88教案网

你的位置: 教案 > 高中教案 > 导航 > 相互独立事件同时发生的概率

高中概率教案

发表时间:2020-11-12

相互独立事件同时发生的概率。

作为优秀的教学工作者,在教学时能够胸有成竹,准备好一份优秀的教案往往是必不可少的。教案可以让学生更容易听懂所讲的内容,帮助教师营造一个良好的教学氛围。写好一份优质的教案要怎么做呢?下面是小编为大家整理的“相互独立事件同时发生的概率”,欢迎阅读,希望您能够喜欢并分享!

【精品】高二数学11.3相互独立事件同时发生的概率(备课资料)大纲人教版必修
一、参考例题
[例1]一袋中有2个白球和2个黑球,把“从中任意摸出1个球,得到白球”记作事件A,把“从剩下的3个球中任意摸出1个球,得到白球”记作事件B,那么,当事件A发生时,事件B的概率是多少?当事件A不发生时,事件B的概率又是多少?这里事件A与B能否相互独立?
分析:由于不论事件A发生与否,事件B都是等可能性事件,利用等可能性事件的概率计算公式可得当A发生时,P(B)的值和当A不发生时,P(B)的值.
解:∵当事件A发生时,P(B)=,
当事件A不发生(即第一个取到的是黑球)时,P(B)=.
∴不论事件A发生与否,对事件B发生的概率有影响.所以事件A与B不是相互独立事件.
[例2]设甲、乙两射手独立地射击同一目标,他们击中目标的概率分别为0.9、0.8,求:
(1)目标恰好被甲击中的概率;
(2)目标被击中的概率.
分析:设事件A:“甲击中目标”,事件B:“乙击中目标”,由于事件A与B是相互独立的,故A与、与B也是相互独立的.
解:设事件A:“甲击中目标”,事件B:“乙击中目标”.
∵甲、乙两射手独立射击,
∴事件A与B是相互独立的.
∴事件A与、与B都是相互独立的.
(1)∵目标恰好被甲击中,即A发生,
∵P(A)=P(A)P()=0.9×0.2=0.18,
∴目标恰好被甲击中概率为0.18.
(2)∵目标被击中,即甲、乙两人至少有一人击中目标,即事件A或B或AB发生,
又∵事件A、B、AB彼此互斥.
∴目标被击中的概率
P(A+B+AB)
=P(A)+P(B)+P(AB)
=P(A)P()+P()P(B)+P(A)P(B)
=0.9×0.2+0.1×0.9+0.9×0.8
=0.98.
[例3]甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,问取得的球是同色的概率是多少?
分析:设从甲袋中任取一个球,事件A:“取得白球”,故此时事件为“取得红球”.
设从乙袋中任取一个球,事件B:“取得白球”,故此时事件为“取得红球”.
由于事件A与B是相互独立的,因此事件与也相互独立.
由于事件“从每袋中任取一个球,取得同色”的发生即为事件AB或发生.
解:设从甲袋中任取一个球,事件A:“取得白球”,则此时事件:“取得红球”,从乙袋中任取一个球,取得同色球的概率为
P(AB+)=P(AB)+P()
=P(A)P(B)+P()P()
=.
[例4]甲、乙两个同时报考某一大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否录取互不影响,求:
(1)甲、乙两人都被录取的概率;
(2)甲、乙两人都不被录取的概率;
(3)其中至少一个被录取的概率;
分析:设事件A:“甲被录取”,事件B:“乙被录取”.
因为,两人是否录取相互不影响,故事件A与B相互独立.因此与,A与,与B都是相互独立事件.
解:设事件A“甲被录取”,事件B“乙被录取”.
∵两人录取互不影响,
∴事件A与B是相互独立事件.
∴事件与,A与,与B都是相互独立事件.
(1)∵甲、乙二人都被录取,即事件(AB)发生,
∴甲、乙二人都被录取的概率
P(AB)=P(A)P(B)=0.6×0.7=0.42.
(2)∵甲、乙二人都不被录取,即事件()发生,
∴甲、乙两人都不被录取的概率
P()=P()P()
=[1-P(A)][1-P(B)]
=0.4×0.3=0.12.
(3)∵其中至少一人被录取,即事件(A)或(B)或(AB)发生,而事件(A),(,B),(AB)彼此互斥,
∴其中至少一人被录取的概率
P(A+B+AB)
=P(A)+P(B)+P(AB)
=P(A)P()+P()P(B)+P(A)P(B)
=P(A)[1-P(B)]+[1-P(A)]P(B)+P(A)P(B)
=P(A)+P(B)-P(A)P(B)
=0.6+0.7-0.42=0.88.
二、参考练习
1.选择题
(1)坛中仅有黑、白两种颜色大小相同的球,从中进行有放回的摸球,用A1表示第一次摸得白球,A2表示第二次摸得白球,则A1与是
A.相互独立事件B.不相互独立事件
C.互斥事件D.对立事件
答案:A
(2)若事件A与B相互独立,则下列不相互独立的事件为
A.A与B.和
C.B与D.B与A
答案:C
(3)电灯泡使用时间在1000小时以上的概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是
A.0.128B.0.096
C.0.104D.0.384
答案:B
(4)某道路的A、B、C三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是
A.B.
C.D.
答案:A
2.填空题
(1)设P(A)=0.3,P(B)=0.6,事件A与B是相互独立事件,则P(B)=________.
答案:0.42
(2)棉子的发芽率为0.9,发育为壮苗的概率为0.6.
①每穴播两粒,此穴缺苗的概率为________;此穴无壮苗的概率为________.
②每穴播三粒,此穴有苗的概率为________;此穴有壮苗的概率为________.
答案:①0.010.16
②1-(0.1)31-(1-0.6)3
(3)一个工人生产了四个零件,设事件Ak:“新生产的零件第k个是正品”(k=1,2,3,4),试用P(Ak)表示下列事件的概率(设事件Ak彼此相互独立).
①没有一个产品是次品:________;
②至少有一个产品是次品:________;
③至多有一个产品是次品:________.
答案:①P(A1)P(A2)P(A3)P(A4)
②1-P(A1A2A3A4)
③P(A2A3A4)+P(A1A3A4)+P(A1A2A4)+P(A1A2A3)
3.解答题
(1)对飞机进行三次独立射击,第一次、第二次、第三次的命中率分别为0.4、0.5、0.7,求:
①飞机被击中一次、二次、三次的概率;
②飞机一次也没有被击中的概率.
解:①飞机被击中一次的概率
P1=0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7=0.36,
飞机被击中二次的概率
P2=0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7=0.41,
飞机被击中三次的概率
P3=0.4×0.5×0.7=0.14.
②飞机一次也没有被击中的概率
P=0.6×0.5×0.3=0.09.
(2)设有10把各不相同的钥匙,其中只有一把能打开某间房门,由于不知道哪一把是这间房门的钥匙,从而只好将这些钥匙逐个试一试.如果所试开的一把钥匙是从还没有试过的钥匙中任意取出的,试求:
①第一次试能打开门的概率;
②第k次(k=1,2,…,10)试能打开门的概率.
解:①P=.
②P=….
(3)在一次三人象棋对抗赛里,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛顺序如下:第一局,甲对乙;第二局,第一局胜者对丙;第三局,第二局胜者对第一局负者;第四局,第三局胜者对第二局负者,每局比赛必须决出胜负,试计算:
①乙连胜4局的概率;
②丙连胜3局的概率.
解:①P=0.6×0.5×0.6×0.5=0.09.
②P=0.4×0.6×0.5×0.6+0.6×0.5×0.6×0.5=0.162.
评述:注意灵活分析同时发生的相互独立事件的结构,并加以概率计算.
(4)(2004全国,文20)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女生能通过测验的概率均为,每位男生能通过测验的概率均为.试求:
①选出的3位同学中,至少有一位男同学的概率;
②10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.
解:①随机选出的3位同学中,至少有一位男同学的概率为1-.
②甲、乙被选中且能通过测验的概率为.
评述:灵活应用排列、组合、概率等基本概念及独立事件和互斥事件的概率以及概率知识解决实际问题.
(5)(2004陕、甘、宁,文20)某同学参加科普知识竞赛,需回答3个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6.且各题答对与否相互之间没有影响.
