88教案网

你的位置: 教案 > 高中教案 > 导航 > 几何圆锥曲线

几何圆锥曲线

发表时间:2020-10-31

老师会对课本中的主要教学内容整理到教案课件中,大家在认真写教案课件了。只有制定教案课件工作计划,可以更好完成工作任务!你们了解多少教案课件范文呢?下面是由小编为大家整理的“几何圆锥曲线”,供您参考,希望能够帮助到大家。

第十章圆锥曲线
★知识网络★

第1讲椭圆
★知识梳理★
1.椭圆定义:
(1)第一定义:平面内与两个定点的距离之和为常数的动点的轨迹叫椭圆,其中两个定点叫椭圆的焦点.
当时,的轨迹为椭圆;;
当时,的轨迹不存在;
当时,的轨迹为以为端点的线段
(2)椭圆的第二定义:平面内到定点与定直线(定点不在定直线上)的距离之比是常数()的点的轨迹为椭圆
(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化).

2.椭圆的方程与几何性质:
标准方程

质参数关系

焦点

焦距

范围

顶点

对称性关于x轴、y轴和原点对称
离心率

准线

3.点与椭圆的位置关系:
当时,点在椭圆外;当时,点在椭圆内;当时,点在椭圆上;
4.直线与椭圆的位置关系
直线与椭圆相交;直线与椭圆相切;直线与椭圆相离
★重难点突破★
重点:掌握椭圆的定义标准方程,会用定义和求椭圆的标准方程,能通过方程研究椭圆的几何性质及其应用
难点:椭圆的几何元素与参数的转换
重难点:运用数形结合,围绕“焦点三角形”,用代数方法研究椭圆的性质,把握几何元素转换成参数的关系
1.要有用定义的意识
问题1已知为椭圆的两个焦点,过的直线交椭圆于A、B两点若,则=______________。
[解析]的周长为,=8
2.求标准方程要注意焦点的定位
问题2椭圆的离心率为,则
[解析]当焦点在轴上时,;
当焦点在轴上时,,
综上或3
★热点考点题型探析★
考点1椭圆定义及标准方程
题型1:椭圆定义的运用
[例1](湖北部分重点中学2009届高三联考)椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A、B是它的焦点,长轴长为2a,焦距为2c,静放在点A的小球(小球的半径不计),从点A沿直线出发,经椭圆壁反弹后第一次回到点A时,小球经过的路程是
A.4aB.2(a-c)C.2(a+c)D.以上答案均有可能
[解析]按小球的运行路径分三种情况:
(1),此时小球经过的路程为2(a-c);
(2),此时小球经过的路程为2(a+c);
(3)此时小球经过的路程为4a,故选D
【名师指引】考虑小球的运行路径要全面
【新题导练】
1.(2007佛山南海)短轴长为,离心率的椭圆两焦点为F1,F2,过F1作直线交椭圆于A、B两点,则△ABF2的周长为()
A.3B.6C.12D.24
[解析]C.长半轴a=3,△ABF2的周长为4a=12
2.(广雅中学2008—2009学年度上学期期中考)已知为椭圆上的一点,分别为圆和圆上的点,则的最小值为()
A.5B.7C.13D.15
[解析]B.两圆心C、D恰为椭圆的焦点,,的最小值为10-1-2=7
题型2求椭圆的标准方程
[例2]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为-4,求此椭圆方程.
【解题思路】将题中所给条件用关于参数的式子“描述”出来
[解析]设椭圆的方程为或,
则,
解之得:,b=c=4.则所求的椭圆的方程为或.
【名师指引】准确把握图形特征,正确转化出参数的数量关系.
[警示]易漏焦点在y轴上的情况.
【新题导练】
3.如果方程x2+ky2=2表示焦点在y轴的椭圆,那么实数k的取值范围是____________.
[解析](0,1).椭圆方程化为+=1.焦点在y轴上,则2,即k1.
又k0,∴0k1.
4.已知方程,讨论方程表示的曲线的形状
[解析]当时,,方程表示焦点在y轴上的椭圆,
当时,,方程表示圆心在原点的圆,
当时,,方程表示焦点在x轴上的椭圆
5.椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是,求这个椭圆方程.
[解析],,所求方程为+=1或+=1.
考点2椭圆的几何性质
题型1:求椭圆的离心率(或范围)
[例3]在中,.若以为焦点的椭圆经过点,则该椭圆的离心率.
【解题思路】由条件知三角形可解,然后用定义即可求出离心率
[解析],

【名师指引】(1)离心率是刻画椭圆“圆扁”程度的量,决定了椭圆的形状;反之,形状确定,离心率也随之确定
(2)只要列出的齐次关系式,就能求出离心率(或范围)
(3)“焦点三角形”应给予足够关注
【新题导练】
6.(执信中学2008-2009学年度第一学期高三期中考试)如果一个椭圆的长轴长是短轴长的两倍,那么这个椭圆的离心率为
....
[解析]选
7.(江苏盐城市三星级高中2009届第一协作片联考)已知m,n,m+n成等差数列,m,n,mn成等比数列,则椭圆的离心率为
[解析]由,椭圆的离心率为
8.(山东济宁2007—2008学年度高三第一阶段质量检测)
我国于07年10月24日成功发射嫦娥一号卫星,并经四次变轨飞向月球。嫦娥一号绕地球运行的轨迹是以地球的地心为焦点的椭圆。若第一次变轨前卫星的近地点到地心的距离为m,远地点到地心的距离为n,第二次变轨后两距离分别为2m、2n(近地点是指卫星距离地面最近的点,远地点是距离地面最远的点),则第一次变轨前的椭圆的离心率比第二次变轨后的椭圆的离心率()
A.不变B.变小C.变大D.无法确定
[解析],,选A
题型2:椭圆的其他几何性质的运用(范围、对称性等)
[例4]已知实数满足,求的最大值与最小值
【解题思路】把看作的函数
[解析]由得,
当时,取得最小值,当时,取得最大值6
【名师指引】注意曲线的范围,才能在求最值时不出差错
【新题导练】
9.已知点是椭圆(,)上两点,且,则=
[解析]由知点共线,因椭圆关于原点对称,
10.如图,把椭圆的长轴分成等份,过每个分点作轴的垂线交椭圆的上半部分于七个点,是椭圆的一个焦点
则________________
[解析]由椭圆的对称性知:.
考点3椭圆的最值问题
题型:动点在椭圆上运动时涉及的距离、面积的最值
[例5]椭圆上的点到直线l:的距离的最小值为___________.
【解题思路】把动点到直线的距离表示为某个变量的函数
[解析]在椭圆上任取一点P,设P().那么点P到直线l的距离为:
【名师指引】也可以直接设点,用表示后,把动点到直线的距离表示为的函数,关键是要具有“函数思想”
【新题导练】
11.椭圆的内接矩形的面积的最大值为
[解析]设内接矩形的一个顶点为,
矩形的面积
12.是椭圆上一点,、是椭圆的两个焦点,求的最大值与最小值
[解析]
当时,取得最大值,
当时,取得最小值
13.(2007惠州)已知点是椭圆上的在第一象限内的点,又、,
是原点,则四边形的面积的最大值是_________.
[解析]设,则
考点4椭圆的综合应用
题型:椭圆与向量、解三角形的交汇问题
[例6]已知椭圆的中心为坐标原点,一个长轴端点为,短轴端点和焦点所组成的四边形为正方形,直线与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且.
(1)求椭圆方程;
(2)求m的取值范围.
【解题思路】通过,沟通A、B两点的坐标关系,再利用判别式和根与系数关系得到一个关于m的不等式
[解析](1)由题意可知椭圆为焦点在轴上的椭圆,可设
由条件知且,又有,解得
故椭圆的离心率为,其标准方程为:
(2)设l与椭圆C交点为A(x1,y1),B(x2,y2)
y=kx+m2x2+y2=1得(k2+2)x2+2kmx+(m2-1)=0
Δ=(2km)2-4(k2+2)(m2-1)=4(k2-2m2+2)0(*)
x1+x2=-2kmk2+2,x1x2=m2-1k2+2
∵AP=3PB∴-x1=3x2∴x1+x2=-2x2x1x2=-3x22
消去x2,得3(x1+x2)2+4x1x2=0,∴3(-2kmk2+2)2+4m2-1k2+2=0
整理得4k2m2+2m2-k2-2=0
m2=14时,上式不成立;m2≠14时,k2=2-2m24m2-1,
因λ=3∴k≠0∴k2=2-2m24m2-10,∴-1m-12或12m1
容易验证k22m2-2成立,所以(*)成立
即所求m的取值范围为(-1,-12)∪(12,1)
【名师指引】椭圆与向量、解三角形的交汇问题是高考热点之一,应充分重视向量的功能
【新题导练】
14.(2007广州四校联考)设过点的直线分别与轴的正半轴和轴的正半轴交于、两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是()
A.B.
C.D.
[解析],选A.
15.如图,在Rt△ABC中,∠CAB=90°,AB=2,AC=。一曲线E过点C,动点P在曲线E上运动,且保持|PA|+|PB|的值不变,直线l经过A与曲线E交于M、N两点。
(1)建立适当的坐标系,求曲线E的方程;
(2)设直线l的斜率为k,若∠MBN为钝角,求k的取值范围。

