88教案网

你的位置: 教案 > 高中教案 > 导航 > 高一数学教案:《古典概型》教学设计(一)

小学一年级的数学教案

发表时间:2021-08-14

高一数学教案:《古典概型》教学设计(一)。

一名优秀的教师就要对每一课堂负责,作为教师就要好好准备好一份教案课件。教案可以更好的帮助学生们打好基础,减轻教师们在教学时的教学压力。优秀有创意的教案要怎样写呢?下面是小编精心收集整理,为您带来的《高一数学教案:《古典概型》教学设计(一)》,希望对您的工作和生活有所帮助。

高一数学教案:《古典概型》教学设计(一)

1.内容和内容解析

本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在学习随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的 。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。

学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些简单事件的概率,有利于解释生活中的一些现象与问题。

根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

2.目标和目标解析

(1)了解基本事件的意义

(2)理解古典概型及其概率计算公式,

(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率

(4)会初步应用概率计算公式解决简单的古典概型问题

根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现化归的重要思想,掌握列举法,学会运用分类讨论的思想解决概率的计算问题。 树立从具体到抽象、从特殊到一般的哲学观点,鼓励学生通过观察类比提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

3.重点落实难点突破

重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

落实的途径:

(1)通过举实例的方法,理解古典概型的两个重要的特征:结果的有限性与等可能性

除了教材中掷硬币与掷骰子外,还可以举学生身边的事件,如班级里选班长等

(2)通过画树形图和列表的方法,落实古典概型中随机事件的概率的求解

(3)通过变式训练的方法,提升学生掌握古典概型中随机事件的概率计算的分析方法

难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

突破的方法:

(1)在概率的计算上,鼓励学生尝试列表和画出树状图,让学生感受求基本事件个数的一般方法,从而化解由于没有学习排列组合而学习概率这一教学困惑;wWW.Jab88.Com

(2)通过正、反两方面的例子,特别是举一些破坏了古典概型两个重要特征的例子,以突破古典概型识别的难点,

(3)举一些数学分支中的古典概型例子,如表面涂色正方体分割成等体积的27个小正方体,从中任取一个,则一面涂色、二面涂色、三面涂色的概率分别为多少?

4.教学问题诊断分析

在古典概型的概念理解与古典概型的计算中,一是学生不能正确理解等可能性;二是学生不能完整的列举出基本事件总数和事件A所包含的基本事件数,因此需要用直观地、描述性的语言暴露老师的思维过程,给学生以具体的指导。

初学者对基本事件与随机事件的联系与区别存在理解困难,对于基本事件的互斥性比较容易理解,但对于任何事件(除不可能事件)都可以表示成基本事件的和这一特点不知所措,为了突破这一点,教学中可以用类比思想来解决,将集合的“单元素子集”比作基本事件,那么任一其他子集都可以是单元素子集的并集(和);例3的教学中学生对为什么要把两个骰子标上记号理解不透,关键是不能从实质上把握古典概型中“每个基本事件出现是等可能的”,或者说缺少判断这一等可能性的意识,为了突破这一点,可以设计一个模拟方式来验证每个基本事件是否具有等可能性。

5.教学支持条件分析

学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现学生的主体地位,培养学生由具体到抽象,由特殊到一般的数学思维能力,形成实事求是的科学态度;在教学中利用直观图形、计算机模拟、列表、画树形图、用Excel软件等工具来支持对概率古典定义的理解与运用

6.教学过程设计

[创设问题情境]

问题1:

(1)抛掷一枚质地均匀的硬币,会有哪几种可能结果?这些结果具有哪些特点?

(2)抛掷一枚质地均匀的骰子,会有哪几种可能结果?这些结果具有哪些特点?事件“出现质数点”可以用这些结果表示吗?

教学设计方式:

Ⅰ、传统教学设计:教师手持一枚硬币,抛掷,显示结果,写出结果,说明结果特点;

教师手持一枚骰子,抛掷,显示结果,写出结果,说明结果特点;

这一问题创设情境方式,简单、直观、教学条件与设备要求低,有利于教学资源与条件差的地区,教学理念是以教师引导和传授为主;

Ⅱ、以学生为本的教学设计:学生分小组进行实验:各小组课前用一枚硬币或一枚骰子,抛掷n次,记录试验结果,在课堂上交流试验情况,教师汇总结果,并与学生一起讨论试验结果特点;

这一问题创设情境方式,简单、直观、教学条件与设备要求低,有利于教学资源与条件差的地区,教学理念是以学生自主学习为主,但要利用课余时间,组织工作较多;

Ⅲ、以多媒体为手段的教学设计:教师或学生中的“计算机专家”设计一个掷硬币或掷骰子的软件,由学生代表操作,显示结果,写出结果,说明结果特点;

这一问题创设情境方式,需要有现代教学媒介,对于经济发达地区是可行的,

师生互动:抛掷一枚质地均匀的硬币,有两种可能结果:正面向上,反面向上;这两个结果不可能同时发生,即“正面向上”“反面向上”是互斥事件;而且这两个结果的出现是等可能的;

抛掷一枚质地均匀的骰子,会有6种可能结果:出现“1点”“2点”“3点”“4点”“5点”“6点”,这6个结果不可能同时发生,即它们是互斥事件,而且这6个结果的出现是等可能的;事件“出现质数点”可以用“出现2点”“出现3点”“出现5点”的和来表示

我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

基本事件有如下的两个特点:(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

例1、从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?

分析:为了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来。

解:基本事件为A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}

(1)问题1中两个试验中所有可能出现的基本事件只有有限个;(有限性)

(2)问题1中两个试验中每个基本事件出现的可能性相等。(等可能性)

我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

概念辨析:

问题2、向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?

因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。

问题3、从一个男女生人数差异性较大的班中随机地抽取一位学生代表,出现两个可能结果“男同学代表”“女同学代表”,你认为这是古典概型吗?为什么?