①求这名同学得300分的概率;
②求这名同学至少得300分的概率.
解:记“这名同学答对第i个问题”为事件Ai(i=1,2,3),则
P(A1)=0.8,P(A2)=0.7,P(A3)=0.6.
①这名同学得300分的概率
P1=P(A1A3)+P(A2A3)
=P(A1)P()P(A3)+P()P(A2)P(A3)
=0.8×0.3×0.6+0.2×0.7×0.6
=0.228.
②这名同学至少得300分的概率
P2=P1+P(A1A2A3)
=0.228+P(A1)P(A2)P(A3)
=0.228+0.8×0.7×0.6
=0.564.
●备课资料?
一、参考例题
[例1]甲、乙两同学同时解一道数学题,设事件A:“甲同学做对”,事件B:“乙同学做对”,试用事件A、B表示下列事件.
(1)甲同学做错,乙同学做对;
(2)甲、乙同学同时做错;
(3)甲、乙两同学中至少一人做对;
(4)甲、乙两同学中至多一人做对;
(5)甲、乙两同学中恰有一人做对.
分析:由于事件A:“甲同学做对”,事件B:“乙同学做对”,则:“甲同学做错”,:“乙同学做错”.因为事件A与B是相互独立事件,所以A与,与B,与都是相互独立事件.
解:(1)事件与事件B同时发生,即B;
(2)事件与事件同时发生,即;
(3)事件A,B,AB互斥,其有一发生,则事件发生,即A+B+AB;
(4)事件可表示为+B+A.
(5)事件可表示为A+B.
[例2]两台雷达独立地工作,在一段时间内,甲雷达发现飞行目标的概率为0.9,乙雷达发现目标的概率为0.85,计算在这段时间内,下列各事件的概率.
(1)甲、乙两雷达均未发现目标;
(2)至少有一台雷达发现目标;
(3)至多有一台雷达发现目标.
分析:设这段时间内,事件A:“甲雷达发现目标”,事件B:“乙雷达未发现目标”.由于两雷达独立工作,故事件A与B相互独立.
解:设事件A:“甲雷达发现目标”,事件B:“乙雷达发现目标”.
因甲、乙两台雷达独立工作,故事件A与B相互独立.所以事件A与,与B,与也相互独立.
(1)∵甲、乙两雷达均未发现目标,即事件()发生,
∴甲、乙两雷达均未发现目标的概率
P()=P()P()=[1-P(A)][1-P(B)]=0.1×0.15=0.015.
(2)解法一:∵至少有一台雷达发现目标,即事件“A+B+AB”发生,
又∵事件A,B,AB彼此互斥,
∴所求的概率
P(A+B+AB)
=P(A)+P(B)+P(AB)
=P(A)P()+P()P(B)+P(A)P(B)
=0.9×0.15+0.1×0.85+0.9×0.85
=0.985.
解法二:∵事件“至少有一台雷达发现目标”与事件“两台雷达均未发现目标”是对立事件,
∴所求的概率为
1-P()=1-P()P()=1-0.1×0.15=0.985.
(3)解法一:∵至多有一雷达发现目标,即事件A+B+彼此互斥
∴所求的概率
P(A+B+)
=P(A)+P(B)+P()
=P(A)P(B)+P()P(B)+P()P()
=0.9×0.15+0.1×0.85+0.1×0.15
=0.235.
解法二:∵事件“至多一台雷达发现目标”与事件“两雷达同时发现目标”是对立事件,
∴所求的概率为
1-P(AB)=1-P(A)P(B)=1-0.9×0.85=0.235.
[例3]有甲、乙、丙3批罐头,每批100个,其中各有1个是不合法的,从三批罐头中各抽出1个,求抽出的3个中至少有1个不合格的概率.
分析:设从甲、乙、丙3批罐头中各抽出1个,得到不合格的事件分别为A、B、C;因为事件“抽出的3个中至少有1个是不合格的”与事件“抽出的3个全是合格的”是对立事件,且事件A、B、C相互独立,故所求的事件概率可求.
解:设从甲、乙、丙三批罐头中各抽出1个,得到不合格的事件分别为A、B、C;则事件A、B、C相互独立,、、也相互独立.
∵事件“抽出的3个中至少有1个是不合格的”与事件“抽出的3个全是合格的”是对立事件,
∴所求的概率为1-P(),
即1-P()P()P()
=1-
=1-0.993≈0.03.
[例4]已知某种高炮在它控制的区域内击中敌机的概率为0.2.
(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后被击中的概率;
(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?
分析:因为敌机被击中就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率.
解:(1)设敌机被第k门高炮击中的事件为Ak(k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为.
∵事件A1,A2,A3,A4,A5相互独立,
∴敌机未被击中的概率
P()
=P()P()P()P()P()
=(1-0.2)5=()5.
∴敌机被击中的概率为1-()5.
(2)至少需要布置n门高炮才能有0.9以上概率被击中,仿(1)可得敌机被击中的概率为1-()n,
令1-()n>0.9,
即()n<.
两边取常用对数,得n>≈10.3.
∵n∈N*,∴n=11.
∴至少需要布置11门高炮才能有0.9以上的概率击中敌机.
评述:逆向思维在解决带有词语“至多”“至少”的问题时的运用,常常能使问题的解答变得简便.
二、参考练习
1.选择题
(1)同一天内,甲地下雨的概率是0.12,乙地下雨的概率是0.15,假定在这天两地是否下雨相互之间没有影响,那么甲、乙两地都不下雨的概率是
A.0.102B.0.132
C.0.748D.0.982
答案:C
(2)一名学生体育达标的概率是,他连续测试2次,那么其中恰有1次达标的概
率为
A.B.
C.D.
答案:C
(3)甲、乙两人独立地解决一道数学题,已知甲能解对的概率为m,乙能解对的概率为n,那么这道数学题被得到正确解答的概率为
A.m+nB.mn
C.1-(1-m)(1-n)D.1-mn
答案:C
(4)甲、乙两个学生通过某种英语听力测试的概率分别为、,两人同时参加测试,其中有且只有1个通过的概率是
A.B.
C.D.1
答案:C
(5)有10个均匀的正方体玩具,在它的各面上分别标以数字1,2,3,4,5,6,每次同时抛出,共抛5次,则至少有一次全部都是同一个数字的概率是
A.[1-()10]5B.[1-()5]10
C.1-[1-()5]10D.1-[1-()10]5
答案:D
2.填空题
(1)在甲盒内有螺杆200个,其中A型有160个,在乙盒内有螺母240个,其中A型有180个,若从甲、乙两盒内各任取一个,则能配套的一对螺杆、螺母的概率是________.
答案:
(2)某种大炮击中目标的概率是0.7,要以m门这种大炮同时射击一次,就可以击中目标的概率超过0.95,则m的最小值为________.
答案:3
3.解答题
(1)某两人负责照看三台机床工作,如果在某一小时内机床不需要照看的概率,第一台是0.8,第二台是0.85,第三台是0.9,假定各台机床是否需要照看相互之间没有影响,计算在这个小时内至少有1台机床要两人照看的概率为多少?
解:由题意,可得至少有一台机床要照看的概率,
P=1-0.8×0.9×0.85=0.388.
∴至少有1台要照看的概率为0.388.
(2)某篮球运动员在罚球上投篮两次,已知该运动员一次投篮进球的概率为0.8,试求下列各事件的概率.①两次都未投进;
②只有一次投进;
③至少有一次投进;
④至多有一次投进.
解:①P=(1-0.8)2=0.04.
②P=0.8×(1-0.8)+0.2×0.8=0.32.
③P=1-(1-0.8)(1-0.8)=0.96.
④P=0.04+0.32=0.36.
(3)一射手射击时,命中10环的概率为0.7,命中9环的概率为0.3,求该射手射击三次得到不少于27环的概率.
解:“不少于27环”即每次不少于9环,
则P=0.33+3×0.7×0.7×0.3+0.73=0.811.
∴不少于27环的概率为0.811.
(4)甲、乙两人进行射击比赛,先命中目标者为胜,已知甲、乙两人命中目标的概率都是,每枪都以甲先乙后的顺序进行比赛,求:
①甲先胜的概率;
②乙先胜的概率.
解:①据题意,可知甲先胜的概率
P=+…
=
=.
②P=+…
=[1+()2+()4+…]
=.
评述:逆向思维在解决带有词语“至多”“至少”的问题时的运用,常常能使问题的解答变得简便.
(5)一次数学测验共有10道单项选择题,每题都有四个选项.评分标准规定:考生每答对一题得4分,不答或答错一题倒扣1分.某考生能正确解答第1~6道题,第7~9题的四个选项中可正确排除其中一个错误选项.因此该考生从余下的三个选项中猜选一个选项.第10题因为题目根本读不懂,只好乱猜.在上述情况下,试求:
(1)该考生这次测试中得20分的概率;
(2)该考生这次测试中得30分的概率.
