88教案网

你的位置: 教案 > 高中教案 > 导航 > 高三数学教案:《随机事件的概率教案》教学设计

发表时间:2021-12-03

高三数学教案:《随机事件的概率教案》教学设计。

一名优秀的教师在教学方面无论做什么事都有计划和准备,作为高中教师就要根据教学内容制定合适的教案。教案可以让学生们充分体会到学习的快乐,让高中教师能够快速的解决各种教学问题。所以你在写高中教案时要注意些什么呢?为满足您的需求,小编特地编辑了“高三数学教案:《随机事件的概率教案》教学设计”,欢迎您阅读和收藏,并分享给身边的朋友!

本文题目:高三数学复习教案:随机事件的概率教案

●考点目标定位

1.了解等可能性事件的概率的意义,会用排列组合公式计算一些等可能性事件的概率.

2.了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.

3.了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率,会计算事件在n次独立重复试验中恰好发生k次的概率.

●复习方略指南

概率是新课程中新增加部分的主要内容之一.这一内容是在学习排列、组合等计数知识之后学习的,主要内容为等可能性事件的概率、互斥事件有一个发生的概率及相互独立事件同时发生的概率.这一内容从2000年被列入新课程高考的考试说明.

在2000,2001,2002,2003,2004这五年高考中,新课程试卷每年都有一道概率解答题,并且这五年的命题趋势是:从分值上看,从10分提高到17分,从题目的位置看,2000年为第(17)题,2001年为第(18)题,2002年为第(19)题,2003年为第(20)题即题目的位置后移,2004年两题分值增加到17分.从概率在试卷中的分数比与课时比看,在试卷中的分数比(12∶150=1∶12.5)是在数学中课时比(约为11∶330=1∶30)的2.4倍.概率试题体现了考试中心提出的“突出应用能力考查”以及“突出新增加内容的教学价值和应用功能”的指导思想,在命题时,提高了分值,提高了难度,并设置了灵活的题目情境,如普法考试、串联并联系统、计算机上网、产品合格率等,所以在概率复习中要注意全面复习,加强基础,注重应用.

11.1 随机事件的概率

●知识梳理

1.随机事件:在一定条件下可能发生也可能不发生的事件.

2.必然事件:在一定条件下必然要发生的事件.

3.不可能事件:在一定条件下不可能发生的事件.

4.事件A的概率:在大量重复进行同一试验时,事件A发生的频率 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A).由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0.

5.等可能性事件的概率:一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成.如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是 .如果某个事件A包含的结果有m个,那么事件A的概率P(A)= .

6.使用公式P(A)= 计算时,确定m、n的数值是关键所在,其计算方法灵活多变,没有固定的模式,可充分利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏.

●点击双基

1.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是

A. B. C. D.

解析:基本事件总数为C ,设抽取3个数,和为偶数为事件A,则A事件数包括两类:抽取3个数全为偶数,或抽取3数中2个奇数1个偶数,前者C ,后者C C .

∴A中基本事件数为C +C C .

∴符合要求的概率为 = .

答案:C

2.某校高三年级举行的一次演讲比赛共有10位同学参加,其中一班有3位,二班有2位,其他班有5位.若采取抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为

A. B. C. D.

解析:10位同学总参赛次序A .一班3位同学恰好排在一起,而二班的2位同学没有排在一起的方法数为先将一班3人捆在一起A ,与另外5人全排列A ,二班2位同学不排在一起,采用插空法A ,即A A A .

∴所求概率为 = .

答案:B

3.将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是

A. B. C. D.

解析:质地均匀的骰子先后抛掷3次,共有6×6×6种结果.3次均不出现6点向上的掷法有5×5×5种结果.由于抛掷的每一种结果都是等可能出现的,所以不出现6点向上的概率为 = ,由对立事件概率公式,知3次至少出现一次6点向上的概率是1- = .

答案:D

4.一盒中装有20个大小相同的弹子球,其中红球10个,白球6个,黄球4个,一小孩随手拿出4个,求至少有3个红球的概率为________.

解析:恰有3个红球的概率P1= = .

有4个红球的概率P2= = .

至少有3个红球的概率P=P1+P2= .

答案:

5.在两个袋中各装有分别写着0,1,2,3,4,5的6张卡片.今从每个袋中任取一张卡片,则取出的两张卡片上数字之和恰为7的概率为________.

解析:P= = .

答案:

●典例剖析

【例1】用数字1,2,3,4,5组成五位数,求其中恰有4个相同数字的概率.

解:五位数共有55个等可能的结果.现在求五位数中恰有4个相同数字的结果数:4个相同数字的取法有C 种,另一个不同数字的取法有C 种.而这取出的五个数字共可排出C 个不同的五位数,故恰有4个相同数字的五位数的结果有C C C 个,所求概率

P= = .

答:其中恰恰有4个相同数字的概率是 .

【例2】 从男女生共36人的班中,选出2名代表,每人当选的机会均等.如果选得同性代表的概率是 ,求该班中男女生相差几名?

解:设男生有x名,则女生有(36-x)人,选出的2名代表是同性的概率为P= = ,

即 + = ,

解得x=15或21.

所以男女生相差6人.

【例3】把4个不同的球任意投入4个不同的盒子内(每盒装球数不限),计算:

(1)无空盒的概率;

(2)恰有一个空盒的概率.

解:4个球任意投入4个不同的盒子内有44种等可能的结果.

(1)其中无空盒的结果有A 种,所求概率

P= = .

答:无空盒的概率是 .

(2)先求恰有一空盒的结果数:选定一个空盒有C 种,选两个球放入一盒有C A 种,其余两球放入两盒有A 种.故恰有一个空盒的结果数为C C A A ,所求概率P(A)= = .

答:恰有一个空盒的概率是 .

深化拓展

把n+1个不同的球投入n个不同的盒子(n∈N*).求:

(1)无空盒的概率;(2)恰有一空盒的概率.

解:(1) .

(2) .

【例4】某人有5把钥匙,一把是房门钥匙,但忘记了开房门的是哪一把.于是,他逐把不重复地试开,问:

(1)恰好第三次打开房门锁的概率是多少?