不是古典概型,因为试验的所有可能结果只有2个,而“男同学代表”“女同学代表”出现不是等可能的,即不满足古典概型的第二个条件。

我们一般用列举法列出所有基本事件的结果,画树状图是列举法中的一种基本方法。

例2 、某人射击5枪,命中了3枪,试写出所有的基本事件

方法一:列举法:⊙表示命中,X表示未命中

问题4、在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?

问题1(1)中,出现正面朝上概率与反面朝上概率相等,即P(“正面朝上”)=P(“反面朝上”)由概率的加法公式,得P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1

因此 P(“正面朝上”)=P(“反面朝上”)=0.5

即P(“正面朝上”)=

问题1(2)中,出现1—6各个点的概率相等,即

P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)

反复利用概率的加法公式,我们有P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1

∴P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=

进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)= + + =

根据上述两则模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式为:

P(A)==

提问:(1)在例1的实验中,出现字母“d”的概率是多少?

P(出现字母d)==

(2)在例2中,所命中的三枪中,恰好有2枪连中的概率为多少?

P(三枪中两枪连中)=

在使用古典概型的概率公式时,应该注意什么?

注意:(1)要判断该概率模型是不是古典概型;

(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

例3、单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考察的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

分析:解决这个问题的关键,即讨论这个问题什么情况下可以看成古典概型。如果考生掌握或者掌握了部分考察内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才可以化为古典概型。

解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考生随机地选择一个答案是选择A,B,C,D的可能性是相等的。从而由古典概型的概率计算公式得:P(答对)==

问题5、在标准化考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?

答:这是因为多选题选对的可能性比单选题选对的可能性要小;事实上,在多选题中,基本事件有15个,(A)(B)(C)(D)(A,B)(A,C)(A,D)(B,C)(B,D)(C,D)(A,B,C)(A,B,D)(A,C,D)(B,C,D)(A,B,C,D),假定考生不会做,在他随机选择任何答案是等可能的情况下,他答对的概率为<

例4、 同时掷两个骰子,计算:

(1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种?

(3)向上的点数之和是5的概率是多少?

分析:如果我们只关注两个骰子出现的点数和,则有2,3,4,…,11,12这11种结果;

如果我们关注两个不加识别骰子出现的点数,则有下表中的21种结果

如果我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可以与2号骰子的任意一个结果配对,我们用一个“有序实数对”来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。

从表中可以看出同时掷两个骰子的结果共有36种。

值得关注的是第一、二种情形中的结果不是等可能的,不能直接运用古典概型公式计算事件的概率;

(2)上面结果中,向上的点数之和为5的结果有4种:(1,4),(2,3),(3,2),(4,1)

(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得

P(A)===

问题6:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?

答:如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别。这时,所有可能的结果为21种:和是5的结果有2个:(1,4)(2,3),所求的概率为P(A)=

以上两种答案都是利用古典概型的概率计算公式得到的,为什么不同呢?这里关键是第二种解法中的基本事件不是等可能发生的,它不能利用古典概型公式来计算。

小结:

1.古典概型:我们将具有:

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等。(等可能性)

这样两个特点的概率模型称为古典概率概型,简称古典概型。

2.古典概型计算任何事件的概率计算公式为:P(A)=

3.求某个随机事件A包含的基本事件的个数和实验中基本事件的总数常用的方法是列举法(画树状图和列表),注意做到不重不漏。

7.目标检测设计

精选阅读

高一数学教案:《古典概型》教学设计(二)


高一数学教案:《古典概型》教学设计(二)

一.内容和内容解析

本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,他的引入避免了大量的重复试验,而且得到的是概率精确值,同时古典概型

也是后面学习条件概率的基础,起到承前启后的作用,所以在概率论中占有相当重要的地位。主要内容有:

1.基本事件的概念及特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。

2.古典概型的特征:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。

3.古典概型的概率计算公式,用列举法计算一些随机事件所含的基本事件的个数及事件发生的概率。

随机事件概率的基本算法是通过大量重复试验用频率来估计,而其特殊的类型――古典概型的概率计算,可通过分析结果来计算。学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。

本节课的重点是理解古典概型的概念及利用古典概型求解随机事件的概率。

二.目标和目标解析

1.通过“掷一枚质地均匀的硬币的试验”和“掷一枚质地均匀的骰子的试验”了解基本事件的概念和特点

2.通过实例,理解古典概型及其概率计算公式。根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想。适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。使得学生在体会概率意义的同时,感受与他人合作的重要性以初步形成实事求是地科学态度和锲而不舍的求学精神。

3.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。

4.会初步应用概率计算公式解决简单的古典概型问题。用有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。培养学生掌握“理论来源于实践,并把理论应用于实践”的辨证思想。

三.教学问题诊断分析

学生已有的知识结构是,已经学习了随机事件的概率,通过实例,已经了解随机事件的不确定性和频率的稳定性。了解了概率的意义,了解互斥事件及有限个互斥事件概率加法公式。和老教材的区别在于,学生是在尚未学习排列组合的情况下学习概率的。

学生学习的困难在于,对古典概型的两个特征理解不够深刻,一看到试验包含的基本事件是有限个就用古典概型的公式求概率,没有验证“每个基本事件出现是等可能的”这个条件;另外对基本事件的总数的计算容易产生重复或遗漏。

本节课的教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

在解决概率的计算上,教师鼓励学生尝试列表和画出树状图,让学生感受求基本事件个数的一般方法,让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,从而化解由于没有学习排列组合而学习概率这一教学困惑。在判断一个试验是否是古典概型时,教师可以设置一些问题让学生判断,加深对两个特点缺一不可的理解。在例3的教学中,给出由于忽略等可能的条件而导致的错误解法,引起学生的认知冲突,有利于学生的掌握知识。

四.教学条件支持

为了有效实现教学目标,条件许可,可以借助计算机进行辅助教学。进行例3教学时,通过模拟和分析两种方式中每个基本事件的等可能性,引导学生发现在第二种情况下每个基本事件不是等可能的。

五.教学过程设计

(一)创设情境,引出课题

问题1:考察两个试验:(1)抛掷一枚质地均匀的硬币的试验;(2)掷一颗质地均匀的骰子的试验。在这两个试验中,可能的结果分别有哪些?