解:(1)设可排除一个错误选项的试题答对为事件A,乱猜的一题答对事件为B,
则P(A)=,P(B)=,那么得分为20分的事件相当于事件A独立重复试验3次没有1次发生而事件B不发生.
其概率为:
.
答:该考生这次测试中得20分的概率为.
(2)得30分的事件相当于事件A独立重复试验3次有2次发生而且事件B不发生,或事件A独立重复试验3次只有1次发生而且事件B发生.
其概率
.
答:该考生这次测试中得30分的概率为.
(6)(2004年湖北,文21)为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措后此突发事件不发生的概率(记为P)和所需费用如下表:
预防措施甲乙丙丁
P0.90.80.70.6
费用(万元)90603010
预防方案可单独采用一种预防措施或联合采用几种预防措施.在总费用不超过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.
解:方案一:单独采用一种预防措施的费用均不超过120万元.由表可知采用甲措施可使此突发事件不发生的概率最大,其概率为0.9.
方案二:联合采用两种预防措施,费用不超过120万元.由表可知联合甲、丙两种预防措施可使此突发事件不发生的概率最大,其概率为1-(1-0.9)(1-0.7)=0.97.
方案三:联合采用三种预防措施,费用不超过120万元,故只能联合乙、丙、丁三种预防措施,此时突发事件不发生的概率为
1-(1-0.8)(1-0.7)(1-0.6)=1-0.2×0.3×0.4=1-0.024=0.976.
综合上述三种预防方案,可知在总费用不超过120万元的前提下,联合使用乙、丙、丁三种预防措施可使此突发事件不发生的概率最大.
●备课资料?
一、参考例题
[例1]求一位病人服用某药品被治愈的概率为90%,求服用这种药的10位患有同样疾病的病人中至少有7人被治愈的概率.
分析:设事件A:“服用此药后病人被治愈,则有P(A)=90%”.
解:∵10位病人独立地服用此药相当于10次独立重复试验,至少7人被治愈即是事件A至少发生7次,
∴所求的概率
P=P10(7)+P10(8)+P10(9)+P10(10)
=0.970.13+0.980.12+0.990.1+0.910≈0.98.
[例2]某人参加一次考试,若五道题中解对4道则为及格,已知他解一道题的正确率为0.6,试求他能及格的概率.
分析:设事件A:“解题一道正确”则P(A)=0.6,由于解题五道相当于5次独立重复试验,且他若要获得及格需解对4题或5题,因此即在5次独立重复试验中,事件A至少发生4次.
解:设事件A:“解题一道正确”.
∵解五道题相当于5次独立重复试验,且他若要达到及格需解对其中的4道题或5道题,
∴事件A必须发生至少4次,其中“发生4次”与“发生5次”是互斥的.
∴所求的概率P=P5(4)+P5(5)=0.640.4+0.65≈0.34.
[例3]设在一袋子内装有6只白球,4只黑球,从这袋子内任意取球5次,每次取一只,每次取出的球又立即放回袋子内,求在5次取球中.
(1)取得白球3次的概率;
(2)至少有1次取得白球的概率.
分析:设事件A:“取球一只得白球”,由于每次取出的球又放回袋子内,因此取球5次可以看成5次独立重复试验.
解:(1)设事件A:“取球一只,得到白球”,则P(A)=,根据题意,可知从袋子里任意取球5次就是5次独立重复试验.
∵取得白球3次相当于事件A发生3次,
∴所求的概率P5(3)=()3()2≈0.35.(2)∵在上述的5次独立重复试验中,事件A恰好发生0次的概率
P5(0)=()0()5≈0.010,
∴所求的概率为1-P5(0)=1-0.01=0.99.
[例4]某车间的5台机床在1小时内需要工人照管的概率都是,求1小时内这5台机床中至少2台需要工人照管的概率是多少?
分析:设事件A:“一台机床需要工人照管”,则P(A)=,且5台机床需要照管相当于5次独立重复试验.1小时内这5台机床中至少2台需要照管就是指事件A至少发生2次.
解:设事件A:“一台机床需要工人照管”,则有P(A)=.
∵5台机床需要照管相当于5次独立重复试验,
而事件A至少发生2次的概率为
1-[P5(1)+P5(0)]=1-[()()4+()0()5]≈0.37,
∴所求概率为0.37.
[例5]某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不少于0.75,至少应射击n次?
分析:设至少射击n次,事件A:“射击一次命中目标”,则P(A)=0.25.由于“射击n次至少命中1次”与“射击n次命中0次”是对立事件,故射击n次,至少命中1次的概率为1-Pn(0).
解:设至少应射击n次,事件A:“射击一次命中目标”,则P(A)=0.25.
∵射击n次相当于n次独立重复试验,
∴事件A至少发生1次的概率为
1-Pn(0)=1-(0.25)0(1-0.25)n=1-0.75n.
令1-()n≥,∴()n≤,即
n≥≈4.82.
∵n∈N*,∴n=5.
∴至少射击5次.
二、参考练习
1.选择题
(1)在某一次试验中事件A出现的概率为P,则在n次独立重复试验中出现k次的概率为
A.1-PkB.(1-P)kPn-k
C.1-(1-P)kD.(1-P)kPn-k
答案:D
(2)设在一次试验中事件A出现的概率为P,在n次独立重复试验中事件A出现k次的概率为Pk,则
A.P1+P2+…+Pn=0B.P0+P1+P2+…+Pn=1
C.P0+P1+P2+…+Pn=0D.P1+P2…+Pn=1
答案:B
2.填空题
(1)从次品率为0.05的一批产品中任取4件,恰有2件次品的概率为________.
答案:0.052(1-0.05)2
(2)某事件在5次重复独立试验,一次也没有发生的概率为P5(0),恰有一次发生的概率为P5(1),则该事件至少发生1次的概率为________.
答案:1-[P5(0)+P5(1)]
3.解答题
(1)某车间有5台车床,每台车床的停车或开车是相互独立的,若每台车床在任一时刻处于停车状态的概率为,求:
①在任一时刻车间里有3台车床处于停车的概率;
②至少有一台处于停车的概率.
解:①P=()3(1-)2≈0.11.
②P=1-()0(1-)5≈0.13.
(2)种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:
①全部成活的概率;
②全部死亡的概率;
③恰好成活3棵的概率;
④至少成活4棵的概率.
解:①P=0.95≈0.59.
②P=(1-0.9)5=0.15.
③P=0.93(1-0.9)2≈0.073.
④P=0.94(1-0.9)+0.95≈0.92.
(3)用8门炮摧毁某一目标,如果至少命中2发时,目标就被摧毁,假定每门炮命中目标的概率都是0.6,若8门炮同时向目标发射一发炮弹,求目标被摧毁的概率.
解:分析题意可知“至少要有2门命中目标”其概率
P=1-P8(0)-P8(1)=1-0.60(1-0.6)8-0.6(1-0.6)7≈0.99.
(4)在抗菌素的生产中,常常需要优良菌株,若一只菌株变成优良菌株的概率是0.05,那么,从一大批经过诱变处理的菌株中,选择多少株进行培养,就能有95%以上的把握至少选到一只优良菌株?
解:设选n只菌株进行培养可得到优良菌株,
∴1-Pn(0)=1-0.050(1-0.05)n=1-0.95n≥0.95.
∴n=58.
∴至少选择58株.
(5)甲、乙两人下棋,在每盘比赛中,甲取胜的概率为0.5,乙取胜的概率为0.4,平局的概率为0.1,他们决定不管如何都要下完三盘棋,谁胜两盘以上(含两盘)谁就是最后的胜利者,分别计算甲、乙获胜的概率.
解:甲获胜的概率
P1=3×0.52×(1-0.5)+3×0.52×0.1+0.53
=4×0.53+0.52×0.3=0.575.
乙获胜的概率
P2=3×0.42×(1-0.4)+3×0.42×0.1+0.43=0.4.
(6)甲、乙两人投篮,命中率各为0.7和0.6,每人投球三次,求下列事件的概率:
①两人都投进2球;
②两人投进的次数相等.
解:①P=[0.72(1-0.7)]×[0.62(1-0.6)]≈0.19.
②P=[0.70(1-0.7)30.60(1-0.6)3]+[0.7(1-0.7)20.6(1-0.6)2]+[0.72(1-0.7)0.62(1-0.6)]+[0.73(1-0.7)00.63(1-0.6)0]≈0.148.
(7)在一次试验中,事件A发生的概率为p,求在n次独立重复试验中事件A发生奇数次的概率.
解:据题意,可知
所求概率
P=p(1-p)n-1+p3(1-p)n-3+p5(1-p)n-5+…+{[(1-p)+p]n+[(1-p)-p]n}=+(1-2p)n.
评述:在n次独立重复试验中某事件至多(或至少)发生k次的概率计算的一种常用方法——逆向思维法.