(2)三次内打开的概率是多少?

(3)如果5把内有2把房门钥匙,那么三次内打开的概率是多少?

解:5把钥匙,逐把试开有A 种等可能的结果.

(1)第三次打开房门的结果有A 种,因此第三次打开房门的概率P(A)= = .

(2)三次内打开房门的结果有3A 种,因此,所求概率P(A)= = .

(3)方法一:因5把内有2把房门钥匙,故三次内打不开的结果有A A 种,从而三次内打开的结果有A -A A 种,所求概率P(A)= = .

方法二:三次内打开的结果包括:三次内恰有一次打开的结果有C A A A 种;三次内恰有2次打开的结果有A A 种.因此,三次内打开的结果有C A A A +A A 种,所求概率

P(A)= = .

特别提示

1.在上例(1)中,读者如何解释下列两种解法的意义.P(A)= = 或P(A)= ? ? = .

2.仿照1中,你能解例题中的(2)吗?

●闯关训练

夯实基础

1.从分别写有A、B、C、D、E的5张卡片中,任取2张,这2张上的字母恰好按字母顺序相邻的概率为

A. B. C. D.

解析:P= = .

答案:B

2.甲、乙二人参加法律知识竞赛,共有12个不同的题目,其中选择题8个,判断题4个.甲、乙二人各依次抽一题,则甲抽到判断题,乙抽到选择题的概率是

A. B. C. D.

解析:甲、乙二人依次抽一题有C ?C 种方法,

而甲抽到判断题,乙抽到选择题的方法有C C 种.

∴P= = .

答案:C

3.从数字1、2、3、4、5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为

A. B. C. D.

解析:从数字1、2、3、4、5中,允许重复地随机抽取3个数字,这三个数字和为9的情况为5、2、2;5、3、1;4、3、2;4、4、1;3、3、3.

∴概率为 = .

答案:D

4.一次二期课改经验交流会打算交流试点学校的论文5篇和非试点学校的论文3篇.若任意排列交流次序,则最先和最后交流的论文都为试点学校的概率是________.(结果用分数表示)

解析:总的排法有A 种.

最先和最后排试点学校的排法有A A 种.

概率为 = .

答案:

5.甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题.

(1)甲抽到选择题,乙抽到判断题的概率是多少?

(2)甲、乙二人中至少有一人抽到选择题的概率是多少?

分析:(1)是等可能性事件,求基本事件总数和A包含的基本事件数即可.(2)分类或间接法,先求出对立事件的概率.

解:(1)基本事件总数甲、乙依次抽一题有C C 种,事件A包含的基本事件数为C C ,故甲抽到选择题,乙抽到判断题的概率为 = .

(2)A包含的基本事件总数分三类:

甲抽到选择题,乙抽到判断题有C C ;

甲抽到选择题,乙也抽到选择题有C C ;

甲抽到判断题,乙抽到选择题有C C .

共C C +C C +C C .

基本事件总数C C ,

∴甲、乙二人中至少有一人抽到选择题的概率为 = 或P( )= = ,P(A)=1-P( )= .

6.把编号为1到6的六个小球,平均分到三个不同的盒子内,求:

(1)每盒各有一个奇数号球的概率;

(2)有一盒全是偶数号球的概率.

解:6个球平均分入三盒有C C C 种等可能的结果.

(1)每盒各有一个奇数号球的结果有A A 种,所求概率P(A)= = .

(2)有一盒全是偶数号球的结果有(C C )?C C ,

所求概率P(A)= = .

培养能力

7.已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支.求:

(1)A、B两组中有一组恰有两支弱队的概率;

(2)A组中至少有两支弱队的概率.

(1)解法一:三支弱队在同一组的概率为

+ = ,

故有一组恰有两支弱队的概率为1- = .

解法二:有一组恰有两支弱队的概率为

+ = .

(2)解法一:A组中至少有两支弱队的概率为 + = .

解法二:A、B两组有一组至少有两支弱队的概率为1,由于对A组和B组来说,至少有两支弱队的概率是相同的,所以A组中至少有两支弱队的概率为 .

8.从1,2,…,10这10个数字中有放回地抽取3次,每次抽取一个数字,试求3次抽取中最小数为3的概率.

解:有放回地抽取3次共有103个结果,因最小数为3又可分为:恰有一个3,恰有两个3,恰有三个3.故最小数为3的结果有C ?72+C ?7+C ,

所求概率P(A)= =0.169.

答:最小数为3的概率为0.169.

探究创新

9.有点难度哟!

将甲、乙两颗骰子先后各抛一次,a、b分别表示抛掷甲、乙两颗骰子所出现的点数.

(1)若点P(a,b)落在不等式组 表示的平面区域的事件记为A,求事件A的概率;

(2)若点P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率最大,求m的值.

解:(1)基本事件总数为6×6=36.

当a=1时,b=1,2,3;

当a=2时,b=1,2;

当a=3时,b=1.

共有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6个点落在条件区域内,

∴P(A)= = .

(2)当m=7时,(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共有6种,此时P= = 最大.

●思悟小结

求解等可能性事件A的概率一般遵循如下步骤:

(1)先确定一次试验是什么,此时一次试验的可能性结果有多少,即求出A.

(2)再确定所研究的事件A是什么,事件A包括结果有多少,即求出m.

(3)应用等可能性事件概率公式P= 计算.

●教师下载中心

教学点睛

1.一个随机事件的发生既有随机性(对单次试验),又存在着统计规律(对大量重复试验),这是偶然性和必然性的对立统一.

2.随机事件A的概率P(A)满足0≤P(A)≤1.

(3)P(A)= 既是等可能性事件的概率的定义,又是计算这种概率的基本方法.

拓展题例

【例1】 某油漆公司发出10桶油漆,其中白漆5桶,黑漆3桶,红漆2桶.在搬运中所有标签脱落,交货人随意将这些标签重新贴上,问一个定货3桶白漆、2桶黑漆和1桶红漆的顾客,按所定的颜色如数得到定货的概率是多少?

