高中集合教案
发表时间:2020-09-22集合的含义及其表示教案苏教版必修1。
1.1集合的含义及其表示
教学目标:
1.使学生理解集合的含义,知道常用集合及其记法;
2.使学生初步了解“属于”关系和集合相等的意义,初步了解有限集、无限集、空集的意义;
3.使学生初步掌握集合的表示方法,并能正确地表示一些简单的集合.
教学重点:
集合的含义及表示方法.
教学过程:
一、问题情境
1.情境.
新生自我介绍:介绍家庭、原毕业学校、班级.
2.问题.
在介绍的过程中,常常涉及像“家庭”、“学校”、“班级”、“男生”、“女生”等概念,这些概念与“学生×××”相比,它们有什么共同的特征?
二、学生活动
1.介绍自己;
2.列举生活中的集合实例;
3.分析、概括各集合实例的共同特征.
三、数学建构
1.集合的含义:一般地,一定范围内不同的、确定的对象的全体组成一个集合.构成集合的每一个个体都叫做集合的一个元素.
2.元素与集合的关系及符号表示:属于,不属于.
3.集合的表示方法:
另集合一般可用大写的拉丁字母简记为“集合A、集合B”.
4.常用数集的记法:自然数集N,正整数集N*,整数集Z,有理数集Q,实数集R.
5.有限集,无限集与空集.
6.有关集合知识的历史简介.
四、数学运用
1.例题.
例1表示出下列集合:
(1)中国的直辖市;(2)中国国旗上的颜色.
小结:集合的确定性和无序性
例2准确表示出下列集合:
(1)方程x2―2x-3=0的解集;
(2)不等式2-x<0的解集;
(3)不等式组的解集;
(4)不等式组2x-1≤-33x+1≥0的解集.
解:略.
小结:(1)集合的表示方法——列举法与描述法;
(2)集合的分类——有限集⑴,无限集⑵与⑶,空集⑷
例3将下列用描述法表示的集合改为列举法表示:
(1){(x,y)|x+y=3,xN,yN}
(2){(x,y)|y=x2-1,|x|≤2,xZ}
(3){y|x+y=3,xN,yN}
(4){xR|x3-2x2+x=0}
小结:常用数集的记法与作用.
例4完成下列各题:
(1)若集合A={x|ax+1=0}=,求实数a的值;
(2)若-3{a-3,2a-1,a2-4},求实数a.
小结:集合与元素之间的关系.
2.练习:
(1)用列举法表示下列集合:
①{x|x+1=0};
②{x|x为15的正约数};
③{x|x为不大于10的正偶数};
④{(x,y)|x+y=2且x-2y=4};
⑤{(x,y)|x∈{1,2},y∈{1,3}};
⑥{(x,y)|3x+2y=16,x∈N,y∈N}.
(2)用描述法表示下列集合:
①奇数的集合;②正偶数的集合;③{1,4,7,10,13}
五、回顾小结
(1)集合的概念——集合、元素、属于、不属于、有限集、无限集、空集;
(2)集合的表示——列举法、描述法以及Venn图;
(3)集合的元素与元素的个数;
(4)常用数集的记法.
六、作业
课本第7页练习3,4两题.
延伸阅读
高一数学集合的含义及其表示教案
作为优秀的教学工作者,在教学时能够胸有成竹,教师要准备好教案,这是教师的任务之一。教案可以让学生们充分体会到学习的快乐,减轻教师们在教学时的教学压力。教案的内容具体要怎样写呢?下面是由小编为大家整理的“高一数学集合的含义及其表示教案”,仅供参考,欢迎大家阅读。
1.1.1集合的含义及其表示(一)
教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性.了解有限集、无限集、空集概念,
教学重点:集合概念、性质;“∈”,“”的使用
教学难点:集合概念的理解;
课型:新授课
教学手段:
教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦的基石。集合理论创始者是由德国数学家康托尔,他创造的集合论是近代许多数学分支的基础。(参看阅教材中读材料P17)。
下面几节课中,我们共同学习有关集合的一些基础知识,为以后数学的学习打下基础。
二、新课教学
“物以类聚,人以群分”数学中也有类似的分类。
如:自然数的集合0,1,2,3,……
如:2x-13,即x2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,…
集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,…
2、元素与集合的关系
a是集合A的元素,就说a属于集合A,记作a∈A,
a不是集合A的元素,就说a不属于集合A,记作aA
思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,
进而讲解下面的问题。
例1:判断下列一组对象是否属于一个集合呢?
