:FH∥平面EDB;
(2)求证:AC⊥平面EDB.
转化思想是证明线面平行与垂直的主要思路,其关系为
即利用线线平行(垂直),证明线面平行(垂直)或证明面面平行(垂直);反过来,又利用面面平行(垂直),证明线面平行(垂直)或证明线线平行(垂直),甚至平行与垂直之间的转化.这样,来来往往,就如同运用“四渡赤水”的战略战术,达到了出奇制胜的目的.

习题课答案
知识梳理

位置
关系判定定理
(符号语言)性质定理
(符号语言)
直线与平面平行a∥b且aα,bαa∥αa∥α,aβ,α∩β=ba∥b
平面与平面平行a∥α,b∥α,且aβ,bβ,a∩b=Pα∥βα∥β,α∩γ=a,β∩γ=ba∥b
直线与平面垂直l⊥a,l⊥b,且aα,bα,a∩b=Pl⊥αa⊥α,b⊥αa∥b
平面与平面垂直a⊥α,aβα⊥βα⊥β,α∩β=a,b⊥a,bαb⊥β
作业设计
1.3
解析命题①正确,面面平行的性质;命题②不正确,也可能nβ;命题③不正确,如果m、n有一条是α、β的交线,则m、n共面;命题④不正确,m与β的关系不确定.
2.2
解析(2)和(4)对.
3.1
解析①正确.
4.2
解析①④正确.
5.线段B1C
解析连结AC,AB1,B1C,
∵BD⊥AC,AC⊥DD1,
BD∩DD1=D,
∴AC⊥面BDD1,
∴AC⊥BD1,
同理可证BD1⊥B1C,
∴BD1⊥面AB1C.
∴P∈B1C时,始终AP⊥BD1.
6.④
7.90°
解析
由题意画出图形,数据如图,取BC的中点E,
连结AE、DE,易知∠AED为二面角A—BC—D的平面角.
可求得AE=DE=2,由此得AE2+DE2=AD2.
故∠AED=90°.
8.36
解析正方体的一条棱长对应着2个“正交线面对”,12条棱长共对应着24个“正交线面对”;正方体的一条面对角线对应着1个“正交线面对”,12条面对角线对应着12个“正交线面对”,共有36个.
9.①④
10.证明(1)如图所示,
取EC的中点F,连结DF,∵EC⊥平面ABC,
∴EC⊥BC,又由已知得DF∥BC,
∴DF⊥EC.
在Rt△EFD和Rt△DBA中,
∵EF=12EC=BD,
FD=BC=AB,
∴Rt△EFD≌Rt△DBA,
故ED=DA.
(2)取CA的中点N,连结MN、BN,
则MN綊12EC,
∴MN∥BD,∴N在平面BDM内,
∵EC⊥平面ABC,∴EC⊥BN.又CA⊥BN,
∴BN⊥平面ECA,BN平面MNBD,
∴平面MNBD⊥平面ECA.
即平面BDM⊥平面ECA.
(3)∵BD綊12EC,MN綊12EC,
∴BD綊MN,
∴MNBD为平行四边形,
∴DM∥BN,∵BN⊥平面ECA,
∴DM⊥平面ECA,又DM平面DEA,
∴平面DEA⊥平面ECA.
11.(1)证明因为侧面BCC1B1是菱形,
所以B1C⊥BC1.
又B1C⊥A1B,
且A1B∩BC1=B,
所以B1C⊥平面A1BC1.
又B1C平面AB1C,
所以平面AB1C⊥平面A1BC1.
(2)解设BC1交B1C于点E,连结DE,则DE是平面A1BC1与平面B1CD的交线.
因为A1B∥平面B1CD,所以A1B∥DE.
又E是BC1的中点,所以D为A1C1的中点,
即A1DDC1=1.
12.(1)①PA⊥BC(或PA⊥CD或AB⊥PD)
②平面PAB⊥平面ABCD(或平面PAD⊥平面ABCD或平面PAB⊥平面PAD或平面PCD⊥平面PAD或平面PBC⊥平面PAB)
③PA⊥平面ABCD(或AB⊥平面PAD或CD⊥平面PAD或AD⊥平面PAB或BC⊥平面PAB)
(2)2a2+2a2
解析(2)依题意:正方形的面积是a2,
S△PAB=S△PAD=12a2.
又PB=PD=2a,∴S△PBC=S△PCD=22a2.
所以四棱锥P—ABCD的表面积是
S=2a2+2a2.
13.
(1)证明如图,设AC与BD交于点G,则G为AC的中点.连结EG,GH,由于H为BC的中点,
故GH綊12AB.
又EF綊12AB,∴EF綊GH.
∴四边形EFHG为平行四边形.
∴EG∥FH.
而EG平面EDB,FH平面EDB,
∴FH∥平面EDB.
(2)证明由四边形ABCD为正方形,
得AB⊥BC.
又EF∥AB,∴EF⊥BC.
而EF⊥FB,∴EF⊥平面BFC.
∴EF⊥FH.
∴AB⊥FH.
又BF=FC,H为BC的中点,∴FH⊥BC.
∴FH⊥平面ABCD.∴FH⊥AC.
又FH∥EG,∴AC⊥EG.
又AC⊥BD,EG∩BD=G,
∴AC⊥平面EDB.