解:(1)以AB所在直线为x轴,AB的中点O为原点建立直角坐标系,则A(-1,0),B(1,0)
由题设可得
∴动点P的轨迹方程为,

∴曲线E方程为
(2)直线MN的方程为

∴方程有两个不等的实数根
∵∠MBN是钝角

解得:
又M、B、N三点不共线
综上所述,k的取值范围是
★~~抢分频道★
基础巩固训练
1.如图所示,椭圆中心在原点,F是左焦点,直线与BF交于D,且,则椭圆的离心率为()
ABCD
[解析]B.
2.(广东省四校联合体2007-2008学年度联合考试)设F1、F2为椭圆+y2=1的两焦点,P在椭圆上,当△F1PF2面积为1时,的值为
A、0B、1C、2D、3
[解析]A.,P的纵坐标为,从而P的坐标为,0,
3.(广东广雅中学2008—2009学年度上学期期中考)椭圆的一条弦被平分,那么这条弦所在的直线方程是
A.B.C.D.
[解析]D.,,两式相减得:,,
4.在中,,.若以为焦点的椭圆经过点,则该椭圆的离心率.
[解析]
5.已知为椭圆的两个焦点,P为椭圆上一点,若,则此椭圆的离心率为_________.
[解析][三角形三边的比是]
6.(2008江苏)在平面直角坐标系中,椭圆1(0)的焦距为2,以O为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率=.
[解析]
综合提高训练
7、已知椭圆与过点A(2,0),B(0,1)的直线l有且只有一个公共点T,且椭圆的离心率.求椭圆方程
[解析]直线l的方程为:
由已知①
由得:
∴,即②
由①②得:
故椭圆E方程为
8.(广东省汕头市金山中学2008-2009学年高三第一次月考)
已知A、B分别是椭圆的左右两个焦点,O为坐标原点,点P)在椭圆上,线段PB与y轴的交点M为线段PB的中点。
(1)求椭圆的标准方程;
(2)点C是椭圆上异于长轴端点的任意一点,对于△ABC,求的值。
[解析](1)∵点是线段的中点
∴是△的中位线
又∴

∴椭圆的标准方程为=1
(2)∵点C在椭圆上,A、B是椭圆的两个焦点
∴AC+BC=2a=,AB=2c=2

在△ABC中,由正弦定理,
∴=
9.(海珠区2009届高三综合测试二)已知长方形ABCD,AB=2,BC=1.以AB的中点为原点建立如图8所示的平面直角坐标系.
(Ⅰ)求以A、B为焦点,且过C、D两点的椭圆的标准方程;
(Ⅱ)过点P(0,2)的直线交(Ⅰ)中椭圆于M,N两点,是否存在直线,使得以弦MN为直径的圆恰好过原点?若存在,求出直线的方程;若不存在,说明理由.

相关推荐

高考数学圆锥曲线复习教案


90题突破高中数学圆锥曲线
1.如图,已知直线L:的右焦点F,且交椭圆C于A、B两点,点A、B在直线上的射影依次为点D、E。
(1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;
(2)(理)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由。
(文)若为x轴上一点,求证:

2.如图所示,已知圆定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足,点N的轨迹为曲线E。
(1)求曲线E的方程;
(2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足的取值范围。
3.设椭圆C:的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q,且
⑴求椭圆C的离心率;
⑵若过A、Q、F三点的圆恰好与直线
l:相切,求椭圆C的方程.
4.设椭圆的离心率为e=
(1)椭圆的左、右焦点分别为F1、F2、A是椭圆上的一点,且点A到此两焦点的距离之和为4,求椭圆的方程.
(2)求b为何值时,过圆x2+y2=t2上一点M(2,)处的切线交椭圆于Q1、Q2两点,而且OQ1⊥OQ2.
5.已知曲线上任意一点P到两个定点F1(-,0)和F2(,0)的距离之和为4.
(1)求曲线的方程;
(2)设过(0,-2)的直线与曲线交于C、D两点,且为坐标原点),求直线的方程.
6.已知椭圆的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其中圆心P的坐标为(m,n).
(Ⅰ)当m+n0时,求椭圆离心率的范围;
(Ⅱ)直线AB与⊙P能否相切?证明你的结论.
7.有如下结论:“圆上一点处的切线方程为”,类比也有结论:“椭圆处的切线方程为”,过椭圆C:的右准线l上任意一点M引椭圆C的两条切线,切点为A、B.
(1)求证:直线AB恒过一定点;(2)当点M在的纵坐标为1时,求△ABM的面积
8.已知点P(4,4),圆C:与椭圆E:有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(Ⅰ)求m的值与椭圆E的方程;
(Ⅱ)设Q为椭圆E上的一个动点,求的取值范围.
9.椭圆的对称中心在坐标原点,一个顶点为,右焦点与点的距离为。
(1)求椭圆的方程;
(2)是否存在斜率的直线:,使直线与椭圆相交于不同的两点满足,若存在,求直线的倾斜角;若不存在,说明理由。
10.椭圆方程为的一个顶点为,离心率。
(1)求椭圆的方程;
(2)直线:与椭圆相交于不同的两点满足,求。
11.已知椭圆的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作,其中圆心P的坐标为.
(1)若椭圆的离心率,求的方程;
(2)若的圆心在直线上,求椭圆的方程.
12.已知直线与曲线交于不同的两点,为坐标原点.
(Ⅰ)若,求证:曲线是一个圆;
(Ⅱ)若,当且时,求曲线的离心率的取值范围.
13.设椭圆的左、右焦点分别为、,A是椭圆C上的一点,且,坐标原点O到直线的距离为.
(1)求椭圆C的方程;
(2)设Q是椭圆C上的一点,过Q的直线l交x轴于点,较y轴于点M,若,求直线l的方程.
14.已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点的切线方程为为常数).
(I)求抛物线方程;
(II)斜率为的直线PA与抛物线的另一交点为A,斜率为的直线PB与抛物线的另一交点为B(A、B两点不同),且满足,求证线段PM的中点在y轴上;
(III)在(II)的条件下,当时,若P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.
15.已知动点A、B分别在x轴、y轴上,且满足|AB|=2,点P在线段AB上,且
设点P的轨迹方程为c。
(1)求点P的轨迹方程C;
(2)若t=2,点M、N是C上关于原点对称的两个动点(M、N不在坐标轴上),点Q
坐标为求△QMN的面积S的最大值。
16.设上的两点,
已知,,若且椭圆的离心率短轴长为2,为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由
17.如图,F是椭圆(ab0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为.点C在x轴上,BC⊥BF,B,C,F三点确定的圆M恰好与直线l1:相切.
(Ⅰ)求椭圆的方程:
(Ⅱ)过点A的直线l2与圆M交于PQ两点,且,求直线l2的方程.
18.如图,椭圆长轴端点为,为椭圆中心,为椭圆的右焦点,且.
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.
19.如图,已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点.直线交椭圆于两不同的点.
20.设,点在轴上,点在轴上,且
(1)当点在轴上运动时,求点的轨迹的方程;
(2)设是曲线上的点,且成等差数列,当的垂直平分线与轴交于点时,求点坐标.
21.已知点是平面上一动点,且满足
(1)求点的轨迹对应的方程;
(2)已知点在曲线上,过点作曲线的两条弦和,且,判断:直线是否过定点?试证明你的结论.
22.已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过、、三点.
(1)求椭圆的方程:
(2)若点D为椭圆上不同于、的任意一点,,当内切圆的面积最大时。求内切圆圆心的坐标;
(3)若直线与椭圆交于、两点,证明直线与直线的交点在直线上.
23.过直角坐标平面中的抛物线的焦点作一条倾斜角为的直线与抛物线相交于A,B两点。
(1)用表示A,B之间的距离;
(2)证明:的大小是与无关的定值,
并求出这个值。
24.设分别是椭圆C:的左右焦点
(1)设椭圆C上的点到两点距离之和等于4,写出椭圆C的方程和焦点坐标
(2)设K是(1)中所得椭圆上的动点,求线段的中点B的轨迹方程
(3)设点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM,PN的斜率都存在,并记为试探究的值是否与点P及直线L有关,并证明你的结论。
25.已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(I)求椭圆的方程;
(II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(III)设与轴交于点,不同的两点在上,且满足求的取值范围.
26.如图所示,已知椭圆:,、为
其左、右焦点,为右顶点,为左准线,过的直线:与椭圆相交于、
两点,且有:(为椭圆的半焦距)
(1)求椭圆的离心率的最小值;
(2)若,求实数的取值范围;
(3)若,,
求证:、两点的纵坐标之积为定值;
27.已知椭圆的左焦点为,左右顶点分别为,上顶点为,过三点作圆,其中圆心的坐标为
(1)当>时,椭圆的离心率的取值范围
(2)直线能否和圆相切?证明你的结论
28.已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(I)证明:为定值;
(II)若△POM的面积为,求向量与的夹角;
(Ⅲ)证明直线PQ恒过一个定点.
29.已知椭圆C:上动点到定点,其中的距离的最小值为1.
(1)请确定M点的坐标
(2)试问是否存在经过M点的直线,使与椭圆C的两个交点A、B满足条件(O为原点),若存在,求出的方程,若不存在请说是理由。
30.已知椭圆,直线与椭圆相交于两点.
(Ⅰ)若线段中点的横坐标是,求直线的方程;
(Ⅱ)在轴上是否存在点,使的值与无关?若存在,求出的值;若不存在,请说明理由.
31.直线AB过抛物线的焦点F,并与其相交于A、B两点。Q是线段AB的中点,M是抛物线的准线与y轴的交点.O是坐标原点.
(I)求的取值范围;
(Ⅱ)过A、B两点分剐作此撒物线的切线,两切线相交于N点.求证:∥;
(Ⅲ)若P是不为1的正整数,当,△ABN的面积的取值范围为时,求该抛物线的方程.
32.如图,设抛物线()的准线与轴交于,焦点为;以、为焦点,离心率的椭圆与抛物线在轴上方的一个交点为.
(Ⅰ)当时,求椭圆的方程及其右准线的方程;
(Ⅱ)在(Ⅰ)的条件下,直线经过椭圆的右焦点,与抛物线交于、,如果以线段为直径作圆,试判断点与圆的位置关系,并说明理由;
(Ⅲ)是否存在实数,使得的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由.
33.已知点和动点满足:,且存在正常数,使得。
(1)求动点P的轨迹C的方程。
(2)设直线与曲线C相交于两点E,F,且与y轴的交点为D。若求的值。
34.已知椭圆的右准线与轴相交于点,右焦点到上顶点的距离为,点是线段上的一个动点.
(I)求椭圆的方程;
(Ⅱ)是否存在过点且与轴不垂直的直线与椭圆交于、两点,使得,并说明理由.
35.已知椭圆C:(.
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点的直线与椭圆C交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率k的取值范围;
(3)如图,过原点任意作两条互相垂直的直线与椭圆()相交于四点,设原点到四边形一边的距离为,试求时满足的条件.
36.已知若过定点、以()为法向量的直线与过点以为法向量的直线相交于动点.
(1)求直线和的方程;
(2)求直线和的斜率之积的值,并证明必存在两个定点使得恒为定值;
(3)在(2)的条件下,若是上的两个动点,且,试问当取最小值时,向量与是否平行,并说明理由。
37.已知点,点(其中),直线、都是圆的切线.
(Ⅰ)若面积等于6,求过点的抛物线的方程;
(Ⅱ)若点在轴右边,求面积的最小值.
38.我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题。
(1)设F1、F2是椭圆的两个焦点,点F1、F2到直线的距离分别为d1、d2,试求d1d2的值,并判断直线L与椭圆M的位置关系。
(2)设F1、F2是椭圆的两个焦点,点F1、F2到直线
(m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1d2的值。
(3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明。
(4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明)。
39.已知点为抛物线的焦点,点是准线上的动点,直线交抛物线于两点,若点的纵坐标为,点为准线与轴的交点.
(Ⅰ)求直线的方程;(Ⅱ)求的面积范围;
(Ⅲ)设,,求证为定值.
40.已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(I)求椭圆的方程;
(II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(III)设与轴交于点,不同的两点在上,且满足求的取值范围.
41.已知以向量为方向向量的直线过点,抛物线:的顶点关于直线的对称点在该抛物线的准线上.
(1)求抛物线的方程;
(2)设、是抛物线上的两个动点,过作平行于轴的直线,直线与直线交于点,若(为坐标原点,、异于点),试求点的轨迹方程。
42.如图,设抛物线()的准线与轴交于,焦点为;以、为焦点,离心率的椭圆与抛物线在轴上方的一个交点为.
(Ⅰ)当时,求椭圆的方程及其右准线的方程;
(Ⅱ)在(Ⅰ)的条件下,直线经过椭圆的右焦点,
与抛物线交于、,如果以线段为直径作圆,
试判断点与圆的位置关系,并说明理由;
(Ⅲ)是否存在实数,使得的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由.
43.设椭圆的一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,且离心率且过椭圆右焦点的直线与椭圆C交于两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在直线,使得.若存在,求出直线的方程;若不存在,说明理由.
(Ⅲ)若AB是椭圆C经过原点O的弦,MNAB,求证:为定值.
44.设是抛物线的焦点,过点M(-1,0)且以为方向向量的直线顺次交抛物线于两点。
(Ⅰ)当时,若与的夹角为,求抛物线的方程;
(Ⅱ)若点满足,证明为定值,并求此时△的面积
45.已知点,点在轴上,点在轴的正半轴上,点在直线上,且满足.
(Ⅰ)当点在轴上移动时,求点的轨迹的方程;
(Ⅱ)设、为轨迹上两点,且1,0,,求实数,
使,且.
46.已知椭圆的右焦点为F,上顶点为A,P为C上任一点,MN是圆的一条直径,若与AF平行且在y轴上的截距为的直线恰好与圆相切。
(1)已知椭圆的离心率;
(2)若的最大值为49,求椭圆C的方程.

