88教案网

你的位置: 教案 > 初中教案 > 导航 > 中考数学归纳猜想型问题复习导学案

小学数学复习教案

发表时间:2021-04-08

中考数学归纳猜想型问题复习导学案。

老师会对课本中的主要教学内容整理到教案课件中,大家应该要写教案课件了。我们要写好教案课件计划,才能在以后有序的工作!你们会写多少教案课件范文呢?急您所急,小编为朋友们了收集和编辑了“中考数学归纳猜想型问题复习导学案”,欢迎您参考,希望对您有所助益!

2012年中考复习二轮材料

归纳猜想型问题

一.专题诠释

归纳猜想型问题在中考中越来越被命题者所注重。这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时可以进行验证或者证明,依此体现出猜想的实际意义。

二.解题策略和解法精讲

归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。

由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的持续热点。

三.考点精讲

考点一:猜想数式规律

通常给定一些数字、代数式、等式或者不等式,然后猜想其中蕴含的规律。一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。

例1.(2011云南曲靖)将一列整式按某种规律排成x,﹣2x2,4x3,﹣8x4,16x5…则排在第六个位置的整式为.

【分析】符号的规律:n为奇数时,单项式为正号,n为偶数时,符号为负号;系数的绝对值的规律:第n个对应的系数的绝对值是2n﹣1.指数的规律:第n个对应的指数是n.

【解答】根据分析的规律,得:第六个位置的整式为:﹣26x6=﹣32x6.

故答案为:﹣32x6.

【评注】此题考查的知识点是单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.

例2.(2011山东济宁)观察下面的变形规律:

=1-;=-;=-;……

解答下面的问题:

(1)若n为正整数,请你猜想=;

(2)证明你猜想的结论;

(3)求和:+++…+.

【分析】(1)根据的定义规则,可知,,,.则有.

(2)观察数表可知,第1问中的恰是的具体形式,若将赋值于不同的行与列,我们不难发现.

【解答】(1)

(2)证明:-=-==

(3)原式=1-+-+-+…+-=

【评注】归纳猜想题,提供的信息是一种规律,但它隐含在题目中,有待挖掘和开发,一般只要注重观察数字(式)变化规律,经归纳便可猜想出结论.本题属于典型的开放性探究题,其中的分数形式、分母中相邻两数相差1,都给答案探究提供了蛛丝马迹。问题设置层次感较强,遵循了从特殊到一般的认识规律.从培养学生不完全归纳能力的角度看,不失为一道训练思维的好题.

考点二:猜想图形规律

根据一组相关图形的变化规律,从中总结通过图形的变化所反映的规律。其中,以图形为载体的数字规律最为常见。猜想这种规律,需要把图形中的有关数量关系列式表达出来,再对所列式进行对照,仿照猜想数式规律的方法得到最终结论。

例1.(2011重庆)下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为()

A、55B、42C、41D、29

【分析】规律的归纳:通过观察图形可以看到每转动4次后便可重合,即4次一个循环,10÷4=2…2,所以应和图②相同.

【解答】∵图②平行四边形有5个=1+2+2,

图③平行四边形有11个=1+2+3+2+3,

图④平行四边形有19=1+2+3+4+2+3+4,

∴图⑥的平行四边形的个数为1+2+3+4+5+6+2+3+4+5+6=41.

故选C.

【评注】本题是规律的归纳题,解决本题的关键是读懂题意,理清题归纳出规律,然后套用题目提供的对应关系解决问题,具有一定的区分度.根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.

例2.(2011浙江舟山)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()

A、2010B、2011C、2012D、2013

【分析】该纸链是5的倍数,中间截去的是剩下3+5n,从选项中数减3为5的倍数即得到答案.

【解答】由题意设被截去部分为5n+2+1=5n+3,从其选项中看,故选D.

【评注】本题考查了图形的变化规律,从整体是5个不同颜色环的整数倍数,截去部分去3后为5的倍数,从而得到答案.

考点三:猜想数量关系

数量关系的表现形式多种多样,这些关系不一定就是我们目前所学习的函数关系式。在猜想这种问题时,通常也是根据题目给出的关系式进行类比,仿照猜想数式规律的方法解答。

例1.(2011江西南昌,25,10分)某数学兴趣小组开展了一次活动,过程如下:

设∠BAC=(0°<<90°).现把小棒依次摆放在两射线AB,AC之间,并使小棒两端分别落在两射线上.