设计意图:通过掷硬币与掷骰子两个接近于生活的试验的设计。先激发学生的学习兴趣,然后引导学生观察试验,分析结果,找出共性。

师生活动:学生思考、讨论,教师利用试验给出所有可能出现的结果即基本事件。

问题2:基本事件有什么特点?

师生活动:教师加以引导与启发,利用基本事件的关系发现基本事件的特点。学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力

问题3:在掷骰子试验中,随机试验“出现偶数点”可以由哪些基本事件组成?

设计意图:通过举例,进一步加深对基本事件的理解,从而为引出古典概型的定义做好铺垫。

问题4:例1.从字母a,b,c,d中任意取出两个不同字母的实验中,有那些基本事件?

设计意图:为了引出古典概型的概念,设计了例1。将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点。

师生活动:教师引导学生列举时做到不重复、不遗漏。学生列举出基本事件。教师指出画树状图是列举法的基本方法

(二)通过设疑,引出概念

问题1:你知道掷均匀硬币出现正面朝上的概率是多少?掷骰子出现偶数点的概率是多少?例1中出现字母“d”的概率又是多少?

设计意图:学生根据已有的知识,已经可以独立得出概率,通过教师的步步追问,引导学生深层次的考虑问题,看到问题的本质,得出概率公式。让学生带着思考问题观察试验,使其有目的的去寻找答案,有效的利用课堂时间,达到教学目标。公式的推导是在老师的启发引导下,让学生带着好奇心去观察数学模型。

师生活动:学生较容易得出上述问题的概率。

教师追问:这些概率你是怎么得出的?

学生:(1)从实验来的;(2)从可能性角度分析得到的。

对于掷骰子试验,出现各个点的可能性相同,

记出现1点,2点,…,6点的事件分别为A1,A2,…,A6 ,记“出现偶数点”为B,则P(A1)=P(A2)=…=P(A6),

又P(A1)+P(A2)+…=P(A6)=P(必然事件)=1

所以:P(A1)=P(A2)=…=P(A6)=

教师追问:出现偶数点的概率为什么是?

师生:记“出现偶数点”为事件B,利用概率的加法公式有

P(B)=P(A2)+P(A4)+P(A6)==

推导出概率公式:

问题2:上述概率公式的推导过程中基本事件有什么特点?

设计意图:培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过问题的解决引出古典概型的概念。

师生活动:教师引导学生找出共性。具有下列两个特点的概率模型才能运用上述公式,我们称为古典概率模型,简称古典概型。

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等。(等可能性)

问题3:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?

(2)某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环。你认为这是古典概型吗?为什么?

设计意图:两个问题的设计是为了让学生更加准确的把握古典概型的两个特点。突破了如何判断一个试验是否是古典概型这一教学难点。

师生活动:学生互相交流,回答补充,教师归纳。(1)不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的;(2)不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。

(三)例题分析,加深理解

问题1:例2.单选题是标准化考试中常用的题型,一般是从A、B、C、D四个选项中选择一个正确答案。如果考生掌握了考察内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

设计意图:这节课的难点就是古典概型的判断,对例2 的分析是突破难点的契机,引导学生分析例2是否满足古典概型的两个基本特征有限性与等可能性,由此掌握求此类题目的方法,让学生进一步理解古典概型的概率计算公式,体验概率与实际生活是息息相关的。

师生活动:教师引导学生思考是否满足古典概型的特征?学生思考、讨论、交流,说出看法,教师对学生的回答进行归纳与总结。

解决这个问题的关键,即讨论这个问题什么情况下可以看成古典概型。如果考生掌握或者掌握了部分考察内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才可以化为古典概型。

学生根据已学知识回答:

问题2:在标准化的考试中既有单选题又有多选题,多选题是从A、B、C、D四个选项中选择所有正确答案,同学们有一种感觉,如果不知道正确答案多选题更难猜对,这是为什么?

设计意图:上述问题的设计,让学生感受到数学模型的生活化,能用所学知识解决新问题是数学学习的主旨。当学生用自己的知识解决问题后,会有极大的成就感,提高了学习兴趣,体验了数学学习的真谛。

师生活动:教师引导学生列举15种可能出现的答案,判断是否满足古典概型的特征,利用概率公式求值。

问题3:例3. 同时掷两个骰子,计算:

(1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种?

(3)向上的点数之和是5的概率是多少?

设计意图:这节课是在没有学习排列组合的基础上学习如何求概率,所以在教学中引导学生根据古典概型的特征,用列举法解决概率问题。深化巩固对古典概型及其概率计算公式的理解,和用列举法来计算一些随机事件所含基本事件的个数及事件发生的概率。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

通过观察对比,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。

师生活动:

(1)教师给出问题,学生思考求解。

(2)教师将学生的结果汇总展示,学生给出的答案可能会有两种,然后引导学生分析原因,寻找解答中存在的问题。其中这两种答案分别对应了解题中的两种处理方法:把骰子标号进行解题和不标号进行解题,可以提示学生先把这两种方法下的基本事件全部列出来,然后验证是否为古典概型。

(3)学生思考、讨论,列出两种方法下的基本事件,发现基本事件的总数不相等。

(4)教师通过模拟和分析两种方式中每个基本事件的等可能性,引导学生发现在第二种情况下每个基本事件不是等可能的,不是古典概型,因此不能用古典概型计算公式。

(5)师生共同总结解题步骤:

① 列举基本事件(验证基本事件是否有限,所有基本事件出现是否等可能);

② 列举目标事件所包含的基本事件;

③ 利用公式进行计算。

问题4:把例3和例1作比较,你能找出它们的联系和区别吗?