2012届高考数学总复习推理与证明考点专项教案


一名爱岗敬业的教师要充分考虑学生的理解性,作为高中教师就要好好准备好一份教案课件。教案可以让学生能够听懂教师所讲的内容,使高中教师有一个简单易懂的教学思路。那么,你知道高中教案要怎么写呢?下面是小编精心收集整理,为您带来的《2012届高考数学总复习推理与证明考点专项教案》,仅供参考,大家一起来看看吧。

推理与证明
【专题测试】
一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知函数在[0,1]上量大值与最小值的和为3,则的值为
(A)(B)2(C)3(D)5
2.下面说法正确的有
(1)演绎推理是由一般到特殊的推理;(2)演绎推理得到的结论一定是正确的;(3)演绎推理一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形有关
(A)1个(B)2个(C)3个(D)4个
3.已知是等比数列,,且,则=
(A)6(B)12(C)18(D)24
4.在古腊毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形
1361015
则第个三角形数为
(A)(B)(C)(D)
5.命题:“有些有理数是分数,整数是有理数,则整数是分数”结论是错误的,其原因是
(A)大前提错误(B)小前提错误(C)推理形式错误(D)以上都不是
6.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示.如果记3的对面的数字为m,4的对面的数字为n,那么m+n的值为
(A)3(B)7(C)8(D)11

7.已知是R上的偶函数,对任意的都有成立,若,则
(A)2007(B)2(C)1(D)0
8.已知函数,若,则
(A)(B)(C)(D)
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.
9.在德国不来梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形展品,其中第一堆只有一层,就一个球,第三2、3、4、…堆最底层(第一层)分别按下图方式固定摆放,从第二层开始每层小球的小球自然垒放在下一层之上,第堆的第层就放一个乒乓球,以表示第堆的乒乓球总数,则=__________;=_________(用表示)

10.如图(1)有面积关系,则图(2)有体积关系_______________
图1图2

11.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格140元,另一种是每袋24千克,价格120元,在满足需要的条件下,最少要花费___________元.
12.若,则=_____________.
三、解答题:(本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤.)
13.已知、,求证:.

14.设满足且,,求证:是周期函数.

15.设函数的定义域为D,若存在使成立,则称以(,)为坐标的点是函数的图象上的“稳定点”,(1)若函数的图象上有且仅有两个相异的“稳定点”,试求实数取值范围;(2)已知定义在实数集R上的奇函数存在有限个“稳定点”,求证:必有奇数个“稳定点”.