解:P(A)= = .

答:顾客按所定的颜色得到定货的概率是 .

【例2】 一个口袋里共有2个红球和8个黄球,从中随机地接连取3个球,每次取一个.设{恰有一个红球}=A,{第三个球是红球}=B.求在下列条件下事件A、B的概率.

(1)不返回抽样;

(2)返回抽样.

解:(1)不返回抽样,

P(A)= = ,P(B)= = .

(2)返回抽样,

P(A)=C ( )2= ,P(B)= = .

精选阅读

随机事件的概率


人教版高中数学必修系列:11.1随机事件的概率(备课资料)
一、参考例题
[例1]先后抛掷3枚均匀的一分,二分,五分硬币.
(1)一共可能出现多少种不同的结果?
(2)出现“2枚正面,1枚反面”的结果有多少种?
(3)出现“2枚正面,1枚反面”的概率是多少?
分析:(1)由于对先后抛掷每枚硬币而言,都有出现正面和反面的两种情况,所以共可能出现的结果有2×2×2=8种.
(2)出现“2枚正面,1枚反面”的情况可从(1)中8种情况列出.
(3)因为每枚硬币是均匀的,所以(1)中的每种结果的出现都是等可能性的.
解:(1)∵抛掷一分硬币时,有出现正面和反面2种情况,
抛掷二分硬币时,有出现正面和反面2种情况,
抛掷五分硬币时,有出现正面和反面2种情况,
∴共可能出现的结果有2×2×2=8种.
故一分、二分、五分的顺序可能出现的结果为:
(正,正,正),(正,正,反),
(正,反,正),(正,反,反),
(反,正,正),(反,正,反),
(反,反,正),(反,反,反).
(2)出现“2枚正面,1枚反面”的结果有3个,即(正,正,反),(正,反,正),(反,正,正).
(3)∵每种结果出现的可能性都相等,
∴事件A“2枚正面,1枚反面”的概率为P(A)=.
[例2]甲、乙、丙、丁四人中选3名代表,写出所有的基本事件,并求甲被选上的概率.
分析:这里从甲、乙、丙、丁中选3名代表就是从4个不同元素中选3个元素的一个组合,也就是一个基本事件.
解:所有的基本事件是:甲乙丙,甲乙丁,甲丙丁,乙丙丁选为代表.
∵每种选为代表的结果都是等可能性的,甲被选上的事件个数m=3,
∴甲被选上的概率为.
[例3]袋中装有大小相同标号不同的白球4个,黑球5个,从中任取3个球.
(1)共有多少种不同结果?
(2)取出的3球中有2个白球,1个黑球的结果有几个?
(3)取出的3球中至少有2个白球的结果有几个?
(4)计算第(2)、(3)小题表示的事件的概率.
分析:(1)设从4个白球,5个黑球中,任取3个的所有结果组成的集合为I,所求结果种数n就是I中元素的个数.
(2)设事件A:取出的3球,2个是白球,1个是黑球,所以事件A中的结果组成的集合是I的子集.
(3)设事件B:取出的3球至少有2个白球,所以B的结果有两类:一类是2个白球,1个黑球;另一类是3个球全白.
(4)由于球的大小相同,故任意3个球被取到的可能性都相等.故由P(A)=,P(B)=,可求事件A、B发生的概率.
解:(1)设从4个白球,5个黑球中任取3个的所有结果组成的集合为I,
∴card(I)==84.
∴共有84个不同结果.
(2)设事件A:“取出3球中有2个白球,1个黑球”的所有结果组成的集合为A,
∴card(A)==30.
∴共有30种不同的结果.
(3)设事件B:“取出3球中至少有2个白球”的所有结果组成的集合为B,
∴card(B)=+=34.
∴共有34种不同的结果.
(4)∵从4个白球,5个黑球中,任取3个球的所有结果的出现可能性都相同,
∴事件A发生的概率为,事件B发生的概率为.
二、参考练习
1.选择题
(1)如果一次试验中所有可能出现的结果有n个,而且所有结果出现的可能性相等,那么每一个基本事件的概率
A.都是1B.都是
C.都是D.不一定
答案:B
(2)抛掷一个均匀的正方体玩具(它的每一面上分别标有数字1,2,3,4,5,6),它落地时向上的数都是3的概率是
A.B.1
C.D.
答案:D
(3)把十张卡片分别写上0,1,2,3,4,5,6,7,8,9后,任意搅乱放入一纸箱内,从中任取一张,则所抽取的卡片上数字不小于3的概率是
A.B.
C.D.
答案:D
(4)从6名同学中,选出4人参加数学竞赛,其中甲被选中的概率为
A.B.
C.D.
答案:D
(5)甲袋内装有大小相等的8个红球和4个白球,乙袋内装有大小相等的9个红球和3个白球,从2个袋内各摸出一个球,那么等于
A.2个球都是白球的概率
B.2个球中恰好有一个是白球的概率
C.2个球都不是白球的概率
D.2个球都是白球的概率
答案:B
(6)某小组有成员3人,每人在一个星期(7天)中参加一天劳动,如果劳动日可任意安排,则3人在不同的3天参加劳动的概率为
A.B.
C.D.
答案:C
2.填空题
(1)随机事件A的概率P(A)应满足________.
答案:0≤P(A)≤1
(2)一个口袋内装有大小相同标号不同的2个白球,2个黑球,从中任取一个球,共有________种等可能的结果.
答案:4
(3)在50瓶饮料中,有3瓶已经过期,从中任取一瓶,取得已过期的饮料的概率是________.
答案:
(4)一年以365天计,甲、乙、丙三人中恰有两人在同天过生日的概率是________.
解析:P(A)=.
答案:
(5)有6间客房准备安排3名旅游者居住,每人可以住进任一房间,且住进各房间的可能性相等,则事件A:“指定的3个房间各住1人”的概率P(A)=________;事件B:“6间房中恰有3间各住1人”的概率P(B)=________;事件C:“6间房中指定的一间住2人”的概率P(C)=________.