设计意图:通过比较,培养学生从不同的角度观察问题的能力,辩证地看待问题,加深对古典概型的理解。

师生活动:学生观察、比较、交流,教师总结:

例3中列举基本事件时考试是有序的、数字可以重复出现的,而例1是无序的、字母不可能重复出现的。例1也可以从有序的角度考虑:如我们也可以把所有的基本事件列为:(a,b),(a,c),(a,d),(b,a),(b,c),(b,d),(c,a),(c,b),(c,d),(d,a),(d,b),(d,c)

(四)循序渐进,例题延伸

问题1:假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2…,9十个数字中的任意一个。假设一个人完全忘记了密码,问他到自动提款机上随机式一次密码就能取到钱的概率是多少?

设计意图:选用具有现实意义的例题,激发学生的学习兴趣,培养其运用数学知识解决实际问题的能力。

师生活动:教师要引导学生注意题目的前提是“完全忘记了自己的储蓄卡密码”,在这种前提下才是古典概型问题,才能用古典概型公式解决问题。

学生思考、讨论、交流,在教师的指导下各自解题。

教师对学生的结果进行评价和完善,同时让学生理解为什么自动取款机不能无限制地让用户试密码,用身份证上的号码作密码不安全等现象。

问题2:某种饮料每箱装6听,如果其中有2听不合格,问质检人员随机抽出2听,检测出不合格产品的概率有多大?

设计意图:激发学生学习兴趣,进一步培养学生解题能力。

师生活动:学生独立练习,必要时可以讨论。教师个别指导。题目中关键是基本事件的表示方法,教师可给出相应的引导与提示。

(五)变式练习,巩固提高

问题1:一次投掷两颗骰子,求出现的点数之和为奇数的概率。

设计意图:为了体现了知识的递近与螺旋式上升。在教材安排练习的基础上,设计了一题多解的变式练习,有三种解法,体现了数学的多变性和灵活性。更为重要的是万变不离其中,只有掌握了古典概型的特征,才能体会这道题的意境。

师生活动:教师引导学生从不同的角度解决问题。

学生用列举法给出解法1:设A表示“出现点数之和为奇数”,用(i,j)记“第一颗骰子出现i点,第二颗骰子出现j点”,i= 1,2,3,4,5,6。显然出现的36个基本事件组成等概样本空间,其中A包含的基本事件个数为18个,故

教师给出解法2:若把一次试验的所有可能结果取为:(奇,奇),(奇,偶),(偶,奇),(偶,偶),则它们也组成等概样本空间。基本事件总数为4,A包含的基本事件个数 为2。

学生找出解法3:若把一次试验的所有可能结果取为:{点数和为奇数},{点数和为偶数},也组成等概样本空间,基本事件总数为2,A所含基本事件数为1。

(六)总结概括,自我评价

问题1:这节课你有什么收获?学到了哪些知识和方法?

设计意图:使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。

师生活动:学生小结归纳,不足的地方老师补充说明。

1.我们将具有

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等。(等可能性)

这样两个特点的概率模型称为古典概率概型,简称古典概型。

2.古典概型计算任何事件的概率计算公式。

3.求某个随机事件A包含的基本事件的个数和实验中基本事件的总数的常用方法是列举法(画树状图和列表),应做到不重不漏。

六.目标检测设计

第1题:在夏令营的7名成员中,有3名同学已去过北京。从这7名同学中任选2名同学,选出的这2名同学恰是已去过北京的概率是多少?

设计意图:首先判断是否古典概型,然后用列举法列出基本事件的总数及随机事件所含基本事件的个数,利用公式计算概率。

第2题:下面有三个游戏规则,袋子中分别装有球,从袋中无放回地取球,分别计算甲获胜的概率,哪个游戏是公平的?

游戏1

游戏2

游戏3

1个红球和1个白球

2个红球和2个白球

3个红球和1个白球

取1个球

取1个球,再取1个球

取1个球,再取1个球

取出的球是红球→甲胜

取出的两个球同色→甲胜

取出的两个球同色→甲胜

取出的球是白球→乙胜

取出的两个球不同色→乙胜

取出的两个球不同色→乙胜

设计意图:通过这些学生熟悉的、有趣的随机环境,比较容易使学生把学的新知识与自己原有的经验和直觉联系起来。

第3题:某城市的电话号码是8位数,如果从电话号码中任指一个电话号码,求:

(1) 头两位数码都是8的概率;

(2) 头两位数码至少有一个不超过8的概率;

(3) 头两位数码不相同的概率。

设计意图:从实际问题出发,结合古典概型和概率的性质,先计算事件的对立事件发生的概率,加强前后知识的联系,培养学生的对知识的综合运用能力。

七.教学设计说明:

1.根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

2.学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

3.以问题为纽带,化结果为过程的教学理念始终贯穿了整个教学过程,因为我们不仅希望学生掌握知识,更希望学生掌握分析知识、选择知识、更新知识的能力。简单的说智慧比知识更重要,知识是启发智慧的手段,过程是结果的动态延伸,教学中能够把结果变成过程,才能把知识变成智慧!

高三数学教案:《古典概型复习》教学设计


本文题目:高三数学复习教案:古典概型复习教案

【高考要求】古典概型(B); 互斥事件及其发生的概率(A)

【学习目标】:1、了解概率的频率定义,知道随机事件的发生是随机性与规律性的统一;

2、 理解古典概型的特点,会解较简单的古典概型问题;

3、 了解互斥事件与对立事件的概率公式,并能运用于简单的概率计算.