相关推荐

随机事件的概率


人教版高中数学必修系列:11.1随机事件的概率(备课资料)
一、参考例题
[例1]先后抛掷3枚均匀的一分,二分,五分硬币.
(1)一共可能出现多少种不同的结果?
(2)出现“2枚正面,1枚反面”的结果有多少种?
(3)出现“2枚正面,1枚反面”的概率是多少?
分析:(1)由于对先后抛掷每枚硬币而言,都有出现正面和反面的两种情况,所以共可能出现的结果有2×2×2=8种.
(2)出现“2枚正面,1枚反面”的情况可从(1)中8种情况列出.
(3)因为每枚硬币是均匀的,所以(1)中的每种结果的出现都是等可能性的.
解:(1)∵抛掷一分硬币时,有出现正面和反面2种情况,
抛掷二分硬币时,有出现正面和反面2种情况,
抛掷五分硬币时,有出现正面和反面2种情况,
∴共可能出现的结果有2×2×2=8种.
故一分、二分、五分的顺序可能出现的结果为:
(正,正,正),(正,正,反),
(正,反,正),(正,反,反),
(反,正,正),(反,正,反),
(反,反,正),(反,反,反).
(2)出现“2枚正面,1枚反面”的结果有3个,即(正,正,反),(正,反,正),(反,正,正).
(3)∵每种结果出现的可能性都相等,
∴事件A“2枚正面,1枚反面”的概率为P(A)=.
[例2]甲、乙、丙、丁四人中选3名代表,写出所有的基本事件,并求甲被选上的概率.
分析:这里从甲、乙、丙、丁中选3名代表就是从4个不同元素中选3个元素的一个组合,也就是一个基本事件.
解:所有的基本事件是:甲乙丙,甲乙丁,甲丙丁,乙丙丁选为代表.
∵每种选为代表的结果都是等可能性的,甲被选上的事件个数m=3,
∴甲被选上的概率为.
[例3]袋中装有大小相同标号不同的白球4个,黑球5个,从中任取3个球.
(1)共有多少种不同结果?
(2)取出的3球中有2个白球,1个黑球的结果有几个?
(3)取出的3球中至少有2个白球的结果有几个?
(4)计算第(2)、(3)小题表示的事件的概率.
分析:(1)设从4个白球,5个黑球中,任取3个的所有结果组成的集合为I,所求结果种数n就是I中元素的个数.
(2)设事件A:取出的3球,2个是白球,1个是黑球,所以事件A中的结果组成的集合是I的子集.
(3)设事件B:取出的3球至少有2个白球,所以B的结果有两类:一类是2个白球,1个黑球;另一类是3个球全白.
(4)由于球的大小相同,故任意3个球被取到的可能性都相等.故由P(A)=,P(B)=,可求事件A、B发生的概率.
解:(1)设从4个白球,5个黑球中任取3个的所有结果组成的集合为I,
∴card(I)==84.
∴共有84个不同结果.
(2)设事件A:“取出3球中有2个白球,1个黑球”的所有结果组成的集合为A,
∴card(A)==30.
∴共有30种不同的结果.
(3)设事件B:“取出3球中至少有2个白球”的所有结果组成的集合为B,
∴card(B)=+=34.
∴共有34种不同的结果.
(4)∵从4个白球,5个黑球中,任取3个球的所有结果的出现可能性都相同,
∴事件A发生的概率为,事件B发生的概率为.
二、参考练习
1.选择题
(1)如果一次试验中所有可能出现的结果有n个,而且所有结果出现的可能性相等,那么每一个基本事件的概率
A.都是1B.都是
C.都是D.不一定
答案:B
(2)抛掷一个均匀的正方体玩具(它的每一面上分别标有数字1,2,3,4,5,6),它落地时向上的数都是3的概率是
A.B.1
C.D.
答案:D
(3)把十张卡片分别写上0,1,2,3,4,5,6,7,8,9后,任意搅乱放入一纸箱内,从中任取一张,则所抽取的卡片上数字不小于3的概率是
A.B.
C.D.
答案:D
(4)从6名同学中,选出4人参加数学竞赛,其中甲被选中的概率为
A.B.
C.D.
答案:D
(5)甲袋内装有大小相等的8个红球和4个白球,乙袋内装有大小相等的9个红球和3个白球,从2个袋内各摸出一个球,那么等于
A.2个球都是白球的概率
B.2个球中恰好有一个是白球的概率
C.2个球都不是白球的概率
D.2个球都是白球的概率
答案:B
(6)某小组有成员3人,每人在一个星期(7天)中参加一天劳动,如果劳动日可任意安排,则3人在不同的3天参加劳动的概率为
A.B.
C.D.
答案:C
2.填空题
(1)随机事件A的概率P(A)应满足________.
答案:0≤P(A)≤1
(2)一个口袋内装有大小相同标号不同的2个白球,2个黑球,从中任取一个球,共有________种等可能的结果.
答案:4
(3)在50瓶饮料中,有3瓶已经过期,从中任取一瓶,取得已过期的饮料的概率是________.
答案:
(4)一年以365天计,甲、乙、丙三人中恰有两人在同天过生日的概率是________.
解析:P(A)=.
答案:
(5)有6间客房准备安排3名旅游者居住,每人可以住进任一房间,且住进各房间的可能性相等,则事件A:“指定的3个房间各住1人”的概率P(A)=________;事件B:“6间房中恰有3间各住1人”的概率P(B)=________;事件C:“6间房中指定的一间住2人”的概率P(C)=________.