《圆锥曲线》网络教学设计


一、学习目标与任务
1、学习目标描述
知识目标
(A)理解和掌握圆锥曲线的第一定义和第二定义,并能应用第一定义和第二定义来解题。
(B)了解圆锥曲线与现实生活中的联系,并能初步利用圆锥曲线的知识进行知识延伸和知识创新。
能力目标
(A)通过学生的操作和协作探讨,培养学生的实践能力和分析问题、解决问题的能力。
(B)通过知识的再现培养学生的创新能力和创新意识。
(C)专题网站中提供各层次的例题和习题,解决各层次学生的学习过程中的各种的需要,从而培养学生应用知识的能力。
德育目标
让学生体会知识产生的全过程,培养学生运动变化的辩证唯物主义思想。
2、学习内容与学习任务说明
本节课的内容是圆锥曲线的第一定义和圆锥曲线的统一定义,以及利用圆锥曲线的定义来解决轨迹问题和最值问题。
学习重点:圆锥曲线的第一定义和统一定义。
学习难点:圆锥曲线第一定义和统一定义的应用。
明确本课的重点和难点,以学习任务驱动为方式,以圆锥曲线定义和定义应用为中心,主动操作实验、大胆分析问题和解决问题。
抓住本节课的重点和难点,采取的基于学科专题网站下的三者结合的教学模式,突出重点、突破难点。
充分利用《圆锥曲线》专题网站内的内容,在着重学习内容的基础上,内延外拓,培养学生的创新精神和克服困难的信心。
二、学习者特征分析
(说明学生的学习特点、学习习惯、学习交往特点等)
l本课的学习对象为高二下学期学生,他们经过近两年的高中学习,已经有一定的学习基础和分析问题、解决问题的能力,基本的计算机操作较为熟练。
高二年下学期学生由于高考的压力,他们保持着传统教学的学习习惯,在
l课堂上的主体作用的体现不是太充分,但是如果他们还是乐于尝试、勇于探索的。
高二年的学生在学习交往上“个别化学习”和“协作讨论学习”并存,也就是说学生是具有一定的群体性小组交流能力与协同讨论学习能力的,还是能完成上课时教师布置的协作学习任务的。
三、学习环境选择与学习资源设计
1.学习环境选择(打√)
(1)Web教室(√)(2)局域网(3)城域网(4)校园网(√)(5)Internet(√)
(6)其它
2、学习资源类型(打√)
(1)课件(网络课件)(√)(2)工具(3)专题学习网站(√)(4)多媒体资源库
(5)案例库(6)题库(7)网络课程(8)其它
3、学习资源内容简要说明
(说明名称、网址、主要内容等)
《圆锥曲线专题网站》:从自然与科技、定义与应用、性质与实践和创新与未来四个方面围绕圆锥曲线进行探讨与研究。(IP:192.168.3.134)
用Flash5、几何画板和Authorware6制作可操作且具有交互性的网络课件放在专题网站里。
四、学习情境创设
1、学习情境类型(打√)
(1)真实性情境(√)(2)问题性情境(√)
(3)虚拟性情境(√)(4)其它
2、学习情境设计
真实性情境:用Flash5制作的一系列教学软件。用几何画板制作的《圆锥曲线的统一定义》的教学软件。
问题性情境:圆锥曲线的截取方法、圆锥曲线的各种定义、典型例题。
虚拟性情境:Authorware6制作的《圆锥曲线的截取》,模拟曲线截取。
五、学习活动的组织
1、自主学习设计(打√并填写相关内容)
(1)抛锚式
(2)支架式(√)相应内容:圆锥曲线的第一定义和统一定义。
使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。
学生活动:分析、操作、协作讨论、总结、提交结论。
教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。
(3)随机进入式(√)相应内容:圆锥曲线定义的典型应用。
使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。
学生活动:根据自身情况选题、分析题目、协作讨论、解答题目。
教师活动:讲解例题,总结点评学生做题过程中的问题。
(4)其它
2、协作学习设计(打√并填写相关内容)
(1)竞争
(2)伙伴(√)
相应内容:圆锥曲线的第一定义和统一定义
使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。
分组情况:每组三人
学生活动:学生之间对圆锥曲线的定义展开讨论,从而达到对定义的理解和掌握。
教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。
(3)协同(√)
相应内容:圆锥曲线定义的典型应用。
使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。
分组情况:每组三人。
学生活动:通过协作讨论区,同学之间互相配合、互相帮助、各种观点互相补充。
教师活动:总结点评学生做题过程中的问题。
(4)辩

(5)角色扮演
(6)其它
4、教学结构流程的设计
六、学习评价设计
1、测试形式与工具(打√)
(1)堂上提问(√)(2)书面练习(3)达标测试(4)学生自主网上测试(√)(5)合作完成作品(6)其它
2、测试内容
教师堂上提问:圆锥曲线的定义、学生提交的结论的完整性、学生协作讨论时的疑问、例题讲解过程中问题,课堂总结。
学生自主网上测试:解决轨迹问题、最值问题、其它问题三种典型题目。
(附)圆锥曲线专题网站设计分析
(1)设计思路
(A)给学生操作与实践的机会:在每一环节中建设一个可供学生操作的实验平台。
(B)突出教学中“主导和主体”的作用:在每一环节中建设一个可供师生交流的平台。
(C)突出知识的再创新过程和知识的延伸:如圆锥曲线的作法和知识的创新与应用。
(D)强调教学软件的交互性:如在题目中给出提示的动画过程和解答过程。
(E)突出和各学科的联系:如斜抛运动和行星运动等等。
(F)强调分层次的教学:
如在知识应用中的配置不同层次的例题和练习:

圆锥曲线与方程导学案


§2.2.1椭圆及其标准方程(1)
学习目标
1.从具体情境中抽象出椭圆的模型;
2.掌握椭圆的定义;
3.掌握椭圆的标准方程.

学习过程
一、课前准备
(预习教材理P61~P63,文P32~P34找出疑惑之处)
复习1:过两点,的直线方程.

复习2:方程表示以为圆心,为半径的.

二、新课导学
※学习探究
取一条定长的细绳,
把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个.
如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?

思考:移动的笔尖(动点)满足的几何条件是什么?

经过观察后思考:在移动笔尖的过程中,细绳的保持不变,即笔尖等于常数.

新知1:我们把平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.

反思:若将常数记为,为什么?
当时,其轨迹为;
当时,其轨迹为.