【知识复习与自学质疑】

1、古典概型是一种理想化的概率模型,假设试验的结果数具有 性和 性.解古典概型问题关键是判断和计数,要掌握简单的记数方法(主要是列举法).借助于互斥、对立关系将事件分解或转化是很重要的方法.

2、(A)在10件同类产品中,其中8件为正品,2件为次品。从中任意抽出3件,则下列4个事件:①3件都是正品;②至少有一件是正品;③3件都是次品;④至少有一件是次品.是必然事件的是 .

3、(A)从5个红球,1个黄球中随机取出2个,所取出的两个球颜色不同的概率是 。

4、(A)同时抛两个各面上分别标有1、2、3、4、5、6均匀的正方体玩具一次,“向上的两个数字之和为3”的概率是 .

5、(A)某人射击5枪,命中3枪,三枪中恰好有2枪连中的概率是 .

6、(B)若实数 ,则曲线 表示焦点在y轴上的双曲线的概率是 .

【例题精讲】

1、(A)甲、乙两人参加知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少?

(2)甲、乙两人中至少有一人抽到选择题的概率是多少?

2、(B)黄种人群中各种血型的人所占的比例如下表所示:

血型 A B AB O

该血型的人所占的比(%) 28 29 8 35

已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问:

(1) 任找一个人,其血可以输给小明的概率是多少?

(2) 任找一个人,其血不能输给小明的概率是多少?

3、(B)将两粒骰子投掷两次,求:(1)向上的点数之和是8的概率;(2)向上的点数之和不小于8 的概率;(3)向上的点数之和不超过10的概率.

4、(B)将一个各面上均涂有颜色的正方体锯成 (n个同样大小的正方体,从这些小正方体中任取一个,求下列事件的概率:(1)三面涂有颜色;(2)恰有两面涂有颜色;

(3)恰有一面涂有颜色;(4)至少有一面涂有颜色.

【矫正反馈】

1、(A)一个三位数的密码锁,每位上的数字都可在0到10这十个数字中任选,某人忘记了密码最后一个号码,开锁时在对好前两位号码后,随意拨动最后一个数字恰好能开锁的概率是 .

2、(A)第1、2、5、7路公共汽车都要停靠的一个车站,有一位乘客等候着1路或5路汽车,假定各路汽车首先到站的可能性相等,那么首先到站的正好是这位乘客所要乘的的车的概率是 .

3、(A)某射击运动员在打靶中,连续射击3次,事件“至少有两次中靶”的对立事件是 .

4、(B)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下出现乙级品和丙级品的概率分别为3%和1%,求抽验一只是正品(甲级)的概率 .

5、(B)袋中装有4只白球和2只黑球,从中先后摸出2只求(不放回).求:(1)第一次摸出黑球的概率;(2)第二次摸出黑球的概率;(3)第一次及第二次都摸出黑球的概率.

【迁移应用】

1、(A)将一粒骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率是 .

2、(A)从鱼塘中打一网鱼,共M条,做上标记后放回池塘中,过了几天,又打上来一网鱼,共N条,其中K条有标记,估计池塘中鱼的条数为 .

3、(A)从分别写有A,B,C,D,E的5张卡片中,任取2张,这两张上的字母恰好按字母顺序相邻的概率是 .

4、(B)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率是 .

5、(B)将甲、乙两粒骰子先后各抛一次,a,b分别表示抛掷甲、乙两粒骰子所出现的点数.

(1)若点P(a,b)落在不等式组 表示的平面区域记为A,求事件A的概率;

(2)求P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率最大,求m的值.

古典概型


古典概型复习课
基础训练
1.将1枚硬币抛2次,恰好出现1次正面的概率是
2.任意说出星期一到星期日中的两天(不重复),其中恰有一天是星期六的概率是
3.某银行储蓄卡上的密码是一种4位数字号码,每位上的数字可在0,1,2,…,9这10个数字中选取,某人未记住密码的最后一位数字,若按下密码的最后一位数字,则正好按对密码的概率是
4.连续3次抛掷一枚硬币,则正、反面交替出现的概率是
5.在坐标平面内,点在x轴上方的概率是
典型例题
例1掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。
分析:掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型。
解:这个试验的基本事件共有6个,即(出现1点)、(出现2点)……、(出现6点)
所以基本事件数n=6,
事件A=(掷得奇数点)=(出现1点,出现3点,出现5点),
其包含的基本事件数m=3
所以,P(A)====0.5
小结:利用古典概型的计算公式时应注意两点:
(1)所有的基本事件必须是互斥的;
(2)m为事件A所包含的基本事件数,求m值时,要做到不重不漏。
例2从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。
解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产用A表示“取出的两种中,恰好有一件次品”这一事件,则
A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]
事件A由4个基本事件组成,因而,P(A)==
例3现有一批产品共有10件,其中8件为正品,2件为次品:
(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;
(2)如果从中一次取3件,求3件都是正品的概率.
分析:(1)为返回抽样;(2)为不返回抽样.
解:(1)有放回地抽取3次,按抽取顺序(x,y,z)记录结果,则x,y,z都有10种可能,所以试验结果有10×10×10=103种;设事件A为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此,P(A)==0.512.
(2)解法1:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z),则x有10种可能,y有9种可能,z有8种可能,所以试验的所有结果为10×9×8=720种.设事件B为“3件都是正品”,则事件B包含的基本事件总数为8×7×6=336,所以P(B)=≈0.467.
解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则x有10种可能,y有9种可能,z有8种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B包含的基本事件个数为8×7×6÷6=56,因此P(B)=≈0.467.
小结:关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.
课堂精炼
1.从一副扑克牌(54张)中抽一张牌,抽到牌“K”的概率是。
答案:
2.将一枚硬币抛两次,恰好出现一次正面的概率是。
答案:
3.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这2张纸片数字之积为偶数的概率为。
答案:4.同时掷两枚骰子,所得点数之和为5的概率为;
点数之和大于9的概率为。
答案:;
5.一个口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,从中摸出2个球,则1个是白球,1个是黑球的概率是。
答案:
6.先后抛3枚均匀的硬币,至少出现一次正面的概率为。
答案:
7.一个正方体,它的表面涂满了红色,在它的每个面上切两刀,可得27个小正方体,从中任取一个它恰有一个面涂有红色的概率是。
答案:
8.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。
答案:
9.口袋里装有两个白球和两个黑球,这四个球除颜色外完全相同,四个人按顺序依次从中摸出一球,试求“第二个人摸到白球”的概率。
答案:把四人依次编号为甲、乙、丙、丁,把两白球编上序号1、2,把两黑球也编上序号1、2,于是四个人按顺序依次从袋内摸出一个球的所有可能结果,可用树形图直观地表示出来如下:
从上面的树形图可以看出,试验的所有可能结果数为24,第二人摸到白球的结果有12种,记“第二个人摸到白球”为事件A,则。
10.袋中有红、白色球各一个,每次任取一个,有放回地抽三次,写出所有的基本事件,并计算下列事件的概率:(1)三次颜色恰有两次同色;(2)三次颜色全相同;
(3)三次抽取的球中红色球出现的次数多于白色球出现的次数。
答案:(红红红)(红红白)(红白红)(白红红)(红白白)(白红白)(白白红)(白白白)
(1)(2)(3)
11.已知集合,;
(1)求为一次函数的概率;(2)求为二次函数的概率。
答案:(1)(2)
12.连续掷两次骰子,以先后得到的点数为点的坐标,设圆的方程为;
(1)求点在圆上的概率;(2)求点在圆外的概率。
答案:(1)(2)
13.设有一批产品共100件,现从中依次随机取2件进行检验,得出这两件产品均为次品的概率不超过1%,问这批产品中次品最多有多少件?
答案:10件