解析:P(A)=;
P(B)=;
P(C)=.
答案:
3.有50张卡片(从1号到50号),从中任取一张,计算:
(1)所取卡片的号数是偶数的情况有多少种?
(2)所取卡片的号数是偶数的概率是多少?
解:(1)所取卡片的号数是偶数的情况有25种.
(2)所取卡片的号数是偶数的概率为P==.
●备课资料?
一、参考例题
[例1]一栋楼房有六个单元,李明和王强住在此楼内,试求他们住在此楼的同一单元的概率.
分析:因为李明住在此楼的情况有6种,王强住在此楼的情况有6种,所以他们住在此楼的住法结果有6×6=36个,且每种结果的出现的可能性相等.而事件A:“李明和王强住在同一单元”含有6个结果.
解:∵李明住在这栋楼的情况有6种,王强住在这栋楼的情况有6种,
∴他们同住在这栋楼的情况共有6×6=36种.
由于每种情况的出现的可能性都相等,
设事件A:“李明和王强住在此楼的同一单元内”,而事件A所含的结果有6种,
∴P(A)=.
∴李明和王强住在此楼的同一单元的概率为.
评述:也可用“捆绑法”,将李明和王强视为1人,则住在此楼的情况有6种.
[例2]在一次口试中,要从10道题中随机选出3道题进行回答,答对了其中2道题就获得及格.某考生会回答10道题中的8道,那么这名考生获得及格的概率是多少?
分析:因为从10道题中随机选出3道题,共有种可能的结果,而每种结果出现的可能性都相等,故本题属于求等可能性事件的概率问题.
解:∵从10题中随机选出3题,共有等可能性的结果个.
设事件A:“这名考生获得及格”,则事件A含的结果有两类,一类是选出的3道正是他能回答的3题,共有种选法;另一类是选出的3题中有2题会答,一题不会回答,共有种选法,所以事件A包含的结果有+个.
∴P(A)=.
∴这名考生获得及格的概率为.
[例3]7名同学站成一排,计算:
(1)甲不站正中间的概率;
(2)甲、乙两人正好相邻的概率;
(3)甲、乙两人不相邻的概率.
分析:因为7人站成一排,共有种不同的站法,这些结果出现的可能性都相等.
解:∵7人站成一排,共有种等可能性的结果,
设事件A:“甲不站在正中间”;
事件B:“甲、乙两人正好相邻”;
事件C:“甲、乙两人正好不相邻”;
事件A包含的结果有6个;
事件B包含的结果有个;
事件C包含的结果有个.
(1)甲不站在正中间的概率P(A)=.
(2)甲、乙两人相邻的概率P(B)=.
(3)甲、乙两人不相邻的概率P(C)=.
[例4]从1,2,3,…,9这九个数字中不重复地随机取3个组成三位数,求此数大于456的概率.
分析:因为从1,2,3,…,9这九个数字中组成无重复数字的三位数共有=504个,且每个结果的出现的可能性都相等,故本题属求等可能性事件的概率问题.由于比456大的三位数有三类:(1)百位数大于4,有=280个;(2)百位数为4,十位数大于5,有=28个;(3)百位数为4,十位数为5,个位数大于6有2个,因此,事件“无重复数字且比456大的三位数”包含的结果有280+28+3=311个.
解:∵由数字1,2,3,…,9九个数字组成无重复数字的三位数共有=504个,而每种结果的出现的可能性都相等.其中,事件A:“比456大的三位数”包含的结果有311个,
∴事件A的概率P(A)=.
∴所求的概率为.
[例5]某班有学生36人,现从中选出2人去完成一项任务,设每人当选的可能性都相等,若选出的2人性别相同的概率是,求该班男生、女生的人数.
分析:由于每人当选的可能性都相等,且从全班36人中选出2人去完成一项任务的选法有种,故这些当选的所有结果出现的可能性都相等.
解:设该班男生有n人,则女生(36-n)人.(n∈N*,n≤36)
∵从全班的36人中,选出2人,共有种不同的结果,每个结果出现的可能性都相等.其中,事件A:“选出的2人性别相同”含有的结果有(+)个,
∴P(A)=.
∴n2-36n+315=0.
∴n=15或n=21.
∴该班有男生15人,女生21人,或男生21人,女生15人.
评述:深刻理解等可能性事件概率的定义,能够正确运用排列、组合的知识对等可能性事件进行分析、计算.
二、参考练习
1.选择题
(1)十个人站成一排,其中甲、乙、丙三人彼此不相邻的概率为
A.B.
C.D.
答案:D
(2)将一枚均匀硬币先后抛两次,恰好出现一次正面的概率是
A.B.
C.D.
答案:A
(3)从数字0,1,2,3,4,5这六个数字中任取三个组成没有重复数字的三位数,则这个三位数是奇数的概率等于
A.B.
C.D.
答案:B
(4)盒中有100个铁钉,其中有90个是合格的,10个是不合格的,从中任意抽取10个,其中没有一个不合格铁钉的概率为
A.0.9B.
C.0.1D.
答案:D
(5)将一枚硬币先后抛两次,至少出现一次正面的概率是
A.B.
C.D.1
答案:C
2.填空题
(1)从甲地到乙地有A1,A2,A3,A4共4条路线,从乙地到丙地有B1,B2,B3共3条路线,其中A1B1是甲地到丙地的最短路线,某人任选了一条从甲地到丙地的路线,它正好是最短路线的概率为________.
答案:
(2)袋内装有大小相同的4个白球和3个黑球,从中任意摸出3个球,其中只有一个白球的概率为________.
答案:
(3)有数学、物理、化学、语文、外语五本课本,从中任取一本,取到的课本是理科课本的概率为________.
答案:
(4)从1,2,3,…,10这10个数中任意取出4个数作为一组,那么这一组数的和为奇数的概率是________.
答案:
(5)一对酷爱运动的年轻夫妇,让刚好十个月大的婴儿把“0,0,2,8,北,京”六张卡片排成一行,若婴儿能使得排成的顺序为“2008北京”或“北京2008”,则受到父母的夸奖,那么婴儿受到夸奖的概率为________.
解:由题意,知婴儿受到夸奖的概率为P=.
(6)在2004年8月18日雅典奥运会上,两名中国运动员和4名外国运动员进入双多向飞蝶射击决赛.若每名运动员夺得奖牌(金、银、铜牌)的概率相等,则中国队在此项比赛中夺得奖牌的概率为________.
解:由题意可知中国队在此项比赛中不获得奖牌的概率为P1=.
则中国队获得奖牌的概率为P=1-P1=1-.
3.解答题
(1)在10枝铅笔中,有8枝正品和2枝次品,从中任取2枝,求:
①恰好都取到正品的概率;
②取到1枝正品1枝次品的概率;
③取到2枝都是次品的概率.
解:①.
②.
③.
(2)某球队有10人,分别穿着从1号到10号的球衣,从中任选3人记录球衣的号码,求:
①最小的号码为5的概率;
②最大的号码为5的概率.
解:①.
②.
(3)一车间某工段有男工9人,女工5人,现要从中选3个职工代表,求3个代表中至少有一名女工的概率.
解:.