解析:P(A)=;
P(B)=;
P(C)=.
答案:
3.有50张卡片(从1号到50号),从中任取一张,计算:
(1)所取卡片的号数是偶数的情况有多少种?
(2)所取卡片的号数是偶数的概率是多少?
解:(1)所取卡片的号数是偶数的情况有25种.
(2)所取卡片的号数是偶数的概率为P==.
●备课资料?
一、参考例题
[例1]一栋楼房有六个单元,李明和王强住在此楼内,试求他们住在此楼的同一单元的概率.
分析:因为李明住在此楼的情况有6种,王强住在此楼的情况有6种,所以他们住在此楼的住法结果有6×6=36个,且每种结果的出现的可能性相等.而事件A:“李明和王强住在同一单元”含有6个结果.
解:∵李明住在这栋楼的情况有6种,王强住在这栋楼的情况有6种,
∴他们同住在这栋楼的情况共有6×6=36种.
由于每种情况的出现的可能性都相等,
设事件A:“李明和王强住在此楼的同一单元内”,而事件A所含的结果有6种,
∴P(A)=.
∴李明和王强住在此楼的同一单元的概率为.
评述:也可用“捆绑法”,将李明和王强视为1人,则住在此楼的情况有6种.
[例2]在一次口试中,要从10道题中随机选出3道题进行回答,答对了其中2道题就获得及格.某考生会回答10道题中的8道,那么这名考生获得及格的概率是多少?
分析:因为从10道题中随机选出3道题,共有种可能的结果,而每种结果出现的可能性都相等,故本题属于求等可能性事件的概率问题.
解:∵从10题中随机选出3题,共有等可能性的结果个.
设事件A:“这名考生获得及格”,则事件A含的结果有两类,一类是选出的3道正是他能回答的3题,共有种选法;另一类是选出的3题中有2题会答,一题不会回答,共有种选法,所以事件A包含的结果有+个.
∴P(A)=.
∴这名考生获得及格的概率为.
[例3]7名同学站成一排,计算:
(1)甲不站正中间的概率;
(2)甲、乙两人正好相邻的概率;
(3)甲、乙两人不相邻的概率.
分析:因为7人站成一排,共有种不同的站法,这些结果出现的可能性都相等.
解:∵7人站成一排,共有种等可能性的结果,
设事件A:“甲不站在正中间”;
事件B:“甲、乙两人正好相邻”;
事件C:“甲、乙两人正好不相邻”;
事件A包含的结果有6个;
事件B包含的结果有个;
事件C包含的结果有个.
(1)甲不站在正中间的概率P(A)=.
(2)甲、乙两人相邻的概率P(B)=.
(3)甲、乙两人不相邻的概率P(C)=.
[例4]从1,2,3,…,9这九个数字中不重复地随机取3个组成三位数,求此数大于456的概率.
分析:因为从1,2,3,…,9这九个数字中组成无重复数字的三位数共有=504个,且每个结果的出现的可能性都相等,故本题属求等可能性事件的概率问题.由于比456大的三位数有三类:(1)百位数大于4,有=280个;(2)百位数为4,十位数大于5,有=28个;(3)百位数为4,十位数为5,个位数大于6有2个,因此,事件“无重复数字且比456大的三位数”包含的结果有280+28+3=311个.
解:∵由数字1,2,3,…,9九个数字组成无重复数字的三位数共有=504个,而每种结果的出现的可能性都相等.其中,事件A:“比456大的三位数”包含的结果有311个,
∴事件A的概率P(A)=.
∴所求的概率为.
[例5]某班有学生36人,现从中选出2人去完成一项任务,设每人当选的可能性都相等,若选出的2人性别相同的概率是,求该班男生、女生的人数.
分析:由于每人当选的可能性都相等,且从全班36人中选出2人去完成一项任务的选法有种,故这些当选的所有结果出现的可能性都相等.
解:设该班男生有n人,则女生(36-n)人.(n∈N*,n≤36)
∵从全班的36人中,选出2人,共有种不同的结果,每个结果出现的可能性都相等.其中,事件A:“选出的2人性别相同”含有的结果有(+)个,
∴P(A)=.
∴n2-36n+315=0.
∴n=15或n=21.
∴该班有男生15人,女生21人,或男生21人,女生15人.
评述:深刻理解等可能性事件概率的定义,能够正确运用排列、组合的知识对等可能性事件进行分析、计算.
二、参考练习
1.选择题
(1)十个人站成一排,其中甲、乙、丙三人彼此不相邻的概率为
A.B.
C.D.
答案:D
(2)将一枚均匀硬币先后抛两次,恰好出现一次正面的概率是
A.B.
C.D.
答案:A
(3)从数字0,1,2,3,4,5这六个数字中任取三个组成没有重复数字的三位数,则这个三位数是奇数的概率等于
A.B.
C.D.
答案:B
(4)盒中有100个铁钉,其中有90个是合格的,10个是不合格的,从中任意抽取10个,其中没有一个不合格铁钉的概率为
A.0.9B.
C.0.1D.
答案:D
(5)将一枚硬币先后抛两次,至少出现一次正面的概率是
A.B.
C.D.1
答案:C
2.填空题
(1)从甲地到乙地有A1,A2,A3,A4共4条路线,从乙地到丙地有B1,B2,B3共3条路线,其中A1B1是甲地到丙地的最短路线,某人任选了一条从甲地到丙地的路线,它正好是最短路线的概率为________.
答案:
(2)袋内装有大小相同的4个白球和3个黑球,从中任意摸出3个球,其中只有一个白球的概率为________.
答案:
(3)有数学、物理、化学、语文、外语五本课本,从中任取一本,取到的课本是理科课本的概率为________.
答案:
(4)从1,2,3,…,10这10个数中任意取出4个数作为一组,那么这一组数的和为奇数的概率是________.
答案:
(5)一对酷爱运动的年轻夫妇,让刚好十个月大的婴儿把“0,0,2,8,北,京”六张卡片排成一行,若婴儿能使得排成的顺序为“2008北京”或“北京2008”,则受到父母的夸奖,那么婴儿受到夸奖的概率为________.
解:由题意,知婴儿受到夸奖的概率为P=.
(6)在2004年8月18日雅典奥运会上,两名中国运动员和4名外国运动员进入双多向飞蝶射击决赛.若每名运动员夺得奖牌(金、银、铜牌)的概率相等,则中国队在此项比赛中夺得奖牌的概率为________.
解:由题意可知中国队在此项比赛中不获得奖牌的概率为P1=.
则中国队获得奖牌的概率为P=1-P1=1-.
3.解答题
(1)在10枝铅笔中,有8枝正品和2枝次品,从中任取2枝,求:
①恰好都取到正品的概率;
②取到1枝正品1枝次品的概率;
③取到2枝都是次品的概率.
解:①.
②.
③.
(2)某球队有10人,分别穿着从1号到10号的球衣,从中任选3人记录球衣的号码,求:
①最小的号码为5的概率;
②最大的号码为5的概率.
解:①.
②.
(3)一车间某工段有男工9人,女工5人,现要从中选3个职工代表,求3个代表中至少有一名女工的概率.
解:.