试试:
已知,,到,两点的距离之和等于8的点的轨迹是.
小结:应用椭圆的定义注意两点:
①分清动点和定点;
②看是否满足常数.
新知2:焦点在轴上的椭圆的标准方程
其中

若焦点在轴上,两个焦点坐标,

则椭圆的标准方程是.
※典型例题
例1写出适合下列条件的椭圆的标准方程:
⑴,焦点在轴上;
⑵,焦点在轴上;
⑶.
变式:方程表示焦点在轴上的椭圆,则实数的范围.
小结:椭圆标准方程中:;.

例2已知椭圆两个焦点的坐标分别是,,并且经过点,求它的标准方程.

变式:椭圆过点,,,求它的标准方程.

小结:由椭圆的定义出发,得椭圆标准方程.

※动手试试
练1.已知的顶点、在椭圆上,顶点是椭圆的一个焦点,且椭圆的另外一个焦点在边上,则的周长是().
A.B.6C.D.12

练2.方程表示焦点在轴上的椭圆,求实数的范围.

三、总结提升
※学习小结
1.椭圆的定义:
2.椭圆的标准方程:

※知识拓展
1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长.
学习评价
※自我评价你完成本节导学案的情况为().
A.很好B.较好C.一般D.较差
※当堂检测(时量:5分钟满分:10分)计分:
1.平面内一动点到两定点、距离之和为常数,则点的轨迹为().
A.椭圆B.圆
C.无轨迹D.椭圆或线段或无轨迹
2.如果方程表示焦点在轴上的椭圆,那么实数的取值范围是().
A.B.
C.D.
3.如果椭圆上一点到焦点的距离等于6,那么点到另一个焦点的距离是().
A.4B.14C.12D.8
4.椭圆两焦点间的距离为,且椭圆上某一点到两焦点的距离分别等于和,则椭圆的标准方程
是.
5.如果点在运动过程中,总满足关系式,点的轨迹是,它的方程是.

课后作业
1.写出适合下列条件的椭圆的标准方程:
⑴焦点在轴上,焦距等于,并且经过点;
⑵焦点坐标分别为,;
⑶.

2.椭圆的焦距为,求的值.
§2.2.1椭圆及其标准方程(2)
学习目标
1.掌握点的轨迹的求法;
2.进一步掌握椭圆的定义及标准方程.

学习过程
一、课前准备
复习1:椭圆上一点到椭圆的左焦点的距离为,则到椭圆右焦点的距离
是.
复习2:在椭圆的标准方程中,,,则椭

圆的标准方程是

二、新课导学
※学习探究
问题:圆的圆心和半径分别是什么?
问题:圆上的所有点到(圆心)的距离都等于(半径);

反之,到点的距离等于的所有点都在
圆上.

※典型例题
例1在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的中点的轨迹是什么?

变式:若点在的延长线上,且,则点的轨迹又是什么?
小结:椭圆与圆的关系:圆上每一点的横(纵)坐标不变,而纵(横)坐标伸长或缩短就可得到椭圆.

例2设点的坐标分别为,.直线相交于点,且它们的斜率之积是,求点的轨迹方程.

变式:点的坐标是,直线相交于点,且直线的斜率与直线的斜率的商是,点的轨迹是什么?

※动手试试
练1.求到定点与到定直线的距离之比为的动点的轨迹方程.

练2.一动圆与圆外切,同时与圆内切,求动圆圆心的轨迹方程式,并说明它是什么曲线.
三、总结提升
※学习小结
1.①注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式;

②相关点法:寻求点的坐标与中间的关系,然后消去,得到点的轨迹方程.

※知识拓展
椭圆的第二定义:
到定点与到定直线的距离的比是常数的点的轨迹.
定点是椭圆的焦点;
定直线是椭圆的准线;
常数是椭圆的离心率.
学习评价
※自我评价你完成本节导学案的情况为().
A.很好B.较好C.一般D.较差
※当堂检测(时量:5分钟满分:10分)计分:
1.若关于的方程所表示的曲线是椭圆,则在().
A.第一象限B.第二象限
C.第三象限D.第四象限
2.若的个顶点坐标、,的周长为,则顶点C的轨迹方程为().
A.B.C.D.
3.设定点,,动点满足条件,则点的轨迹是().
A.椭圆B.线段
C.不存在D.椭圆或线段
4.与轴相切且和半圆内切的动圆圆心的轨迹方程是.
5.设为定点,||=,动点满足,则动点的轨迹是.

课后作业
1.已知三角形的一边长为,周长为,求顶点的轨迹方程.
2.点与定点的距离和它到定直线的距离的比是,求点的轨迹方程式,并说明轨迹是什么图形.

§2.2.2椭圆及其简单几何性质(1)
学习目标
1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;
2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图.

学习过程
一、课前准备
(预习教材理P43~P46,文P37~P40找出疑惑之处)
复习1:椭圆上一点到左焦点的距离是,那么它到右焦点的距离是.

复习2:方程表示焦点在轴上的椭圆,则的取值范围是.
※学习探究
问题1:椭圆的标准方程,它有哪些几何性质呢?
范围:::

对称性:椭圆关于轴、轴和都对称;

顶点:(),(),(),();

长轴,其长为;短轴,其长为;

离心率:刻画椭圆程度.
椭圆的焦距与长轴长的比称为离心率,
记,且.
试试:椭圆的几何性质呢?
图形:
范围:::

对称性:椭圆关于轴、轴和都对称;

顶点:(),(),(),();

长轴,其长为;短轴,其长为;

离心率:=.
反思:或的大小能刻画椭圆的扁平程度吗?

※典型例题
例1求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标.

变式:若椭圆是呢?

小结:①先化为标准方程,找出,求出;
②注意焦点所在坐标轴.
例2点与定点的距离和它到直线的距离的比是常数,求点的轨迹.

小结:到定点的距离与到定直线的距离的比为常数(小于1)的点的轨迹是椭圆.

※动手试试
练1.求适合下列条件的椭圆的标准方程:
⑴焦点在轴上,,;
⑵焦点在轴上,,;
⑶经过点,;
⑷长轴长等到于,离心率等于.

三、总结提升
※学习小结
1.椭圆的几何性质:
图形、范围、对称性、顶点、长轴、短轴、离心率;

2.理解椭圆的离心率.

※知识拓展
(数学与生活)已知水平地面上有一篮球,在斜平行光线的照射下,其阴影为一椭圆,且篮球与地面的接触点是椭圆的焦点.
学习评价
※自我评价你完成本节导学案的情况为().
A.很好B.较好C.一般D.较差
※当堂检测(时量:5分钟满分:10分)计分:
1.若椭圆的离心率,则的值是().
A.B.或C.D.或
2.若椭圆经过原点,且焦点分别为,,则其离心率为().
A.B.C.D.
3.短轴长为,离心率的椭圆两焦点为,过作直线交椭圆于两点,则的周长为().
A.B.C.D.
4.已知点是椭圆上的一点,且以点及焦点为顶点的三角形的面积等于,则点的坐标是.
5.某椭圆中心在原点,焦点在轴上,若长轴长为,且两个焦点恰好将长轴三等分,则此椭圆的方程是.

课后作业
1.比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?
⑴与;
⑵与.

2.求适合下列条件的椭圆的标准方程:
⑴经过点,;
⑵长轴长是短轴长的倍,且经过点;
⑶焦距是,离心率等于.

§2.2.2椭圆及其简单几何性质(2)
学习目标
1.根据椭圆的方程研究曲线的几何性质;
2.椭圆与直线的关系.