(1)小于10的质数(2)著名数学家(3)中国的直辖市(4)maths中的字母
(5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3x-2x+3的全体实数
(9)方程的实数解
评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。
3、集合的中元素的三个特性:
1.元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
2.元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。比如:book中的字母构成的集合
3.元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
集合元素的三个特性使集合本身具有了确定性和整体性。
4、数的集简称数集,下面是一些常用数集及其记法:
非负整数集(即自然数集)记作:N有理数集Q
正整数集N*或N+实数集R
整数集Z
5、集合的分类原则:集合中所含元素的多少
①有限集含有限个元素,如A={-2,3}
②无限集含无限个元素,如自然数集N,有理数
③空集不含任何元素,如方程x2+1=0实数解集。专用标记:Φ
三、课堂练习
1、用符合“∈”或“”填空:课本P15练习惯1
2、判断下面说法是否正确、正确的在()内填“√”,错误的填“×”
(1)所有在N中的元素都在N*中()
(2)所有在N中的元素都在Z中()
(3)所有不在N*中的数都不在Z中()
(4)所有不在Q中的实数都在R中()
(5)由既在R中又在N*中的数组成的集合中一定包含数0()
(6)不在N中的数不能使方程4x=8成立()
四、回顾反思
1、集合的概念
2、集合元素的三个特征
其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的.
“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.
3、常见数集的专用符号.
五、作业布置
1.下列各组对象能确定一个集合吗?
(1)所有很大的实数
(2)好心的人
(3)1,2,2,3,4,5.
2.设a,b是非零实数,那么可能取的值组成集合的元素是
3.由实数x,-x,|x|,所组成的集合,最多含()
(A)2个元素(B)3个元素(C)4个元素(D)5个元素
4.下列结论不正确的是()
A.O∈NB.QC.OQD.-1∈Z
5.下列结论中,不正确的是()
A.若a∈N,则-aNB.若a∈Z,则a2∈Z
C.若a∈Q,则|a|∈QD.若a∈R,则
6.求数集{1,x,x2-x}中的元素x应满足的条件;
板书设计(略)
高一 数学 1.1 集合含义及其表示 教案
作为杰出的教学工作者,能够保证教课的顺利开展,准备好一份优秀的教案往往是必不可少的。教案可以让学生更好地进入课堂环境中来,帮助高中教师营造一个良好的教学氛围。那么如何写好我们的高中教案呢?考虑到您的需要,小编特地编辑了“高一 数学 1.1 集合含义及其表示 教案”,相信您能找到对自己有用的内容。
§1.1集合含义及其表示
教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。
教学过程:
一、阅读下列语句:
1)全体自然数0,1,2,3,4,5,…
2)代数式.
3)抛物线上所有的点
4)今年本校高一(1)(或(2))班的全体学生
5)本校实验室的所有天平
6)本班级全体高个子同学
7)著名的科学家
上述每组语句所描述的对象是否是确定的?
二、1)集合:
2)集合的元素:
3)集合按元素的个数分,可分为1)__________2)_________
三、集合中元素的三个性质:
1)___________2)___________3)_____________
四、元素与集合的关系:1)____________2)____________
五、特殊数集专用记号:
1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______
4)有理数集______5)实数集_____6)空集____
六、集合的表示方法:
1)
2)
3)
七、例题讲解:
例1、中三个元素可构成某一个三角形的三边长,那么此三角形一定不是()
A,直角三角形B,锐角三角形C,钝角三角形D,等腰三角形
例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?