(4)从-3,-2,-1,0,5,6,7这七个数中任取两数相乘而得到积,求:
①积为零的概率;
②积为负数的概率;
③积为正数的概率.
解:①;
②;
③.
(5)甲袋内有m个白球,n个黑球;乙袋内有n个白球,m个黑球,从两个袋子内各取一球.求:
①取出的两个球都是黑球的概率;
②取出的两个球黑白各一个的概率;
③取出的两个球至少一个黑球的概率.
解:①;
②;
③.
●备课资料?
一、参考例题
[例1]一个均匀的正方体玩具,各个面上分别标以数1,2,3,4,5,6.求:
(1)将这个玩具先后抛掷2次,朝上的一面数之和是6的概率.
(2)将这个玩具先后抛掷2次,朝上的一面数之和小于5的概率.
分析:以(x1,x2)表示先后抛掷两次玩具朝上的面的数,x1是第一次朝上的面的数,x2是第二次朝上的面的数,由于x1取值有6种情况,x2取值也有6种情况,因此先后两次抛掷玩具所得的朝上面数共有6×6=36种结果,且每一结果的出现都是等可能性的.
解:设(x1,x2)表示先后两次抛掷玩具后所得的朝上的面的数,其中x1是第一次抛掷玩具所得的朝上的面的数,x2是第二次抛掷玩具所得的朝上的面的数.
∵先后两次抛掷这个玩具所得的朝上的面的数共有6×6=36种结果,且每一结果的出现的可能性都相等.
(1)设事件A为“2次朝上的面的数之和为6”,
∵事件A含有如下结果:
(1,5)(2,4),(3,3),(4,2),(5,1)共5个,
∴P(A)=.
(2)设事件B为“2次朝上的面上的数之和小于5”,
∵事件B含有如下结果:
(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6个,
∴P(B)=.
[例2]袋中有硬币10枚,其中2枚是伍分的,3枚是贰分的,5枚是壹分的.现从中任取5枚,求钱数不超过壹角的概率.
分析:由于从10枚硬币中,任取5枚所得的钱数结果出现的可能性都相等.
记事件A:“取出的5枚对应的钱数不超过壹角”,
∴事件A含有结果有:
①1枚伍分,1枚贰分,3枚壹分共种取法.
②1枚伍分,4枚壹分,共种取法.
③3枚贰分,2枚壹分,共种取法.
④2枚贰分,3枚壹分,共种取法.
⑤1枚贰分,4枚壹分,共种取法.
⑥5枚壹分共C种取法.
∴P(A)==.
[例3]把10个足球队平均分成两组进行比赛,求两支最强队被分在:(1)不同组的概率;(2)同一组的概率.
分析:由于把10支球队平均分成两组,共有种不同的分法,而每种分法出现的结果的可能性都相等.
(1)记事件A:“最强两队被分在不同组”,这时事件A含有种结果.
∴P(A)=.
(2)记事件B:“最强的两队被分在同一组”,这时事件B含有种.
∴P(B)=.
[例4]已知集合A={-9,-7,-5,-3,-1,0,2,4,6,8}在平面直角坐标系中,点(x,y)的坐标x∈A,
y∈A,且x≠y,计算:
(1)点(x,y)不在x轴上的概率;
(2)点(x,y)正好在第二象限的概率.
分析:由于点(x,y)中,x、y∈A,且x≠y,所以这样的点共有个,且每一个结果出现的可能性都相等.
解:∵x∈A,y∈A,x≠y时,点(x,y)共有个,且每一个结果出现的可能性都相等,
(1)设事件A为“点(x,y)不在x轴上”,
∴事件A含有的结果有个.
∴P(A)=.
(2)设事件B为“点(x,y)正好在第二象限”,
∴x<0,y>0.
∴事件B含有个结果.
∴P(B)=.
[例5]从一副扑克牌(共52张)里,任意取4张,求:
(1)抽出的是J、Q、K、A的概率;
(2)抽出的是4张同花牌的概率.
解:∵从一副扑克牌(52张)里,任意抽取4张,共有种抽法.每一种抽法抽出的结果出现的可能性都相等,
(1)设事件A:“抽出的4张是J,Q,K,A”,
∵抽取的是J的情况有种,
抽取的是Q的情况有种,
抽取的是K的情况有种,
抽取的是A的情况有种,
∴事件A含有的结果共有44个.
∴P(A)==.
(2)设事件B:“抽出的4张是同花牌”,
∴事件B中含个结果.
∴P(B)=.
二、参考练习
1.选择题
(1)某一部四册的小说,任意排放在书架的同一层上,则各册自左到右或自右到左的顺序恰好为第1,2,3,4册的概率等于
A.B.
C.D.
答案:C
(2)在100件产品中,合格品有96件,次品有4件,从这100件产品中任意抽取3件,则抽取的产品中至少有两件次品的概率为
A.B.
C.D.
答案:C
(3)从3台甲型彩电和2台乙型彩电中任选3台,其中两种品牌的彩电都齐全的概率是
A.B.
C.D.
答案:D
(4)正三角形各顶点和各边中点共有6个点,从这6个点中任意取出3个点构成的三角形恰为正三角形的概率是
A.B.
C.D.
答案:D
(5)在由1,2,3组成的不多于三位的自然数(可以有重复数字)中任意抽取一个,正好抽出两位自然数的概率是
A.B.
C.D.
答案:A
2.填空题
(1)设三位数a、b、c,若b<a,c>a,则称此三位数为凹数.现从0,1,2,3,4,5这六个数字中任取三个数字,组成三位数,其中是凹数的概率是________.
答案:
(2)将一枚硬币连续抛掷5次,则有3次出现正面的概率是________.
答案:
(3)正六边形的各顶点和中心共有7个点,从这7个点中任意取3个点构成三角形,则构成的三角形恰为直角三角形的概率是________.
解:P=.
答案:
(4)商品A、B、C、D、E在货架上排成一列,A、B要排在一起,C、D不能排在一起的概率是________.
解:P===.
答案:
(5)在平面直角坐标系中,点(x,y)的x、y∈{0,1,2,3,4,5}且x≠y,则点(x,y)在直线y=x的上方的概率是________.
解:P===.
答案:
3.解答题
(1)已知集合A={a,b,c,d,e},任意取集合A的一个子集B,计算:
①B中仅有3个元素的概率;
②B中一定含有a、b、c的概率.
解:①P=.
②P=.
(2)某号码锁有六个拨盘,每个拨盘上有从0到9共十个数字,当6个拨盘上的数字组成某一个六位数号码(开锁号码)时,锁才能打开.如果不知道开锁号码,试开一次就能打开锁的概率是多少?如果未记准开锁号码的最后两位数字,在使用时随意拨下最后两位数字,正好把锁打开的概率是多少?
解:①P=.
②P=.
(3)9国乒乓球队内有3国是亚洲国家,抽签分成三组进行预赛(每组3队),试求:
①三个组中各有一个亚洲国家球队的概率;
②三个亚洲国家集中在某一组的概率.
解:①P=[]÷[]=.
②P=÷[]=.
(4)将m个编号的球放入n个编号的盒子中,每个盒子所放的球数k满足0≤k≤m,在各种放法的可能性相等的条件,求:
①第一个盒子无球的概率;
②第一个盒子恰有一球的概率.
解:①P=()m.
②P=()n-1.