第2节古典概型教学案



[核心必知]
1.预习教材,问题导入
根据以下提纲,预习教材P125~P130,回答下列问题.
教材中的两个试验:(1)掷一枚质地均匀的硬币的试验;
(2)掷一枚质地均匀的骰子的试验.
(1)试验(1)中的基本事件是什么?试验(2)中的基本事件又是什么?
提示:试验(1)的基本事件有:“正面朝上”、“反面朝上”;试验(2)的基本事件有:“1点”、“2点”、“3点”、“4点”、“5点”、“6点”.
(2)基本事件有什么特点?
提示:①任何两个基本事件是互斥的;
②任何事件(除不可能事件)都可以表示成基本事件的和.
(3)古典概型的概率计算公式是什么?
提示:P(A)=A包含的基本事件的个数基本事件的总数.
2.归纳总结,核心必记
(1)基本事件
①定义:在一次试验中,所有可能出现的基本结果中不能再分的最简单的随机事件称为该次试验的基本事件.
②特点:一是任何两个基本事件是互斥的;二是任何事件(除不可能事件)都可以表示成基本事件的和.
(2)古典概型
①定义:如果一个概率模型满足:
(ⅰ)试验中所有可能出现的基本事件只有有限个;
(ⅱ)每个基本事件出现的可能性相等.
那么这样的概率模型称为古典概率模型,简称古典概型.
②计算公式:对于古典概型,任何事件的概率为P(A)=A包含的基本事件的个数基本事件的总数.
[问题思考]
(1)若一次试验的结果所包含的基本事件的个数是有限个,则该试验是古典概型吗?
提示:不一定是,还要看每个事件发生的可能性是否相同,若相同才是,否则不是.
(2)掷一枚不均匀的骰子,求出现点数为偶数点的概率,这个概率模型还是古典概型吗?
提示:不是.因为骰子不均匀,所以每个基本事件出现的可能性不相等,不满足特点(ⅱ).
(3)“在区间[0,10]上任取一个数,这个数恰为2的概率是多少?”这个概率模型属于古典概型吗?
提示:不是,因为在区间[0,_10]上任取一个数,其试验结果有无限个,故其基本事件有无限个,所以不是古典概型.
[课前反思]
通过以上预习,必须掌握的几个知识点:
(1)基本事件的定义:;
(2)基本事件的特点:;
(3)古典概型的定义:;
(4)古典概型的计算公式:.
掷一枚质地均匀的硬币两次,观察哪一面朝上.
[思考1]这个试验共有哪几种结果?基本事件总数有多少?事件A={恰有一次正面朝上}包含哪些试验结果?
名师指津:共有正正、正反、反正、反反四种结果.基本事件有4个.事件A包含的结果有:正反、反正.
[思考2]基本事件有什么特点?
名师指津:基本事件具有以下特点:(1)不可能再分为更小的随机事件;(2)两个基本事件不可能同时发生.
?讲一讲
1.先后抛掷3枚均匀的壹分,贰分,伍分硬币.
(1)求试验的基本事件数;
(2)求出现“2枚正面,1枚反面”的基本事件数.
[尝试解答](1)因为抛掷壹分,贰分,伍分硬币时,各自都会出现正面和反面2种情况,所以一共可能出现的结果有8种.可列表为:
硬币种类试验结果(共8种)
壹分正面正面正面正面反面反面反面反面
贰分正面反面正面反面正面反面正面反面
伍分正面反面反面正面正面反面反面正面
所以试验基本事件数为8.
(2)从(1)中表格知,出现“2枚正面,1枚反面”的结果有3种,即(正,正,反),(正,反,正),(反,正,正).所以“2枚正面,1枚反面”的基本事件数为3.
基本事件的两个探求方法
(1)列表法:将基本事件用表格的形式表示出来,通过表格可以清楚地弄清基本事件的总数,以及要求的事件所包含的基本事件数,列表法适合于较简单的试验的题目,基本事件较多的试验不适合用列表法.
(2)树状图法:树状图法是用树状的图形把基本事件列举出来的一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段.树状图法适合于较复杂的试验的题目.
?练一练
1.从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?
解:所求的基本事件共有6个:
即A={a,b},B={a,c},C={a,d},D={b,c},
E={b,d},F={c,d}.
观察图形,思考下列问题
[思考1]某射击运动员随机地向一靶心进行射击,试验的结果有:命中10环,命中9环,…,命中1环和命中0环(即不命中),你认为这是古典概型吗?
名师指津:试验的所有结果只有11个,但是命中10环,命中9环,…,命中1环和命中0环(即不命中)的出现不是等可能的,这个试验不是古典概型.
[思考2]若一个试验是古典概型,它需要具备什么条件?
名师指津:若一个试验是古典概型,需具备以下两点:
(1)有限性:首先判断试验的基本事件是否是有限个,若基本事件无限个,即不可数,则试验不是古典概型.
(2)等可能性:其次考查基本事件的发生是不是等可能的,若基本事件发生的可能性不一样,则试验不是古典概型.
?讲一讲
2.某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:
一年级二年级三年级
男同学ABC
女同学XYZ
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).
(1)用表中字母列举出所有可能的结果;
(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.
[尝试解答](1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.
(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.
因此,事件M发生的概率P(M)=615=25.
(1)古典概型求法步骤
①确定等可能基本事件总数n;
②确定所求事件包含基本事件数m;
③P(A)=mn.
(2)使用古典概型概率公式应注意
①首先确定是否为古典概型;
②所求事件是什么,包含的基本事件有哪些.
?练一练
2.一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球.求:
(1)基本事件总数;
(2)事件“摸出2个黑球”包含多少个基本事件?
(3)摸出2个黑球的概率是多少?
解:由于4个球的大小相等,摸出每个球的可能性是均等的,所以是古典概型.
(1)将黑球编号为黑1,黑2,黑3,从装有4个球的口袋内摸出2个球,所有基本事件构成集合Ω={(黑1,黑2),(黑1,黑3),(黑1,白),(黑2,黑3),(黑2,白),(黑3,白)},其中共有6个基本事件.
(2)事件“摸出2个黑球”={(黑1,黑2),(黑2,黑3),(黑1,黑3)},共3个基本事件.