(4)从-3,-2,-1,0,5,6,7这七个数中任取两数相乘而得到积,求:
①积为零的概率;
②积为负数的概率;
③积为正数的概率.
解:①;
②;
③.
(5)甲袋内有m个白球,n个黑球;乙袋内有n个白球,m个黑球,从两个袋子内各取一球.求:
①取出的两个球都是黑球的概率;
②取出的两个球黑白各一个的概率;
③取出的两个球至少一个黑球的概率.
解:①;
②;
③.
●备课资料?
一、参考例题
[例1]一个均匀的正方体玩具,各个面上分别标以数1,2,3,4,5,6.求:
(1)将这个玩具先后抛掷2次,朝上的一面数之和是6的概率.
(2)将这个玩具先后抛掷2次,朝上的一面数之和小于5的概率.
分析:以(x1,x2)表示先后抛掷两次玩具朝上的面的数,x1是第一次朝上的面的数,x2是第二次朝上的面的数,由于x1取值有6种情况,x2取值也有6种情况,因此先后两次抛掷玩具所得的朝上面数共有6×6=36种结果,且每一结果的出现都是等可能性的.
解:设(x1,x2)表示先后两次抛掷玩具后所得的朝上的面的数,其中x1是第一次抛掷玩具所得的朝上的面的数,x2是第二次抛掷玩具所得的朝上的面的数.
∵先后两次抛掷这个玩具所得的朝上的面的数共有6×6=36种结果,且每一结果的出现的可能性都相等.
(1)设事件A为“2次朝上的面的数之和为6”,
∵事件A含有如下结果:
(1,5)(2,4),(3,3),(4,2),(5,1)共5个,
∴P(A)=.
(2)设事件B为“2次朝上的面上的数之和小于5”,
∵事件B含有如下结果:
(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6个,
∴P(B)=.
[例2]袋中有硬币10枚,其中2枚是伍分的,3枚是贰分的,5枚是壹分的.现从中任取5枚,求钱数不超过壹角的概率.
分析:由于从10枚硬币中,任取5枚所得的钱数结果出现的可能性都相等.
记事件A:“取出的5枚对应的钱数不超过壹角”,
∴事件A含有结果有:
①1枚伍分,1枚贰分,3枚壹分共种取法.
②1枚伍分,4枚壹分,共种取法.
③3枚贰分,2枚壹分,共种取法.
④2枚贰分,3枚壹分,共种取法.
⑤1枚贰分,4枚壹分,共种取法.
⑥5枚壹分共C种取法.
∴P(A)==.
[例3]把10个足球队平均分成两组进行比赛,求两支最强队被分在:(1)不同组的概率;(2)同一组的概率.
分析:由于把10支球队平均分成两组,共有种不同的分法,而每种分法出现的结果的可能性都相等.
(1)记事件A:“最强两队被分在不同组”,这时事件A含有种结果.
∴P(A)=.
(2)记事件B:“最强的两队被分在同一组”,这时事件B含有种.
∴P(B)=.
[例4]已知集合A={-9,-7,-5,-3,-1,0,2,4,6,8}在平面直角坐标系中,点(x,y)的坐标x∈A,
y∈A,且x≠y,计算:
(1)点(x,y)不在x轴上的概率;
(2)点(x,y)正好在第二象限的概率.
分析:由于点(x,y)中,x、y∈A,且x≠y,所以这样的点共有个,且每一个结果出现的可能性都相等.
解:∵x∈A,y∈A,x≠y时,点(x,y)共有个,且每一个结果出现的可能性都相等,
(1)设事件A为“点(x,y)不在x轴上”,
∴事件A含有的结果有个.
∴P(A)=.
(2)设事件B为“点(x,y)正好在第二象限”,
∴x<0,y>0.
∴事件B含有个结果.
∴P(B)=.
[例5]从一副扑克牌(共52张)里,任意取4张,求:
(1)抽出的是J、Q、K、A的概率;
(2)抽出的是4张同花牌的概率.
解:∵从一副扑克牌(52张)里,任意抽取4张,共有种抽法.每一种抽法抽出的结果出现的可能性都相等,
(1)设事件A:“抽出的4张是J,Q,K,A”,
∵抽取的是J的情况有种,
抽取的是Q的情况有种,
抽取的是K的情况有种,
抽取的是A的情况有种,
∴事件A含有的结果共有44个.
∴P(A)==.
(2)设事件B:“抽出的4张是同花牌”,
∴事件B中含个结果.
∴P(B)=.
二、参考练习
1.选择题
(1)某一部四册的小说,任意排放在书架的同一层上,则各册自左到右或自右到左的顺序恰好为第1,2,3,4册的概率等于
A.B.
C.D.
答案:C
(2)在100件产品中,合格品有96件,次品有4件,从这100件产品中任意抽取3件,则抽取的产品中至少有两件次品的概率为
A.B.
C.D.
答案:C
(3)从3台甲型彩电和2台乙型彩电中任选3台,其中两种品牌的彩电都齐全的概率是
A.B.
C.D.
答案:D
(4)正三角形各顶点和各边中点共有6个点,从这6个点中任意取出3个点构成的三角形恰为正三角形的概率是
A.B.
C.D.
答案:D
(5)在由1,2,3组成的不多于三位的自然数(可以有重复数字)中任意抽取一个,正好抽出两位自然数的概率是
A.B.
C.D.
答案:A
2.填空题
(1)设三位数a、b、c,若b<a,c>a,则称此三位数为凹数.现从0,1,2,3,4,5这六个数字中任取三个数字,组成三位数,其中是凹数的概率是________.
答案:
(2)将一枚硬币连续抛掷5次,则有3次出现正面的概率是________.
答案:
(3)正六边形的各顶点和中心共有7个点,从这7个点中任意取3个点构成三角形,则构成的三角形恰为直角三角形的概率是________.
解:P=.
答案:
(4)商品A、B、C、D、E在货架上排成一列,A、B要排在一起,C、D不能排在一起的概率是________.
解:P===.
答案:
(5)在平面直角坐标系中,点(x,y)的x、y∈{0,1,2,3,4,5}且x≠y,则点(x,y)在直线y=x的上方的概率是________.
解:P===.
答案:
3.解答题
(1)已知集合A={a,b,c,d,e},任意取集合A的一个子集B,计算:
①B中仅有3个元素的概率;
②B中一定含有a、b、c的概率.
解:①P=.
②P=.
(2)某号码锁有六个拨盘,每个拨盘上有从0到9共十个数字,当6个拨盘上的数字组成某一个六位数号码(开锁号码)时,锁才能打开.如果不知道开锁号码,试开一次就能打开锁的概率是多少?如果未记准开锁号码的最后两位数字,在使用时随意拨下最后两位数字,正好把锁打开的概率是多少?
解:①P=.
②P=.
(3)9国乒乓球队内有3国是亚洲国家,抽签分成三组进行预赛(每组3队),试求:
①三个组中各有一个亚洲国家球队的概率;
②三个亚洲国家集中在某一组的概率.
解:①P=[]÷[]=.
②P=÷[]=.
(4)将m个编号的球放入n个编号的盒子中,每个盒子所放的球数k满足0≤k≤m,在各种放法的可能性相等的条件,求:
①第一个盒子无球的概率;
②第一个盒子恰有一球的概率.
解:①P=()m.
②P=()n-1.