《随机事件的概率》教案


《随机事件的概率》教案
一、教学目标

知识与技能目标:了解生活中的随机现象;了解必然事件,不可能事件,随机事件的概念;理解随机事件的频率与概率的含义。

过程与方法目标:通过做实验的过程,理解在大量重复试验的情况下,随机事件的发生呈现规律性,进而理解频率和概率的关系;通过一系列问题的设置,培养学生独立思考、发现问题、分析问题和解决问题的能力。

情感、态度、价值观目标:渗透偶然寓于必然,事件之间既对立又统一的辩证唯物主义思想;增强学生的科学素养。

二、教学重点、难点

教学重点:根据随机事件、必然事伯、不可能事件的概念判断给定事件的类型,并能用概率来刻画生活中的随机现象,理解频率和概率的区别与联系。

教学难点:理解随机事件的频率定义与概率的统计定义及计算方法,理解频率和概率的区别与联系。

三、教学准备

多媒体课件

四、教学过程

(一)情境设置,引入课题

相传古代有个国王,由于崇尚迷信,世代沿袭着一条奇特的法规:凡是死囚,在临刑时要抽一次“生死签”,即在两张小纸片上分别写着“生”和“死”的字样,由执法官监督,让犯人当众抽签,如果抽到“死”字的签,则立即处死;如果抽到“生”字的签,则当场赦免。

有一次国王决定处死一个敢于“犯上”的大臣,为了不让这个囚臣得到半点获赦机会,他与几个心腹密谋暗议,暗中叮嘱执法官,把两张纸上都写成“死”。

但最后“犯上”的大臣还是获得赦免,你知道他是怎么做的吗?

相信聪明的同学们应该知道“犯上”的大臣的聪明之举:将所抽到的签吞毁掉,为证明自己抽到“生”字的签,只需验证所剩的签为“死”签。

我们如果学习了随机事件的概率,便不难用数学的角度来解释“犯上”的大臣的聪明之举。下面中公资深讲师跟大家来认识一下事件的概念。(二)探索研究,理解事件

问题1:下面有一些事件,请同学们从这些事件发生与否的角度,分析一下它们各有什么特点?

①“导体通电后,发热”;

②“抛出一块石块,自由下落”;

③“某人射击一次,中靶”;

④“在标准大气压下且温度高于0℃时,冰自然融化”;

⑦“某地12月12日下雨”;

⑧“从标号分别为1,2,3,4,5的5张标签中,得到1号签”。

给出定义:

事件:是指在一定条件下所出现的某种结果。它分为必然事件、不可能事件和随机事件。

问题2:列举生活中的必然事件,随机事件,不可能事件。

问题3:随机事件在一次试验中可能发生,也可能不发生,在大量重复试验下,它是否有一定规律?

实验1:学生分组进行抛硬币,并比较各组的实验结果,引发猜想。

给出频数与频率的定义
问题4:猜想频率的取值范围是什么?

实验2:计算机模拟抛硬币,并展示历史上大量重复抛硬币的结果。

问题5:结合计算机模拟抛硬币与历史上大量重复抛硬币的结果,判断猜想正确与否。

频率的性质:

1.频率具有波动性:试验次数n不同时,所得的频率f不一定相同。

2.试验次数n较小时,f的波动性较大,随着试验次数n的不断增大,频率f呈现出稳定性。

概率的定义

事件A的概率:在大量重复进行同一试验时,事件A发生的频率m/n总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)。

概率的性质

由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0。

频率与概率的关系

①一个随机事件发生于否具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性,而频率的稳定性又是必然的,因此偶然性和必然性对立统一。

②不可能事件和确定事件可以看成随机事件的极端情况。③随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率。

④概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果。

⑤概率是频率的稳定值,频率是概率的近似值。

例某射手在同一条件下进行射击,结果如下表所示:

(1)填写表中击中靶心的频率;

(2)这个射手射击一次,击中靶心的概率约是什么?

问题6:如果某种彩票中奖的概率为1/1000,那么买1000张彩票一定能中奖吗?请用概率的意义解释。

(三)课堂练习,巩固提高

1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是()

A.必然事件B.随机事件

C.不可能事件D.无法确定

2.下列说法正确的是()

A.任一事件的概率总在(0.1)内

B.不可能事件的概率不一定为0

C.必然事件的概率一定为1

D.以上均不对

3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。

(1)完成上面表格:

(2)该油菜子发芽的概率约是多少?4.生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。”学了概率后,你能给出解释吗?

(四)课堂小节

概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。

五、板书设计

六、教学反思

略。

2012届高考数学知识要点互斥事件有一个发生的概率复习教案


一名优秀的教师在教学时都会提前最好准备,准备好一份优秀的教案往往是必不可少的。教案可以让学生们有一个良好的课堂环境,帮助高中教师在教学期间更好的掌握节奏。高中教案的内容具体要怎样写呢?急您所急,小编为朋友们了收集和编辑了“2012届高考数学知识要点互斥事件有一个发生的概率复习教案”,供大家参考,希望能帮助到有需要的朋友。

一.课题:互斥事件有一个发生的概率
二.教学目标:了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.
三.教学重点:互斥事件的概念和互斥事件的概率加法公式.
四.教学过程:
(一)主要知识:
1.互斥事件的概念:;
2.对立事件的概念:;
3.若为两个事件,则事件指.
若是互斥事件,则.
(二)主要方法:
1.弄清互斥事件与对立事件的区别与联系;
2.掌握对立事件与互斥事件的概率公式;
(三)基础训练:
1.某产品分甲、乙、丙三个等级,其中乙、丙两等级为次品,若产品中出现乙级品的概率为0.03,出现丙级品的概率为0.01,则在成品中任意抽取一件抽得正品的概率为()
0.040.960.970.99
2.下列说法中正确的是()
事件A、B中至少有一个发生的概率一定比A、B中恰有一个发生的概率大
事件A、B同时发生的概率一定比事件A、B恰有一个发生的概率小
互斥事件一定是对立事件,对立事件不一定是互斥事件
互斥事件不一定是对立事件,对立事件一定是互斥事件
3.一盒内放有大小相同的10个球,其中有5个红球,3个绿球,2个白球,从中任取2个球,其中至少有1个绿球的概率为()
4.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以为概率的事件是()
都不是一等品恰有一件一等品至少有一件一等品至多一件一等品
5.今有光盘驱动器50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为()
1-
(四)例题分析:
例1.袋中有5个白球,3个黑球,从中任意摸出4个,求下列事件发生的概率:?
(1)摸出2个或3个白球;(2)至少摸出1个白球;(3)至少摸出1个黑球.
解:从8个球中任意摸出4个共有种不同的结果.记从8个球中任取4个,其中恰有1个白球为事件A1,恰有2个白球为事件A2,3个白球为事件A3,4个白球为事件A4,恰有i个黑球为事件Bi,则
(1)摸出2个或3个白球的概率:
(2)至少摸出1个白球的概率P2=1-P(B4)=1-0=1
(3)至少摸出1个黑球的概率P3=1-P(A4)=1-
答:(1)摸出2个或3个白球的概率是;(2)至少摸出1个白球的概率是1;
(3)至少摸出1个黑球的概率是.
例2.盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:
(1)取到的2只都是次品;(2)取到的2只中正品、次品各一只;?
(3)取到的2只中至少有一只正品.?
解:从6只灯泡中有放回地任取两只,共有62=36种不同取法.?
(1)取到的2只都是次品情况为22=4种.因而所求概率为.?
(2)由于取到的2只中正品、次品各一只有两种可能:第一次取到正品,第二次取到次品;及第一次取到次品,第二次取到正品.因而所求概率为P=
(3)由于“取到的两只中至少有一只正品”是事件“取到的两只都是次品”的对立事件.因而所求概率为?P=1-
答:(1)取到的2只都是次品的概率为;(2)取到的2只中正品、次品各一只的概率为;(3)取到的2只中至少有一只正品的概率为.
例3.从男女学生共有36名的班级中,任意选出2名委员,任何人都有同样的当选机会.如果选得同性委员的概率等于,求男女生相差几名?
解:设男生有x名,则女生有36-x名.选得2名委员都是男性的概率为
选得2名委员都是女性的概率为?
以上两种选法是互斥的,又选得同性委员的概率等于,得?
,解得x=15或x=21?
即男生有15名,女生有36-15=21名,或男生有21名,女生有36-21=15名.
答:男女生相差6名.
例4.在某地区有2000个家庭,每个家庭有4个孩子,假定男孩出生率是.
(1)求在一个家庭中至少有一个男孩的概率;
(2)求在一个家庭中至少有一个男孩且至少有一个女孩的概率;
解:(1)P(至少一个男孩)=1-P(没有男孩)=1-()4=;
(2)P(至少1个男孩且至少1个女孩)=1-P(没有男孩)-P(没有女孩)=1--=;