(3)基本事件总数n=6,事件“摸出两个黑球”包含的基本事件数m=3,故P=12.
?讲一讲
3.袋子中装有除颜色外其他均相同的编号为a,b的2个黑球和编号为c,d,e的3个红球,从中任意摸出2个球.
(1)写出所有不同的结果;
(2)求恰好摸出1个黑球和1个红球的概率;
(3)求至少摸出1个黑球的概率.
[思路点拨](1)可以利用初中学过的树状图写出;(2)找出恰好摸出1个黑球和1个红球的基本事件,利用古典概型的概率计算公式求出;(3)找出至少摸出1个黑球的基本事件,利用古典概型的概率计算公式求出.
[尝试解答](1)用树状图表示所有的结果为
所以所有不同的结果是
ab,ac,ad,ae,bc,bd,be,cd,ce,de.
(2)记“恰好摸出1个黑球和1个红球”为事件A,
则事件A包含的基本事件为ac,ad,ae,bc,bd,be,共6个基本事件,
所以P(A)=610=0.6,
即恰好摸出1个黑球和1个红球的概率为0.6.
(3)记“至少摸出1个黑球”为事件B,
则事件B包含的基本事件为ab,ac,ad,ae,bc,bd,be,共7个基本事件,
所以P(B)=710=0.7,
即至少摸出1个黑球的概率为0.7.
利用事件间的关系求概率
在求解较复杂事件的概率时,可将其分解为几个互斥的简单事件的和事件,由公式P(A1∪A2∪A3∪…∪An)=P(A1)+P(A2)+…+P(An)求得,或采用正难则反的原则,转化为求其对立事件,再用公式P(A)=1-P(A)(A为A的对立事件)求得.
?练一练
3.先后掷两枚大小相同的骰子.
(1)求点数之和出现7点的概率;
(2)求出现两个4点的概率;
(3)求点数之和能被3整除的概率.
解:如图所示,从图中容易看出基本事件与所描点一一对应,共36个.
(1)记“点数之和出现7点”为事件A,从图中可以看出,事件A包含的基本事件共6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6).故P(A)=636=16.
(2)记“出现两个4点”为事件B,从图中可以看出,事件B包含的基本事件只有1个,即(4,4).故P(B)=136.
(3)记“点数之和能被3整除”为事件C,则事件C包含的基本事件共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).
故P(C)=1236=13.
——————————————[课堂归纳感悟提升]———————————————
1.本节课的重点是了解基本事件的特点,能写出一次试验所出现的基本事件,会用列举法求古典概型的概率.难点是理解古典概型及其概率计算公式,会判断古典概型.
2.本节课要掌握以下几类问题:
(1)基本事件的两种探求方法,见讲1.
(2)求古典概型的步骤及使用古典概型概率公式的注意点,见讲2.
(3)利用事件的关系结合古典概型求概率,见讲3.
3.本节课的易错点有两个:
(1)列举基本事件时易漏掉或重复,如讲1;
(2)判断一个事件是否是古典概型易出错.
课下能力提升(十八)
[学业水平达标练]
题组1基本事件的列举问题
1.同时投掷两颗大小完全相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的基本事件数是()
A.3B.4C.5D.6
解析:选D事件A包含的基本事件有6个:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).故选D.
2.做试验“从0,1,2这3个数字中,不放回地取两次,每次取一个,构成有序数对(x,y),x为第1次取到的数字,y为第2次取到的数字”.
①写出这个试验的基本事件;
②求出这个试验的基本事件的总数;
③写出“第1次取出的数字是2”这一事件包含的基本事件.
解:①这个试验的基本事件为(0,1),(0,2),(1,0),(1,2),(2,0),(2,1).
②基本事件的总数为6.
③“第1次取出的数字是2”包含以下2个基本事件:(2,0),(2,1).
题组2简单古典概型的计算
3.下列关于古典概型的说法中正确的是()
①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件的总数为n,随机事件A若包含k个基本事件,则P(A)=kn.
A.②④B.①③④C.①④D.③④
解析:选B根据古典概型的特征与公式进行判断,①③④正确,②不正确,故选B.
4.下列试验中,属于古典概型的是()
A.种下一粒种子,观察它是否发芽
B.从规格直径为250mm±0.6mm的一批合格产品中任意抽一根,测量其直径d
C.抛掷一枚硬币,观察其出现正面或反面
D.某人射击中靶或不中靶
解析:选C依据古典概型的特点判断,只有C项满足:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相同.
5.设a是掷一枚骰子得到的点数,则方程x2+ax+2=0有两个不相等的实根的概率为()
A.23B.13C.12D.512
解析:选A基本事件总数为6,若方程有两个不相等的实根则a2-8>0,满足上述条件的a为3,4,5,6,故P=46=23.
6.一枚硬币连掷3次,有且仅有2次出现正面向上的概率为()
A.38B.23C.13D.14
解析:选A所有的基本事件是(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反),共有8个,仅有2次出现正面向上的有:(正,正,反),(正,反,正),(反,正,正),共3个.则所求概率为38.
7.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:
(1)A:取出的两球都是白球;
(2)B:取出的两球1个是白球,另1个是红球.
解:设4个白球的编号为1,2,3,4;2个红球的编号为5,6.从袋中的6个小球中任取2个球的取法有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.
(1)从袋中的6个球中任取两个,所取的两球全是白球的取法共有6种,为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).
∴取出的两个球全是白球的概率为P(A)=615=25.
(2)从袋中的6个球中任取两个,其中一个是红球,而另一个是白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8种.
∴取出的两个球一个是白球,一个是红球的概率为P(B)=815.
题组3较复杂的古典概型的计算