学习过程
一、课前准备
(预习教材理P46~P48,文P40~P41找出疑惑之处)
复习1:椭圆的焦点坐标是()();长轴长、短轴长;离心率.
复习2:直线与圆的位置关系有哪几种?如何判定?
二、新课导学
学习探究
问题1:想想生活中哪些地方会有椭圆的应用呢?
问题2:椭圆与直线有几种位置关系?又是如何确定?
反思:点与椭圆的位置如何判定?
典型例题
例1已知椭圆,直线:
。椭圆上是否存在一点,它到直线的距离最小?最小距离是多少?

变式:最大距离是多少?

动手试试
练1已知地球运行的轨道是长半轴长
,离心率的椭圆,且太阳在这个椭圆的一个焦点上,求地球到太阳的最大和最小距离.

练2.经过椭圆的左焦点作倾斜角为的直线,直线与椭圆相交于两点,求的长.
三、总结提升
学习小结
1.椭圆在生活中的运用;
2.椭圆与直线的位置关系:
相交、相切、相离(用判定).
※知识拓展直线与椭圆相交,得到弦,
弦长
其中为直线的斜率,是两交点坐标.
学习评价
※自我评价你完成本节导学案的情况为().
A.很好B.较好C.一般D.较差
※当堂检测(时量:5分钟满分:10分)计分:
1.设是椭圆,到两焦点的距离之差为,则是().
A.锐角三角形B.直角三角形
C.钝角三角形D.等腰直角三角形
2.设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点,若△F1PF2为等腰直角三角形,则椭圆的离心率是().
A.B.C.D.
3.已知椭圆的左、右焦点分别为,点P在椭圆上,若P、F1、F2是一个直角三角形的三个顶点,则点P到轴的距离为().
A.B.3C.D.
4.椭圆的焦距、短轴长、长轴长组成一个等到比数列,则其离心率为.
5.椭圆的焦点分别是和,过原点作直线与椭圆相交于两点,若的面积是,则直线的方程式是.
课后作业
1.求下列直线与椭圆的交点坐标.2.若椭圆,一组平行直线的斜率是
⑴这组直线何时与椭圆相交?
⑵当它们与椭圆相交时,这些直线被椭圆截得的线段的中点是否在一直线上?

§2.3.1双曲线及其标准方程
学习目标
1.掌握双曲线的定义;
2.掌握双曲线的标准方程.
学习过程
一、课前准备
(预习教材理P52~P55,文P45~P48找出疑惑之处)
复习1:椭圆的定义是什么?椭圆的标准方程是什么?

复习2:在椭圆的标准方程中,有何关系?若,则写出符合条件的椭圆方程.

二、新课导学
※学习探究
问题1:把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?

如图2-23,定点是两个按钉,是一个细套管,两条细绳分别拴在按钉上且穿过套管,点移动时,
是常数,这样就画出一条曲线;
由是同一常数,可以画出另一支.

新知1:双曲线的定义:
平面内与两定点的距离的差的等于常数(小于)的点的轨迹叫做双曲线。
两定点叫做双曲线的,
两焦点间的距离叫做双曲线的.

反思:设常数为,为什么?
时,轨迹是;
时,轨迹.
试试:点,,若,则点的轨迹是.

新知2:双曲线的标准方程:

(焦点在轴)
其焦点坐标为,.

思考:若焦点在轴,标准方程又如何?

※典型例题
例1已知双曲线的两焦点为,,双曲线上任意点到的距离的差的绝对值等于,求双曲线的标准方程.

变式:已知双曲线的左支上一点到左焦点的距离为10,则点P到右焦点的距离为.

例2已知两地相距,在地听到炮弹爆炸声比在地晚,且声速为,求炮弹爆炸点的轨迹方程.

变式:如果两处同时听到爆炸声,那么爆炸点在什么曲线上?为什么?

小结:采用这种方法可以确定爆炸点的准确位置.

动手试试
练1:求适合下列条件的双曲线的标准方程式:
(1)焦点在轴上,,;
(2)焦点为,且经过点.

练2.点的坐标分别是,,直线,相交于点,且它们斜率之积是,试求点的轨迹方程式,并由点的轨迹方程判断轨迹的形状.

三、总结提升
※学习小结
1.双曲线的定义;
2.双曲线的标准方程.
※知识拓展
GPS(全球定位系统):双曲线的一个重要应用.
在例2中,再增设一个观察点,利用,两处测得的点发出的信号的时间差,就可以求出另一个双曲线的方程,解这两个方程组成的方程组,就能确定点的准确位置.

学习评价
※自我评价你完成本节导学案的情况为().
A.很好B.较好C.一般D.较差
※当堂检测(时量:5分钟满分:10分)计分:
1.动点到点及点的距离之差为,则点的轨迹是().
A.双曲线B.双曲线的一支
C.两条射线D.一条射线
2.双曲线的一个焦点是,那么实数的值为().
A.B.C.D.
3.双曲线的两焦点分别为,若,则().
A.5B.13C.D.
4.已知点,动点满足条件.则动点的轨迹方程为.
5.已知方程表示双曲线,则的取值范围.

课后作业
1.求适合下列条件的双曲线的标准方程式:
(1)焦点在轴上,,经过点;
(2)经过两点,.

2.相距两个哨所,听到炮弹爆炸声的时间相差,已知声速是,问炮弹爆炸点在怎样的曲线上,为什么?

§2.3.2双曲线的简单几何性质(1)
学习目标
1.理解并掌握双曲线的几何性质.
学习过程
一、课前准备:
(预习教材理P56~P58,文P49~P51找出疑惑之处)
复习1:写出满足下列条件的双曲线的标准方程:
①,焦点在轴上;
②焦点在轴上,焦距为8,.
复习2:前面我们学习了椭圆的哪些几何性质?

二、新课导学:
※学习探究
问题1:由椭圆的哪些几何性质出发,类比探究双曲线的几何性质?

范围:::

对称性:双曲线关于轴、轴及都对称.

顶点:(),().
实轴,其长为;虚轴,其长为.
离心率:.
渐近线:
双曲线的渐近线方程为:.

问题2:双曲线的几何性质?
图形:

范围:::

对称性:双曲线关于轴、轴及都对称.

顶点:(),()
实轴,其长为;虚轴,其长为.

离心率:.
渐近线:
双曲线的渐近线方程为:.
新知:实轴与虚轴等长的双曲线叫双曲线.
典型例题
例1求双曲线的实半轴长、虚半轴的长、焦点坐标、离心率及渐近线的方程.

变式:求双曲线的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.

例2求双曲线的标准方程:
⑴实轴的长是10,虚轴长是8,焦点在x轴上;
⑵离心率,经过点;
⑶渐近线方程为,经过点.
※动手试试
练1.求以椭圆的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程.

练2.对称轴都在坐标轴上的等到轴双曲线的一个焦点是,求它的标准方程和渐近线方程.

三、总结提升:
※学习小结
双曲线的图形、范围、顶点、对称性、离心率、渐近线.
※知识拓展
与双曲线有相同的渐近线的双曲线系方程式为
学习评价
※自我评价你完成本节导学案的情况为().
A.很好B.较好C.一般D.较差
※当堂检测(时量:5分钟满分:10分)计分:
1.双曲线实轴和虚轴长分别是().
A.、B.、
C.4、D.4、
2.双曲线的顶点坐标是().
A.B.C.D.()
3.双曲线的离心率为().
A.1B.C.D.2
4.双曲线的渐近线方程是.
5.经过点,并且对称轴都在坐标轴上的等轴双曲线的方程是.