随机现象和随机事件的概率


总课题概率总课时第21课时
分课题随机现象和随机事件的概率分课时第1课时
教学目标了解必然事件,不可能事件及随机事件的意义;了解随机事件发生的不确定性及频率的稳定性,进一步了解概率的意义及概率与频率的区别;通过对概率的学习,使学生对对立统一的辩证规律有进一步认识.
重点难点必然事件、不可能事件,随机事件的含义;根据统计定义计算概率的方法.
引入新课
1.观察下列现象:
(1)在标准大气压下,把水加热到100°C,沸腾;(2)导体通电,发热;
(3)实心铁块丢入水中,铁块浮起;(4)同性电荷,互相吸引;(5)买一张福到彩票,中奖;(6)掷一枚硬币,正面向上;
这些现象各有什么特点?

2.(1)确定性现象与随机现象:

(2)试验与事件:

(3)事件的分类与事件的符号表示:

3.概率的定义及频率与概率的关系:

4.求事件的概率的基本方法:

注意:概率的取值范围是__________________________________.
例题剖析
例1试判断下列事件是随机事件、必然事件还是不可能事件.
(1)我国东南沿海某地明年将次受到热带气旋的侵袭;
(2)若为实数,则;
(3)某人开车通过个路口都将遇到绿灯;
(4)抛一石块,石块下落;
(5)一个正六面体的六个面分别写有数字1,2,3,4,5,6,将它抛掷两次,向上的面的数字之和大于12.

例2下面表中列出10次抛掷硬币的试验结果,为每次试验抛掷硬币的次数,
为硬币正面向上的次数,计算每次试验中“正面向上”这一事件的频
率,并考查其概率.
试验序号抛掷的次数
正面向上的次数
“正面向上”出现的频率
1500251
2500249
3500256
4500253
5500251
6500246
7500244
8500258
9500262
10500247

例3某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:
时间1999年2000年2001年2002年
出生婴儿数21840230702009419982
出生男婴数11453120311029710242
(1)试计算男婴各年出生的频率(精确到);
(2)该市男婴出生的概率约为多少?
巩固练习
1.某班进行一次数学测验,其中及格的人数为47人,不及格的人数为3人,
请据此列出一些不可能事件,必然事件,随机事件.

2.在10个学生中,男生有x个,现从中任选6人去参加某项活动.
①至少有1个女生;②5个男生,1个女生;③3个男生,3个女生.
当x为何值时,使得①为必然事件;②为不可能事件;③为随机事件.

3.某医院治疗一种疾病治愈率为%,如果前个病人都没有治愈,那么第十个病人
就一定能治愈吗?

课堂小结
随机现象和随机事件的概率的简单计算.
课后训练
班级:高二()班姓名:____________
一基础题
1.从15名学生中(其中男生10人,女生5人),任意选出6人的必然事件是()
A.6人都是男生;B.至少有1人是女生;
C.6人都是女生;D.至少有1人是男生.

2.从1,2,3,…,10这10个数字中,任取3个数字,那么“这3个数字之和小于27”这一事件是()
A.必然事件B.不可能事件C.随机事件D.以上选项均不正确

3.给出下列事件:
①对非零向量,,若,则⊥;
②直线()与函数的图象有两个不同的交点;
③若,,则;
④过空间任意三点,有且只有一个平面.
在以上事件中随机事的个数是()
A.1B.2C.3D.4

4.抛掷一枚硬币,连续5次正面向上,则有()
A.抛掷一枚硬币,出现正面向上,概率为1;
B.第6次出现正面向上的概率大于;
C.第6次出现正面向上的概率等于;
D.第6次出现正面向上的概率小于.
5.设某种产品的合格率约为99%,估算10000件该产品中次品的件数可能是______件.