1)地球上的四大洋构成的集合;
2)函数的全体值的集合;
3)函数的全体自变量的集合;
4)方程组解的集合;
5)方程解的集合;
6)不等式的解的集合;
7)所有大于0且小于10的奇数组成的集合;
8)所有正偶数组成的集合;
例3、用符号或填空:
1)______Q,0_____N,_____Z,0_____
2)______,_____
3)3_____,
4)设,,则
例4、用列举法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的数
2.图中阴影部分点(含边界)的坐标的集合
课堂练习:
例6、设含有三个实数的集合既可以表示为,也可以表示为,则的值等于___________
例7、已知:,若中元素至多只有一个,求的取值范围。
思考题:数集A满足:若,则,证明1):若2,则集合中还有另外两个元素;2)若则集合A不可能是单元素集合。
小结:
作业班级姓名学号
1.下列集合中,表示同一个集合的是()
A.M=,N=B.M=,N=
C.M=,N=D.M=,N=
2.M=,X=,Y=,,.则()
A.B.C.D.
3.方程组的解集是____________________.
4.在(1)难解的题目,(2)方程在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________.
5.设集合A=,B=,
C=,D=,E=。
其中有限集的个数是____________.
6.设,则集合中所有元素的和为
7.设x,y,z都是非零实数,则用列举法将所有可能的值组成的集合表示为
8.已知f(x)=x2-ax+b,(a,bR),A=,B=,
若A=,试用列举法表示集合B=
9.把下列集合用另一种方法表示出来:
(1)(2)
(3)(4)
10.设a,b为整数,把形如a+b的一切数构成的集合记为M,设,试判断x+y,x-y,xy是否属于M,说明理由。
11.已知集合A=
(1)若A中只有一个元素,求a的值,并求出这个元素;
(2)若A中至多只有一个元素,求a的取值集合。
12.若-3,求实数a的值。
集合的含义与表示
一名爱岗敬业的教师要充分考虑学生的理解性,作为高中教师就需要提前准备好适合自己的教案。教案可以让讲的知识能够轻松被学生吸收,帮助高中教师有计划有步骤有质量的完成教学任务。关于好的高中教案要怎么样去写呢?小编特地为大家精心收集和整理了“集合的含义与表示”,但愿对您的学习工作带来帮助。
[必修1]第一章集合
第一节集合的含义与表示
学时:1学时
[学习引导]
一、自主学习
1.阅读课本.
2.回答问题:
⑴本节内容有哪些概念和知识点?
⑵尝试说出相关概念的含义?
3完成练习
4小结
二、方法指导
1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。
2、理解集合元素的特性,并会判断元素与集合的关系
3、掌握集合的表示方法,并会正确运用它们表示一些简单集合。
4、在学习中要特别注意理解空集的意义和记法
[思考引导]
一、提问题
1.集合中的元素有什么特点?
2、集合的常用表示法有哪些?
3、集合如何分类?
4.元素与集合具有什么关系?如何用数学语言表述?
5集合和是否相同?
二、变题目
1.下列各组对象不能构成集合的是()
A.北京大学2008级新生
B.26个英文字母
C.著名的艺术家
D.2008年北京奥运会中所设定的比赛项目
2.下列语句:①0与表示同一个集合;
②由1,2,3组成的集合可表示为或;
③方程的解集可表示为;
④集合可以用列举法表示。
其中正确的是()
A.①和④B.②和③
C.②D.以上语句都不对
[总结引导]
1.集合中元素的三特性:
2.集合、元素、及其相互关系的数学符号语言的表示和理解:
3.空集的含义:
[拓展引导]
1.课外作业:习题1—1第题;
2.若集合,求实数的值;
3.若集合只有一个元素,则实数的值为;若为空集,则的取值范围是.