8.某停车场临时停车按时段收费,收费标准如下:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时按1小时计算).现有甲、乙两人在该地停车,两人停车都不超过4小时.
(1)若甲停车1小时以上且不超过2小时的概率为13,停车费多于14元的概率为512,求甲的停车费为6元的概率;
(2)若甲、乙两人每人停车的时长在每个时段的可能性相同,求甲、乙两人停车费之和为28元的概率.
解:(1)记“一次停车不超过1小时”为事件A,“一次停车1到2小时”为事件B,“一次停车2到3小时”为事件C,“一次停车3到4小时”为事件D.
由已知得P(B)=13,P(C+D)=512.
又事件A,B,C,D互斥,所以P(A)=1-13-512=14.
所以甲的停车费为6元的概率为14.
(2)易知甲、乙停车时间的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个;
而“停车费之和为28元”的事件有(1,3),(2,2),(3,1),共3个,
所以所求概率为316.
[能力提升综合练]
1.下列是古典概型的是()
A.任意掷两枚骰子,所得点数之和作为基本事件时
B.求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时
C.从甲地到乙地共n条路线,求某人正好选中最短路线的概率
D.抛掷一枚均匀硬币首次出现正面为止
解析:选CA项中由于点数的和出现的可能性不相等,故A不是;B项中的基本事件是无限的,故B不是;C项满足古典概型的有限性和等可能性,故C是;D项中基本事件可能会是无限个,故D不是.
2.(2015广东高考)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()
A.0.4B.0.6
C.0.8D.1
解析:选B5件产品中有2件次品,记为a,b,有3件合格品,记为c,d,e,从这5件产品中任取2件,有10种结果,分别是(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),恰有一件次品,有6种结果,分别是(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),设事件A={恰有一件次品},则P(A)=610=0.6,故选B.
3.(2015新课标全国卷Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()
A.310B.15C.110D.120
解析:选C从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.故选C.
4.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()
A.49B.13C.29D.19
解析:选D分类讨论法求解.
个位数与十位数之和为奇数,则个位数与十位数中必一个奇数一个偶数,所以可以分两类.
(1)当个位为奇数时,有5×4=20个符合条件的两位数.
(2)当个位为偶数时,有5×5=25个符合条件的两位数.
因此共有20+25=45个符合条件的两位数,其中个位数为0的两位数有5个,所以所求概率为P=545=19.
5.(2016石家庄高一检测)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为________.
解析:该树枝的树梢有6处,有2处能找到食物,所以获得食物的概率为26=13.
答案:13
6.从三男三女共6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于________.
解析:用A,B,C表示三名男同学,用a,b,c表示三名女同学,则从6名同学中选出2人的所有选法为:AB,AC,Aa,Ab,Ac,BC,Ba,Bb,Bc,Ca,Cb,Cc,ab,ac,bc,2名都是女同学的选法为:ab,ac,bc,故所求的概率为315=15.
答案:15
7.(2015天津高考)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.
(1)求应从这三个协会中分别抽取的运动员的人数.
(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.
①用所给编号列出所有可能的结果;
②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.
解:(1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.
(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.
②编号为A5和A6的两名运动员中至少有1人被抽到的所有可能结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共9种.
因此,事件A发生的概率P(A)=915=35.
8.(2014山东高考)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区ABC
数量50150100
(1)求这6件样品中来自A,B,C各地区商品的数量;
(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.
解:(1)因为样本容量与总体中的个体数的比是650+150+100=150,
所以样本中包含三个地区的个体数量分别是:
50×150=1,150×150=3,100×150=2.
所以A,B,C三个地区的商品被选取的件数分别为1,3,2.
(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.
则从6件样品中抽取的这2件商品构成的所有基本事件为:
{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.
每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.
记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:
{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.
所以P(D)=415,即这2件商品来自相同地区的概率为415.