6.对某批种子的发芽情况统计,在统计的5000粒种子中共有4520粒发芽,
则“种子发芽”事件的频率为______________.

二提高题
7.已知,,给出事件:.
(1)当为必然事件时,求的取值范围;
(2)当为不可能事件时,求的取值范围.

三能力题
8.某射击运动负进行双向飞碟射击训练,各次训练的成绩记录如下:
射击次数100120150100150160150
击中飞碟数819512382119127121
击中飞碟频率
(1)将各次记录击中飞碟的频率填入表中.
(2)这个运动员击中飞碟的概率约为多少?

高二数学随机事件的概率36


俗话说,凡事预则立,不预则废。教师要准备好教案,这是教师的任务之一。教案可以让学生更好的吸收课堂上所讲的知识点,让教师能够快速的解决各种教学问题。你知道如何去写好一份优秀的教案呢?下面是小编为大家整理的“高二数学随机事件的概率36”,欢迎阅读,希望您能阅读并收藏。

第1节随机事件的概率
1.有下列事件:
①连续掷一枚硬币两次,两次都出现正面朝上;
②异性电荷相互吸引;
③在标准大气压下,水在1℃结冰;
④买了一注彩票就得了特等奖.
其中是随机事件的有()
A.①②B.①④C.①③④D.②④
2.(创新题)下列事件中,随机事件的个数为()
①方程ax+b=0有一个实数根;
②2009年5月15日,去新加坡旅游的人感染甲型H1N1;
③2012年伦敦奥运会中国拿金牌数居第一名;
④常温下,焊锡熔化;
⑤若a>b,那么ac>bc.
A.2B.3C.4D.5
3.关于随机事件的频率与概率,以下说法正确的是()
A.频率是确定的,概率是随机的
B.频率是随机的,概率也是随机的
C.概率是确定的,概率是频率的近似值
D.概率是确定的,频率是概率的近似值
4.下列事件中,随机事件是()
A.向区间(0,1)内投点,点落在(0,1)区间
B.向区间(0,1)内投点,点落在(1,2)区间
C.向区间(0,2)内投点,点落在(0,1)区间
D.向区间(0,2)内投点,点落在(-1,0)区间
5.事件A的频率满足()
A.=0B.=1C.0<<1D.0≤≤1
6.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率近似为.
7.同时掷两枚骰子,点数之和在2~12间的事件是事件,点数之和为12的事件是事件,点数之和小于2或大于12的事件是事件;将一枚骰子连掷两次,点数之差为5的事件是事件,点数之差为6的事件是事件.
8.指出下列随机事件的条件及结果.
(1)某人射击8次,恰有2次中靶;
(2)某人购买福利彩票10注,有2注中得三等奖,其余8注未中奖.

9.(1)某厂一批产品的次品率为,问任意抽取10件产品是否一定会发现一件次品?为什么?
(2)10件产品中次品率为,问“这10件产品中必有一件次品”的说法是否正确?为什么?

10.(改编题)用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:
直径个数直径个数
d∈(6.88,6.89]1d∈(6.93,6.94]26
d∈(6.89,6.90]2d∈(6.94,6.95]15
d∈(6.90,6.91]10d∈(6.95,6.96]8
d∈(6.91,6.92]17d∈(6.96,6.97]2
d∈(6.92,6.93]17d∈(6.97,6.98]2
直径个数从这100个螺母中,任意抽取一个,求事件A(d∈(6.92,6.94]),事件B(d∈(6.90,6.96]),事件C(d6.96)的频率.

11.某射手在同一条件下进行射击,结果如下表所示:
射击次数n1020501002005001000
击中靶心的次数m8194490178455906
击中靶心的频率
(1)计算表中击中靶心的各个频率;
(2)这个运动员击中靶心的概率约是多少?

12.(创新题)某教授为了测试贫困地区和发达地区的同龄儿童的智力,出了10个智力题,每个题10分,然后作了统计,下表是统计结果.
贫困地区:
参加测试的人数3050100200500800
得60分以上的人数162752104256402
得60分以上的频率
发达地区:
参加测试的人数3050100200500800
得60分以上的人数172956111276440
得60分以上的频率
(1)利用计算器计算两地区参加测试的儿童中得60分以上的频率;
(2)求两个地区参加测试的儿童得60分以上的概率;
(3)分析贫富差距为什么会带来人的智力的差别.

答案
1.B2.C3.D4.C5.D6.0.037.必然随机不可能随机不可能
8.(1)条件:某人射击8次;结果:恰有2次中靶.
(2)条件:某人购买福利彩票10注;结果:2注中得三等奖,其余8注未中奖.
9.(1)不一定,因为此处次品率即指概率,是随机事件的结果,而不是确定性事件的结果.
(2)正确,因为这是确定事件.
10.设n=100,A、B、C发生的次数分别为
mA=17+26=43,mB=10+17+17+26+15+8=93,
mC=2+2=4.
事件A发生的频率为=0.43,
事件B发生的频率为=0.93,
事件C发生的频率为=0.04.
11.(1)0.8,0.95,0.88,0.9,0.89,0.91,0.906(2)0.9
12.(1)贫困地区:
参加测试的人数3050100200500800
得60分以上的人数162752104256402
得60分以上的频率0.5330.5400.5200.5200.5120.503
发达地区:
参加测试的人数3050100200500800
得60分以上的人数172956111276440
得60分以上的频率0.5670.5800.5600.5550.5520.550
(2)贫困地区和发达地区参加测试的儿童得60分以上的频率逐渐趋于0.5和0.55,故概率分别为0.5和0.55.
(3)经济上的贫困导致贫困地区生活水平落后,儿童的健康和发育会受到一定的影响;另外经济落后也会使教育事业发展落后,导致智力出现差别.