课后作业
1.求焦点在轴上,焦距是16,的双曲线的标准方程.

2.求与椭圆有公共焦点,且离心率的双曲线的方程.

§2.3.2双曲线的简单几何性质(2)
学习目标
1.从具体情境中抽象出椭圆的模型;
2.掌握椭圆的定义;
3.掌握椭圆的标准方程.

学习过程
一、课前准备
(预习教材理P58~P60,文P51~P53找出疑惑之处)
复习1:说出双曲线的几何性质?

复习2:双曲线的方程为,
其顶点坐标是(),();

渐近线方程.

二、新课导学
※学习探究
探究1:椭圆的焦点是?

探究2:双曲线的一条渐近线方程是,则可设双曲线方程为?

问题:若双曲线与有相同的焦点,它的一条渐近线方程是,则双曲线的方程是?

※典型例题
例1双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为,上口半径为,下口半径为,高为,试选择适当的坐标系,求出此双曲线的方程.
例2点到定点的距离和它到定直线的距离的比是常数,求点的轨迹.

(理)例3过双曲线的右焦点,倾斜角为的直线交双曲线于两点,求两点的坐标.
变式:求?
思考:的周长?
※动手试试
练1.若椭圆与双曲线的焦点相同,则=____.
练2.若双曲线的渐近线方程为,求双曲线的焦点坐标.
三、总结提升
※学习小结
1.双曲线的综合应用:与椭圆知识对比,结合;

2.双曲线的另一定义;

3.(理)直线与双曲线的位置关系.

※知识拓展

双曲线的第二定义:

到定点的距离与到定直线的距离之比大于1的点的轨迹是双曲线.

学习评价
※自我评价你完成本节导学案的情况为().
A.很好B.较好C.一般D.较差
※当堂检测(时量:5分钟满分:10分)计分:
1.若椭圆和双曲线的共同焦点为F1,F2,P是两曲线的一个交点,则的值为().
A.B.C.D.
2.以椭圆的焦点为顶点,离心率为的双曲线的方程().
A.B.
C.或D.以上都不对
3.过双曲线的一个焦点作垂直于实轴的直线,交双曲线于、,是另一焦点,若∠,则双曲线的离心率等于().
A.B.C.D.
4.双曲线的渐近线方程为,焦距为,这双曲线的方程为_______________.
5.方程表示焦点在x轴上的双曲线,则的取值范围.

课后作业
1.已知双曲线的焦点在轴上,方程为,两顶点的距离为,一渐近线上有点,试求此双曲线的方程.

§2.4.1抛物线及其标准方程
学习目标
掌握抛物线的定义、标准方程、几何图形.

学习过程
一、课前准备
(预习教材理P64~P67,文P56~P59找出疑惑之处)
复习1:函数的图象是,它的顶点坐标是(),对称轴是.

复习2:点与定点的距离和它到定直线的距离的比是,则点的轨迹是什么图形?

二、新课导学
※学习探究
探究1:若一个动点到一个定点和一条定直线的距离相等,这个点的运动轨迹是怎么样的呢?

新知1:抛物线
平面内与一个定点和一条定直线的
距离的点的轨迹叫做抛物线.

点叫做抛物线的;
直线叫做抛物线的.

新知2:抛物线的标准方程
定点到定直线的距离为().

建立适当的坐标系,得到抛物线的四种标准形式:

图形标准方程焦点坐标准线方程
试试:
抛物线的焦点坐标是(),
准线方程是;
抛物线的焦点坐标是(),
准线方程是.

※典型例题
例1(1)已知抛物线的标准方程是,求它的焦点坐标和准线方程;
(2)已知抛物线的焦点是,求它的标准方程.
变式:根据下列条件写出抛物线的标准方程:
⑴焦点坐标是(0,4);
⑵准线方程是;
⑶焦点到准线的距离是.
例2一种卫星接收天线的轴截面如图所示,卫星波束呈近似平行状态的射入轴截面为抛物线的接收天线,经反射聚集到焦点处,已知接收天线的口径为,深度为,试建立适当的坐标系,求抛物线的标准方程和焦点坐标.
※动手试试
练1.求满足下列条件的抛物线的标准方程:
(1)焦点坐标是;
(2)焦点在直线上.
练2.抛物线上一点到焦点距离是,则点到准线的距离是,点的横坐标是.
三、总结提升
※学习小结
1.抛物线的定义;
2.抛物线的标准方程、几何图形.
※知识拓展
焦半径公式:
设是抛物线上一点,焦点为,则线段叫做抛物线的焦半径.
若在抛物线上,则
学习评价
※自我评价你完成本节导学案的情况为().
A.很好B.较好C.一般D.较差
※当堂检测(时量:5分钟满分:10分)计分:
1.对抛物线,下列描述正确的是().
A.开口向上,焦点为
B.开口向上,焦点为
C.开口向右,焦点为
D.开口向右,焦点为
2.抛物线的准线方程式是().
A.B.
C.D.
3.抛物线的焦点到准线的距离是().
A.B.C.D.
4.抛物线上与焦点的距离等于的点的坐标是.
5.抛物线上一点的纵坐标为4,则点与抛物线焦点的距离为.
课后作业
1.点到的距离比它到直线的距离大1,求点的轨迹方程.

2.抛物线上一点到焦点的距离,求点的坐标.

§2.4.2抛物线的简单几何性质(1)
学习目标
1.掌握抛物线的几何性质;
2.根据几何性质确定抛物线的标准方程.
学习过程
一、课前准备
复习1:准线方程为x=2的抛物线的标准方程是.

复习2:双曲线有哪些几何性质?

二、新课导学
※学习探究
探究1:类比椭圆、双曲线的几何性质,抛物线又会有怎样的几何性质?

新知:抛物线的几何性质

图形

试试:画出抛物线的图形,
顶点坐标()、焦点坐标()、
准线方程、对称轴、
离心率.
※典型例题
例1已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点,求它的标准方程.

变式:顶点在坐标原点,对称轴是坐标轴,并且经过点的抛物线有几条?求出它们的标准方程.

小结:一般,过一点的抛物线会有两条,根据其开口方向,用待定系数法求解.
例2斜率为的直线经过抛物线的焦点,且与抛物线相交于,两点,求线段的长.

变式:过点作斜率为的直线,交抛物线于,两点,求.

小结:求过抛物线焦点的弦长:可用弦长公式,也可利用抛物线的定义求解.
※动手试试
练1.求适合下列条件的抛物线的标准方程:
⑴顶点在原点,关于轴对称,并且经过点
,;
⑵顶点在原点,焦点是;
⑶焦点是,准线是.

三、总结提升
※学习小结
1.抛物线的几何性质;
2.求过一点的抛物线方程;
3.求抛物线的弦长.

※知识拓展
抛物线的通径:过抛物线的焦点且与对称轴垂直的直线,与抛物线相交所得的弦叫抛物线的通径.
其长为.

学习评价
※自我评价你完成本节导学案的情况为().
A.很好B.较好C.一般D.较差
※当堂检测(时量:5分钟满分:10分)计分:
1.下列抛物线中,开口最大的是().
A.B.
C.D.
2.顶点在原点,焦点是的抛物线方程().
A.B.
C.D.
3.过抛物线的焦点作直线,交抛物线于,两点,若线段中点的横坐标为,则等于().
A.B.C.D.
4.抛物线的准线方程是.
5.过抛物线的焦点作直线交抛物线于,两点,如果,则=.