五.课后作业:
1.如果事件A、B互斥,那么(B)
A+B是必然事件+是必然事件?与一定互斥?与一定不互斥
2.甲袋装有个白球,个黑球,乙袋装有个白球,个黑球,(),现从两袋中各摸一个球,:“两球同色”,:“两球异色”,则与的大小关系为()
视的大小而定
3.甲袋中装有白球3个,黑球5个,乙袋内装有白球4个,黑球6个,现从甲袋内随机抽取一个球放入乙袋,充分掺混后再从乙袋内随机抽取一球放入甲袋,则甲袋中的白球没有减少的概率为()
4.一盒内放有大小相同的10个球,其中有5个红球,3个绿球,2个白球,从中任取2个球,其中至少有1个绿球的概率为()
5.一批产品共10件,其中有2件次品,现随机地抽取5件,则所取5件中至多有1件次品的概率为()
6.从装有10个大小相同的小球(4个红球、3个白球、3个黑球)口袋中任取两个,则取出两个同色球的概率是()
7.在房间里有4个人,至少有两个人的生日在同一个月的概率是()
8.战士甲射击一次,问:?
(1)若事件A(中靶)的概率为0.95,的概率为多少??
(2)若事件B(中靶环数大于5)的概率为0.7,那么事件C(中靶环数小于6)的概率为多少?事件D(中靶环数大于0且小于6)的概率是多少?

9.在放有5个红球、4个黑球、3个白球的袋中,任意取出3个球,分别求出3个全是同色球的概率及全是异色球的概率.
10.某单位36人的血型类别是:A型12人,B型10人,AB型8人,O型6人.现从这36人中任选2人,求此2人血型不同的概率.
11.在一只袋子中装有7个红玻璃球,3个绿玻璃球.从中无放回地任意抽取两次,每次只取一个.试求:(1)取得两个红球的概率;?(2)取得两个绿球的概率;?
(3)取得两个同颜色的球的概率;?(4)至少取得一个红球的概率.?
12.在房间里有4个人,问至少有两个人的生日是同一个月的概率是多少?答案:。

随机现象和随机事件的概率


总课题概率总课时第21课时
分课题随机现象和随机事件的概率分课时第1课时
教学目标了解必然事件,不可能事件及随机事件的意义;了解随机事件发生的不确定性及频率的稳定性,进一步了解概率的意义及概率与频率的区别;通过对概率的学习,使学生对对立统一的辩证规律有进一步认识.
重点难点必然事件、不可能事件,随机事件的含义;根据统计定义计算概率的方法.
引入新课
1.观察下列现象:
(1)在标准大气压下,把水加热到100°C,沸腾;(2)导体通电,发热;
(3)实心铁块丢入水中,铁块浮起;(4)同性电荷,互相吸引;(5)买一张福到彩票,中奖;(6)掷一枚硬币,正面向上;
这些现象各有什么特点?

2.(1)确定性现象与随机现象:

(2)试验与事件:

(3)事件的分类与事件的符号表示:

3.概率的定义及频率与概率的关系:

4.求事件的概率的基本方法:

注意:概率的取值范围是__________________________________.
例题剖析
例1试判断下列事件是随机事件、必然事件还是不可能事件.
(1)我国东南沿海某地明年将次受到热带气旋的侵袭;
(2)若为实数,则;
(3)某人开车通过个路口都将遇到绿灯;
(4)抛一石块,石块下落;
(5)一个正六面体的六个面分别写有数字1,2,3,4,5,6,将它抛掷两次,向上的面的数字之和大于12.

例2下面表中列出10次抛掷硬币的试验结果,为每次试验抛掷硬币的次数,
为硬币正面向上的次数,计算每次试验中“正面向上”这一事件的频
率,并考查其概率.
试验序号抛掷的次数
正面向上的次数
“正面向上”出现的频率
1500251
2500249
3500256
4500253
5500251
6500246
7500244
8500258
9500262
10500247

例3某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:
时间1999年2000年2001年2002年
出生婴儿数21840230702009419982
出生男婴数11453120311029710242
(1)试计算男婴各年出生的频率(精确到);
(2)该市男婴出生的概率约为多少?
巩固练习
1.某班进行一次数学测验,其中及格的人数为47人,不及格的人数为3人,
请据此列出一些不可能事件,必然事件,随机事件.

2.在10个学生中,男生有x个,现从中任选6人去参加某项活动.
①至少有1个女生;②5个男生,1个女生;③3个男生,3个女生.
当x为何值时,使得①为必然事件;②为不可能事件;③为随机事件.

3.某医院治疗一种疾病治愈率为%,如果前个病人都没有治愈,那么第十个病人
就一定能治愈吗?

课堂小结
随机现象和随机事件的概率的简单计算.
课后训练
班级:高二()班姓名:____________
一基础题
1.从15名学生中(其中男生10人,女生5人),任意选出6人的必然事件是()
A.6人都是男生;B.至少有1人是女生;
C.6人都是女生;D.至少有1人是男生.

2.从1,2,3,…,10这10个数字中,任取3个数字,那么“这3个数字之和小于27”这一事件是()
A.必然事件B.不可能事件C.随机事件D.以上选项均不正确

3.给出下列事件:
①对非零向量,,若,则⊥;
②直线()与函数的图象有两个不同的交点;
③若,,则;
④过空间任意三点,有且只有一个平面.
在以上事件中随机事的个数是()
A.1B.2C.3D.4

4.抛掷一枚硬币,连续5次正面向上,则有()
A.抛掷一枚硬币,出现正面向上,概率为1;
B.第6次出现正面向上的概率大于;
C.第6次出现正面向上的概率等于;
D.第6次出现正面向上的概率小于.
5.设某种产品的合格率约为99%,估算10000件该产品中次品的件数可能是______件.

6.对某批种子的发芽情况统计,在统计的5000粒种子中共有4520粒发芽,
则“种子发芽”事件的频率为______________.

二提高题
7.已知,,给出事件:.
(1)当为必然事件时,求的取值范围;
(2)当为不可能事件时,求的取值范围.

三能力题
8.某射击运动负进行双向飞碟射击训练,各次训练的成绩记录如下:
射击次数100120150100150160150
击中飞碟数819512382119127121
击中飞碟频率
(1)将各次记录击中飞碟的频率填入表中.
(2)这个运动员击中飞碟的概率约为多少?