高中数学必修三导学案:3.1.1随机事件的概率


第三章概率
3.1.1随机事件的概率
【学习目标】
1.了解随机事件发生的不确定性和概率的稳定性.
2.了解随机事件,必然事件和不可能事件的概念.
3.正确了解概率的含义,了解频率与概率的区别与联系.会求随机事件的概率.
【新知自学】
阅读教材第108-112页内容,然后回答问题
知识回顾:
1.频率分布表中的频率=.
2.初中教材中随机事件的概念是:在一定条件下,可能发生也可能的事件叫做随机事件.

新知梳理:
1、事件的概念
(1)必然事件:在条件S下,的事件,叫做相对于条件S的必然事件.
(2)不可能事件:在条件S下,的事件,叫做相对于条件S的不可能事件.
(3)确定事件:与统称为相对于条件S的确定事件,简称确定事件.
(4)随机事件:在条件S下,的事件,叫做相对于条件S的随机事件,简称随机事件..
2、事件的分类

3、事件的表示
事件常用表示.
4、频数与频率
在相同的条件S下重复次试验,观察某一事件A是否出现,称次试验中事件A出现次数为事件A出现的,称事件A出现的比例为事件A出现的.范围是.
5、概率
对于给定的事件A,如果随着试验次数的增加,事件A发生的频率稳定在中的某一个常数上,把这个,记作,称为事件A的概率.
思考:1频率与概率的区别与联系是什么?

2必然事件的概率是多少?不可能事件的概率是多少?

对点练习:
1.考察下列事件:
①导体通电时发热;②向上抛出的石头会下落;③在没有水分的真空中种子发芽;④在常温常压下钢铁融化;⑤某人射击一次命中目标.
这些事件就其发生与否有什么共同特点?是什么事件?

2.下列说法正确地是()
A.任何事件的概率总是在之间
B.频率是客观存在的,与试验次数无关
C.随着试验次数的增加,频率一般会越来越接近概率
D.概率是随机的,在试验前不能确定
3.下面的事件:(1)在标准大气压下,水加热到时会沸腾;(2)∈R,则;(3)一枚硬币连掷两次,两次都会出现正面向上.是不可能事件的有()
A.(2)B.(1)C.(1)(2)D.(3)
【合作探究】
典例精析
例题1.在10个同类产品中,有8个正品,2个次品,从中任意抽出3个检验,据此列出其中的不可能事件、必然事件、随机事件.

变式训练1.盒中仅有4只白球,5只黑球,从中任意取出一只球.
(1)“取出的球是黄球”是什么事件?它的概率是多少?
(2)“取出的球是白球”是什么事件?
(3)“取出的球是白球或黑球”是什么事件?它的概率是多少?
例题2.某射手在同一条件下进行射击,结果如下表所示:
射击次数n102050100200500
击中靶心次数m8194492178455
击中靶心的频率
(1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概率估计是什么?

变式训练2.某人进行打靶练习,共射击10次,其中有2次中10环,有3次射中9环,有4次中8环,有1次未中靶,试计算此人中靶的频率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?

例题3.袋中装有大小相同的红、白、黄、黑4个球,分别写出以下随机试验的条件和结果.列举出重复试验的结果
(1)从中任取1球;(2)从中任取2球.

变式训练3.指出下列试验的结果.
(1)先后掷两枚质地均匀的硬币的结果;
(2)某人射击一次命中的环数;
(3)从集合中任取两个元素构成的的子集.

【课堂小结】

【当堂达标】
1、判断下列事件哪些是必然事件,哪些是不肯能事件,哪些是随机事件?
(1)掷一枚骰子两次,所得点数之和大于12.
(2)如果,那么;
(3)掷一枚硬币,出现正面向上;
(4)从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签;
(5)某电话机在1分钟内接到2次呼叫.

2、从存放号码分别为1,2,3,,10是的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:
卡片号码12345678910
取到的次数138576131810119

则取到号码为奇数的频率()
A.0.53B.0.5C.0.47D.0.37
3、从一批准备出厂的电视中随机抽取10台进行质量检查,其中有一台是次品.若用C表示抽到次品这一事件,则对C这一事件发生的说法正确地是()
A.概率为B.频率为
C.概率接近
D.每抽10台电视机,必有一台次品
【课时作业】

1.下列说法正确的是().
①频数和频率都反映一个对象在试验总次数中出现的频繁程度;
②每个试验结果出现的频数之和等于实验的总次数;
③每个试验结果出现的频率之和不一定等于1;
④概率就是频率.
A.①B.①②④C.①②D.③④
2.将一枚硬币向上抛掷10次,其中正面向上恰有5次是()
A.必然事件B.随机事件
C.不可能事件D.无法确定
3.下列说法正确的是()
A.任一事件的概率总在(0.1)内
B.不可能事件的概率不一定为0
C.必然事件的概率一定为1
D.以上均不对
4.下面的事件:(1)任取一个实数a,a≥2;(2)异性电荷相互吸引;(3)3×510.
是必然事件的有()
A.(2)B.(3)C.(1)D.(2)(3)
5.在20支同型号钢笔中,有3支钢笔式次品,从中任意取出4支钢笔,则以下事件是必然事件的是()
A.4支均为正品
B.3支正品,1支次品
C.3支次品,1支正品
D.至少有1支正品.
6.抛掷一枚硬币,观察那一面朝上的随机事件是;同时.抛掷两枚硬币,观察那一面朝上的结果,用随机事件可表示为.
7.必然事件出现的频率为,不可能事件出现的频率为.
8.下列说法:①频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小;②做次随机试验,事件A发生了次,则事件A发生的频率就是事件的概率;③百分率是频率,但不是概率;
④频率是不能脱离具体的次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;
⑤频率是概率的近似值,概率是频率的稳定值.其中正确的是.
9.某人进行打靶练习,共射击10次,其中2次中10环,3次中19环,4次中8环,1次未中靶,试计算此人中靶的概率,假设此人射击1次,问中靶的可能性约是多少?

每批粒数251070130
发芽的粒数24960116
发芽的频率
每批粒数700150020003000
发芽的粒数28263913392715
发芽的频率

10.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格回答题.
(1)完成上面表格:
(2)该油菜子发芽的概率约是多少?