课后作业
1.根据下列条件,求抛物线的标准方程,并画出
图形:
⑴顶点在原点,对称轴是轴,并且顶点与焦点的距离等到于;
⑵顶点在原点,对称轴是轴,并且经过点.

2是抛物线上一点,是抛物线的焦点,,求.

§2.4.2抛物线的简单几何性质(2)
学习目标
1.掌握抛物线的几何性质;
2.抛物线与直线的关系.
学习过程
一、课前准备
复习1:以原点为顶点,坐标轴为对称轴,且过点的抛物线的方程为().
A.B.或
C.D.或
复习2:已知抛物线的焦点恰好是椭圆的左焦点,则=.
二、新课导学
※学习探究
探究1:抛物线上一点的横坐标为6,这点到焦点距离为10,则:
①这点到准线的距离为;
②焦点到准线的距离为;
③抛物线方程;
④这点的坐标是;
⑤此抛物线过焦点的最短的弦长为.
※典型例题
例1过抛物线焦点的直线交抛物线于,两点,通过点和抛物线顶点的直线交抛物线的准线于点,求证:直线平行于抛物线的对称轴.

(理)例2已知抛物线的方程,直线过定点,斜率为为何值时,直线与抛物线:只有一个公共点;有两个公共点;没有公共点?
小结:
①直线与抛物线的位置关系:相离、相交、相切;
②直线与抛物线只有一个公共点时,
它们可能相切,也可能相交.
※动手试试
练1.直线与抛物线相交于,两点,求证:.

2.垂直于轴的直线交抛物线于,两点,且,求直线的方程.
三、总结提升
※学习小结
1.抛物线的几何性质;
2.抛物线与直线的关系.
※知识拓展
过抛物线的焦点的直线交抛物线于,两点,则为定值,其值为.
学习评价
※自我评价你完成本节导学案的情况为().
A.很好B.较好C.一般D.较差
※当堂检测(时量:5分钟满分:10分)计分:
1.过抛物线焦点的直线交抛物线于,两点,则的最小值为().
A.B.C.D.无法确定
2.抛物线的焦点到准线的距离是().
A.B.C.D.
3.过点且与抛物线只有一个公共点的直线有().
A.条B.条C.条D.条
4.若直线与抛物线交于、两点,则线段的中点坐标是______.
5.抛物线上一点到焦点的距离是,则抛物线的标准方程是.
课后作业
1.已知顶点在原点,焦点在轴上的抛物线与直线交于,两点,=,求抛物线的方程.

2.从抛物线上各点向轴作垂线段,求垂线段中点的轨迹方程,并说明它是什么曲线.

第二章圆锥曲线与方程(复习)
学习目标
1.掌握椭圆、双曲线、抛物线的定义及标准方程;
2.掌握椭圆、双曲线、抛物线的几何性质;
3.能解决直线与圆锥曲线的一些问题.
学习过程
一、课前准备
(预习教材理P78~P81,文P66~P69找出疑惑之处)
复习1:完成下列表格:
椭圆双曲线抛物线
定义

图形

标准方程
顶点坐标
对称轴
焦点坐标
离心率
(以上每类选取一种情形填写)
复习2:
①若椭圆的离心率为,则它的长半轴长为__________;
②双曲线的渐近线方程为,焦距为,则双曲线的方程为;
③以椭圆的右焦点为焦点的抛物线方程为.
二、新课导学
※典型例题
例1当从到变化时,方程
表示的曲线的形状怎样变化?
变式:若曲线表示椭圆,则的取值范围是.

小结:掌握好每类标准方程的形式.
例2设,分别为椭圆C:=1
的左、右两个焦点.
⑴若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
⑵设点K是(1)中所得椭圆上的动点,求线段的中点的轨迹方程.

变式:双曲线与椭圆有相同焦点,且经过点,求双曲线的方程.

※动手试试
练1.已知的两个顶点,坐标分别是,,且,所在直线的斜率之积等于,试探求顶点的轨迹.

练2.斜率为的直线与双曲线交于,两点,且,求直线的方程.
三、总结提升
※学习小结
1.椭圆、双曲线、抛物线的定义及标准方程;
2.椭圆、双曲线、抛物线的几何性质;
3.直线与圆锥曲线.

※知识拓展
圆锥曲线具有统一性:
⑴它们都是平面截圆锥得到的截口曲线;
⑵它们都是平面内到一个定点的距离和到一条定直线(不经过定点)距离的比值是一个常数的点的轨迹,比值的取值范围不同形成了不同的曲线;
⑶它们的方程都是关于,的二次方程.
学习评价
※自我评价你完成本节导学案的情况为().
A.很好B.较好C.一般D.较差
※当堂检测(时量:5分钟满分:10分)计分:
1.曲线与曲线
的().
A.长轴长相等B.短轴长相等
C.离心率相等D.焦距相等
2.与圆及圆都外切的圆的圆心在().
A.一个椭圆上B.双曲线的一支上
C.一条抛物线上D.一个圆上
3.过抛物线的焦点作直线,交抛物线于,两点,若线段中点的横坐标为,则等于().
A.B.C.D.
4.直线与双曲线没有公共点,则的取值范围.
5.到直线的距离最短的抛物线上的点的坐标是.

课后作业
1.就的不同取值,指出方程所表示的曲线的形状.

2.抛物线与过点的直线相交于,两点,为原点,若和的斜率之和为,求直线的方程.

圆锥曲线学案练习题


§2.1圆锥曲线
一、知识要点
1.通过用平面截圆锥面,经历从具体情境中抽象出椭圆;抛物线模型的过程;
2.椭圆的定义:
3.双曲线的定义:
4.抛物线的定义:
5.圆锥曲线的概念:
二、例题
例1.试用适当的方法作出以两个定点为焦点的一个椭圆。
例2.已知:
⑴到两点距离之和为9的点的轨迹是什么图形?
⑵到两点距离之差的绝对值等于6的点的轨迹是什么图形?
⑶到点的距离和直线的距离相等的点的轨迹是什么图形?

例3.(参选)在等腰直角三角形中,,,以为焦点的椭圆过点,过点的直线与该椭圆交于两点,求的周长。

三、课堂检测
1.课本P262
2.课本P263
3.已知中,且成等差数列。
⑴求证:点在一个椭圆上运动;
⑵写出这个椭圆的焦点坐标。

四、归纳小结

五、课后作业
1.已知是以为焦点,直线为准线的抛物线上一点,若点M到直线的距离为,则=

2.已知点,动点满足,则点的轨迹是。
3.已知点,动点满足(为正常数)。若点的轨迹是以为焦点的双曲线,则常数的取值范围是。
4.已知点,动点满足,则动点的轨迹是。
5.若动圆与圆外切,对直线相切,则动圆圆心的轨迹是。
6.已知中,,且成等差数列。
⑴求证:点在一个椭圆上运动;⑵写出这个椭圆的焦点坐标。

7.已知中,长为6,周长为16,那么顶点在怎样的曲线上运动?

8.如图,取一条拉链,打开它的一部分,在拉开的两边上各选择一点,分别固定在点上。把笔尖放在点处,随着拉链逐渐拉开或者闭拢,笔尖所经过的点就画出一条曲线,这条曲线是双曲线的一支,试说明理由。

9.若一个动点到两个定点的距离之差的绝对值为定值,试确定动点的轨迹。

10.动点的坐标满足,试确定的轨迹。

六、预习作业
1.方程表示椭圆则的取值范围。
2.方程表示焦点在轴上。
3.方程的焦点坐标为。