16.已知数列{an}满足
(1)求证:{an}为等比数列;
(2)记为数列{bn}的前n项和,那么:
①当a=2时,求Tn;
②当时,是否存在正整数m,使得对于任意正整数n都有如果存在,求出m的值;如果不存在,请说明理由.

一、选择题
题号12345678
答案BCCBACDB
二、填空题
9.10,10.11.50012.500
三、解答题
13.略.作差。
14.解:若
否则,令

所以为周期函数。
15.
16.(1)当n≥2时,
整理得
所以{an}是公比为a的等比数列.(4分)
(2)
①当a=2时,
两式相减,得
(9分)
②因为-1<a<1,所以:当n为偶数时,
当n为奇数时,
所以,如果存在满足条件的正整数m,则m一定是偶数.

所以
所以当

故存在正整数m=8,使得对于任意正整数n都有

2012届高考数学第一轮立体几何专项复习:空间两条直线的位置关系


俗话说,凡事预则立,不预则废。教师要准备好教案,这是教师需要精心准备的。教案可以更好的帮助学生们打好基础,让教师能够快速的解决各种教学问题。我们要如何写好一份值得称赞的教案呢?经过搜索和整理,小编为大家呈现“2012届高考数学第一轮立体几何专项复习:空间两条直线的位置关系”,仅供参考,希望能为您提供参考!

1.2.2空间两条直线的位置关系

【课时目标】1.会判断空间两直线的位置关系.2.理解两异面直线的定义及判定定理,会求两异面直线所成的角.3.能用公理4及等角定理解决一些简单的相关证明.

1.空间两条直线的位置关系有且只有三种:________、____________、____________.
2.公理4:平行于同一条直线的两条直线____________.
3.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角________.
4.异面直线
(1)定义:________________________的两条直线叫做异面直线.
(2)判定定理:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是______________.
5.异面直线所成的角:直线a,b是异面直线,经过空间任一点O,作直线a′,b′,使__________,__________,我们把a′与b′所成的________________叫做异面直线a与b所成的角.
如果两条直线所成的角是________,那么我们就说这两条异面直线互相垂直,两条异面直线所成的角α的取值范围是____________.

一、填空题
1.若空间两条直线a,b没有公共点,则其位置关系是____________.
2.若a和b是异面直线,b和c是异面直线,则a和c的位置关系是______________.
3.在正方体ABCD—A1B1C1D1中,与对角线AC1异面的棱共有________条.
4.空间四边形的两条对角线相互垂直,顺次连结四边中点的四边形的形状是________.
5.给出下列四个命题:
①垂直于同一直线的两条直线互相平行;
②平行于同一直线的两直线平行;
③若直线a,b,c满足a∥b,b⊥c,则a⊥c;
④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线.
其中假命题的个数是________.
6.有下列命题:
①两条直线和第三条直线成等角,则这两条直线平行;
②四条边相等且四个角也相等的四边形是正方形;
③经过直线外一点有无数条直线和已知直线垂直;
④若∠AOB=∠A1O1B1,且OA∥O1A1,则OB∥O1B1.
其中正确命题的序号为________.
7.空间两个角α、β,且α与β的两边对应平行且α=60°,则β为________.
8.已知正方体ABCD—A′B′C′D′中:
(1)BC′与CD′所成的角为________;
(2)AD与BC′所成的角为________.
9.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:
①AB⊥EF;
②AB与CM所成的角为60°;
③EF与MN是异面直线;
④MN∥CD.
以上结论中正确结论的序号为________.

二、解答题
10.已知棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是棱CD、AD的中点.
求证:(1)四边形MNA1C1是梯形;
(2)∠DNM=∠D1A1C1.

11.如图所示,在空间四边形ABCD中,AB=CD且AB与CD所成的角为30°,E、F分别是BC、AD的中点,求EF与AB所成角的大小.