撰稿:程晓杰审稿:宋庆
参考答案
[思考引导]
一、提问题
1.确定性、互异性、无序性
2、列举法、描述法、图示法
3、按元素的个数分为:空集(集合中没有元素)、有限集(集合中有有限个元素)、无限集(集合中有无穷多个元素)
4.属于、不属于;
5不同
二、变题目
1.C;
2.C;
[拓展引导]
2.或;
3.0或1;
高一数学集合的含义及其表示47
1.1集合的含义及其表示
学习要求
1.初步理解集合的含义,常用数集及其记法;
2.理解元素与集合的属于关系和集合相等的意义;
3.掌握集合的表示方法、集合的分类。
学习重难点
1.集合元素的特征
2.元素与集合的关系
课前预习
阅读教材P5完成下列填空
1.集合的含义:构成一个集合(set).
集合中的__________________称为该集合的元素(element).简称元.
想一想:找出集合含义中的关键词_____________________________
思考1:构成集合的元素是不是只能是数或点?
【答】
思考2:所有的好人能否构成一个集合?
【答】
2.集合中元素的性质:
(1)
(2)
(3)
3.元素与集合的关系:
如果a是集合A的元素,就记作_______;
读作“___________”;
如果a不是集合A的元素,就记作___或___读作“______”.
4.常用数集及其记法:
一般地,自然数集记作____________;
正整数集记作__________或___________;
整数集记作________;有理数记作_______;
实数集记作________
一定要牢记呦!
5.集合的表示方法
(1)列举法
将集合的元素_________出来,并___________表示集合的方法叫列举法.
元素之间要用__________分隔,但列举时与_____________________无关。
(2)描述法
将集合的所有元素都具有性质_________表示出来,写成_______的形式,称之为描述法.
注:中为集合的代表元素,指元素具有的性质.
(3)图示法(Venn图):用平面上封闭曲线的内部代集合.
6.集合的分类
按所含元素的多少来分:
(1)______________叫做有限集;
(2)______________________叫做无限集;
(3)_________叫做空集,记作______.
议一议:
与{}是一样的吗?
与{0}是一样的吗?
课堂互动
例1.判断下列说法是否正确?并说明理由。
(1)所有正数组成一个集合;
(2)1,3,0,5,︱-3︳这些数组成的集合有5个元素;
(3)集合{1,3,5,7}和集合{3,1,5,7}表示同一个集合;
(4)高一(8)班身材高的学生可以组成一个集合。
例2.用符号填空:
(1)___;(2)___;
(3)___
例3.集合A中的元素由x=a+b
(a∈Z,b∈Z)组成,判断下列元素与集合A的关系?
(1)0(2)(3)
分析:先把x写成a+b的形式,再观察
a,b是否为整数.
例4.已知集合A={x︳ax2+2x+1=0,x∈R},a为实数
(1)若A是空集,求a的取值范围;
(2)若A是单元集,求a的取值范围;
变题:若A中至多只有一个元素,求a的取值范围
随堂检测
1.下列研究的对象能构成集合的是
①某校个子较高的同学;
②倒数等于本身的实数
③所有的无理数
④讲台上的一盒白粉笔
⑤中国的直辖市
⑥中国的大城市
2.用∈或填空
1_______N,-3________N,0_______N*
_______R,_____Q,cos300_______Z
3.用列举法表示下列集合:
(1){x|x2+x+1=0}
(2){x|x为不大于15的正约数}
(3){x|x为不大于10的正偶数}
(4){(x,y)|0≤x≤2,0≤y2,x,y∈Z}
4.用描述法表示下列集合:
(1)奇数的集合;
(2)正偶数的集合;
(3)不等式2x-35的解集;
(4)直角坐标平面内属于第四象限的点的合.
5.(1)已知x2∈{1,0,x},则实数x的值
(2)用列举法和描述法表示方程x2-1=0所有实数解构成的集合
(3)写出不等式组表示的整数解
的集合为
(4)已知集合A={x︱ax2+4x+4=0}只有一个元素,则a的值
(5)方程组的解集为
归纳总结
集合的表示方法____________
集合的分类_______________
集合相等与空集__________
学后反思