能力提升
12.如图所示,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填序号).
13.如图所示,在正方体AC1中,E、F分别是面A1B1C1D1和AA1D1D的中心,则EF和CD所成的角是______.
1.判定两直线的位置关系的依据就在于两直线平行、相交、异面的定义.很多情况下,定义就是一种常用的判定方法.另外,我们解决空间有关线线问题时,不要忘了我们生活中的模型,比如说教室就是一个长方体模型,里面的线线关系非常丰富,我们要好好地利用它,它是我们培养空间想象能力的好工具.
2.在研究异面直线所成角的大小时,通常把两条异面直线所成的角转化为两条相交直线所成的角.将空间问题向平面问题转化,这是我们学习立体几何的一条重要的思维途径.需要强调的是,两条异面直线所成角α的范围为0°α≤90°,解题时经常结合这一点去求异面直线所成的角的大小.
作异面直线所成的角,可通过多种方法平移产生,主要有三种方法:①直接平移法(可利用图中已有的平行线);②中位线平移法;③补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).

1.2.2空间两条直线的位置关系答案

知识梳理
1.相交直线平行直线异面直线
2.互相平行3.相等
4.(1)不同在任何一个平面内(2)异面直线
5.a′∥ab′∥b锐角(或直角)直角0°α≤90°
作业设计
1.平行或异面
2.相交、平行或异面

解析异面直线不具有传递性,可以以长方体为载体加以说明a、b异面,直线c的位置可如图所示.
3.6
4.矩形
解析
易证四边形EFGH为平行四边形.
又∵E,F分别为AB,BC的中点,∴EF∥AC,
又FG∥BD,
∴∠EFG或其补角为AC与BD所成的角.
而AC与BD所成的角为90°,
∴∠EFG=90°,故四边形EFGH为矩形.
5.2
解析①④均为假命题.①可举反例,如a、b、c三线两两垂直.
④如图甲时,c、d与异面直线l1、l2交于四个点,此时c、d异面,一定不会平行;
当点A在直线a上运动(其余三点不动),会出现点A与B重合的情形,如图乙所示,此时c、d共面相交.
6.③
7.60°或120°
8.(1)60°(2)45°
解析
连结BA′,则BA′∥CD′,连结A′C′,则∠A′BC′就是BC′与CD′所成的角.
由△A′BC′为正三角形,
知∠A′BC′=60°,
由AD∥BC,知AD与BC′所成的角就是∠C′BC.
易知∠C′BC=45°.
9.①③
解析
把正方体平面展开图还原到原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.
10.
证明(1)如图,连结AC,
在△ACD中,
∵M、N分别是CD、AD的中点,
∴MN是三角形的中位线,
∴MN∥AC,MN=12AC.
由正方体的性质得:AC∥A1C1,AC=A1C1.
∴MN∥A1C1,且MN=12A1C1,即MN≠A1C1,
∴四边形MNA1C1是梯形.
(2)由(1)可知MN∥A1C1,又因为ND∥A1D1,
∴∠DNM与∠D1A1C1相等或互补.
而∠DNM与∠D1A1C1均是直角三角形的锐角,
∴∠DNM=∠D1A1C1.
11.解取AC的中点G,
连结EG、FG,
则EG∥AB,GF∥CD,
且由AB=CD知EG=FG,
∴∠GEF(或它的补角)为EF与AB所成的角,∠EGF(或它的补角)为AB与CD所成的角.
∵AB与CD所成的角为30°,
∴∠EGF=30°或150°.
由EG=FG知△EFG为等腰三角形,当∠EGF=30°时,∠GEF=75°;
当∠EGF=150°时,
∠GEF=15°.
故EF与AB所成的角为15°或75°.
12.②④
解析①中HG∥MN.
③中GM∥HN且GM≠HN,
∴HG、MN必相交.
13.45°
解析连结B1D1,则E为B1D1中点,
连结AB1,EF∥AB1,
又CD∥AB,∴∠B1AB为异面直线EF与CD所成的角,
即∠B1AB=45°.