活动一:

如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在两端点处互相垂直,A1A2为第1根小棒.

数学思考:

(1)小棒能无限摆下去吗?答:.(填“能”或“不能”)

(2)设AA1=A1A2=A2A3=1.

①=度;

②若记小棒A2n-1A2n的长度为an(n为正整数,如A1A2=a1,A3A4=a2,),求此时a2,a3的值,并直接写出an(用含n的式子表示).

图甲

活动二:

如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1.

数学思考:

(3)若已经向右摆放了3根小棒,则=,=,=;(用含的式子表示)

(4)若只能摆放4根小棒,求的范围.

图乙

【分析】(1)显而易见,能。

(2)①22.5°

②方法一:

∵AA1=A1A2=A2A3=1,A1A2⊥A2A3,∴A1A3=,AA3=1+.

又∵A2A3⊥A3A4,∴A1A2∥A3A4.同理:A3A4∥A5A6,∴∠A=∠AA2A1=∠AA4A3=∠AA6A5,

∴AA3=A3A4,AA5=A5A6,∴a2=A3A4=AA3=1+,a3=AA3+A3A5=a2+A3A5.∵A3A5=a2,

∴a3=A5A6=AA5=a2+a2=(+1)2.

方法二:

∵AA1=A1A2=A2A3=1,A1A2⊥A2A3,∴A1A3=,AA3=1+.

又∵A2A3⊥A3A4,∴A1A2∥A3A4.同理:A3A4∥A5A6,∴∠A=∠AA2A1=∠AA4A3=∠AA6A5,

∴a2=A3A4=AA3=1+,又∵∠A2A3A4=∠A4A5A6=90°,∠A2A4A3=∠A4A6A5,∴△A2A3A4∽△A4A5A6,

∴,∴a3==(+1)2.

an=(+1)n-1.

(3)

(4)由题意得,∴15°<≤18°.

【解答】(1)能

(2)①22.5°

②an=(+1)n-1.

(3)

(4)由题意得,∴15°<≤18°.

【评注】这是一道典型的归纳猜想型问题,以物理学中反射的知识作为命题载体,而三角形外角等于不相邻的两个内角和,是解决问题的主干数学知识。

例2.(2011浙江衢州)是一张等腰直角三角形纸板,.

要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积更大?请说明理由.

图1中甲种剪法称为第1次剪取,记所得的正方形面积为;按照甲种剪法,在余下的中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为(如图2),则;再在余下的四个三角形中,用同样的方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形的面积和为(如图3);继续操作下去…则第10次剪取时,.

求第10次剪取后,余下的所有小三角形的面积和.

【分析】解决问题的关键看内接正方形的一边与三角形重合的边落在三角形的哪条边上,通过对例题的分析,直角三角形的内接正方形有两种,比较两者的大小,可知,直角边上的内接正方形的边长比斜边上的内接正方形的边长大。

【解答】(1)解法1:如图甲,由题意得.如图乙,设,则由题意,得

甲种剪法所得的正方形的面积更大

说明:图甲可另解为:由题意得点D、E、F分别为的中点,

解法2:如图甲,由题意得

如图乙,设

甲种剪法所得的正方形的面积更大

(2)

(3)

(3)解法1:探索规律可知:‘

剩余三角形的面积和为:

解法2:由题意可知,

第一次剪取后剩余三角形面积和为

第二次剪取后剩余三角形面积和为

第三次剪取后剩余三角形面积和为

……

第十次剪取后剩余三角形面积和为

【评注】类比思想是数学学习中不可缺少的一种数学方法,它可以使一些数学问题简单化,也可以使我们的思维更加广阔。数学思维呈现形式是隐蔽的,难以从教材中获取,这就要求在教学过程中,有目的地进行思维训练,通过思维类比,不断在解决问题中深化引导,学生的数学思维能力就会得到相应的提高。

考点四:猜想变化情况

随着数字或图形的变化,它原先的一些性质有的不会改变,有的则发生了变化,而且这种变化是有一定规律的。比如,在几何图形按特定要求变化后,只要本质不变,通常的规律是“位置关系不改变,乘除乘方不改变,减变加法加变减,正号负号要互换”。这种规律可以作为猜想的一个参考依据。

例1.(2010河北)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是

A.6B.5C.3D.2

【分析】不妨把立体图形用平面的形式表现出来。如右图所示。

前三次变换过程为下图所示:

可以发现,三次变换可还原成初始状态。十次意味着三轮还原后又变换了一次,所以状态为上图所示,骰子朝上一面的点数是5。

【解答】B。

【评注】历年以“骰子”形式出现的中考题不在少数。本题以考查学生空间想象能力为出发点,将空间转化融入到正方体的旋转中。正方体表面展开图识别对面本不难,但这样一来难度陡然上升。三次变换循环的规律也要煞费周折。有点动手操作题的味道。题目呈现方式灵活,考查形式新颖,使日常熟悉的东西平中见奇。要求考生有很强的空间感,给平时靠死记硬背得分的同学一个下马威,也给教学中不重视动手探究的老师敲响了警钟。

例2.(2011湖南邵阳)数学课堂上,徐老师出示了一道试题:

如图(十)所示,在正三角形ABC中,M是BC边(不含端点B,C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点,若∠AMN=60°,求证:AM=MN。

(1)经过思考,小明展示了一种正确的证明过程,请你将证明过程补充完整。

证明:在AB上截取EA=MC,连结EM,得△AEM。

∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,

∴∠1=∠2.

又∵CN、平分∠ACP,∴∠4=∠ACP=60°。

∴∠MCN=∠3+∠4=120°。………………①

又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM。

∴△BEM为等边三角形,∴∠6=60°。

∴∠5=10°-∠6=120°。………………②

由①②得∠MCN=∠5.

在△AEM和△MCN中,

∵__________,____________,___________,

∴△AEM≌△MCN(ASA)。

∴AM=MN.

(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1是否还成立?(直接给出答案,不需要证明)

(3)若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn=______°时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证明)

【分析】证明线段相等,三角形全等是一种重要的方法。根据题目条件,结合图形,对应边角还是不难找的。关键是到正方形、正多边形,哪些条件变了,哪些没变。

【解答】(1)∠5=∠MCN,AE=MC,∠2=∠1;

(2)结论成立;

(3)。

【评注】三角形全等的判定是初中数学中的重点知识,第一问明显考查“角边角”方法的条件寻找。而从三角形到正方形的变化,抓住不变的东西,透视问题的本质,也不难得到正确答案。再到正多边形,是一个质的飞跃。在这道题中,先探讨简单情景下存在的某个结论,然后进一步推广到一般情况下,原来结论是否成立,本题题型新颖是个不可多得的好题,有利于培养学生的思维能力,难度不算大,具有一定的区分度.

四.真题演练

1.(2011四川成都)设,,,…,

设,则S=_________(用含n的代数式表示,其中n为正整数).

2.(2011内蒙古乌兰察布)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n个图形有个小圆.(用含n的代数式表示)

3.(2011河北)如图9,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.

如:小宇在编号为3的顶点时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.

若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是____________.

4.(2010四川内江)阅读理解:

我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1)、Q(x2,y2)的对称中心的坐标为(x1+x22,y1+y22).

观察应用:

(1)如图,在平面直角坐标系中,若点P1(0,-1)、P2(2,3)的对称中心是点A,则点A的坐标为;

(2)另取两点B(-1.6,2.1)、C(-1,0).有一电子青蛙从点P1处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P1关于点A的对称点P2处,接着跳到点P2关于点B的对称点P3处,第三次再跳到点P3关于点C的对称点P4处,第四次再跳到点P4关于点A的对称点P5处,….则P3、P8的坐标分别为,;

拓展延伸:

(3)求出点P2012的坐标,并直接写出在x轴上与点P2012、点C构成等腰三角形的点的坐标.

答案:

1..

==

=

∴S=+++…+.

接下去利用拆项法即可求和.

2.或

3.根据“移位”的特点,然后根据例子寻找规律,从而得出结论.

∵小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”,

∴3→4→5→1→2五个顶点五次移位为一个循环返回顶点3,

同理可得:小宇从编号为2的顶点开始,第10次“移位”,即连续循环两次,故仍回到顶点3.

故答案为:3.

4.设A、P3、P4、…、Pn点的坐标依次为(x,y)、(x3,y3)、(x4,y4)、…、(xn,yn)(n≥3,且为正整数).

(1)P1(0,-1)、P2(2,3),

∴x=0+22=1,y=-1+32=1,

∴A(1,1)

(2)∵点P3与P2关于点B成中心对称,且B(-1.6,2.1),

∴2+x32=-1.6,3+y32=2.1,

解得x3=-5.2,y3=1.2,

∴P3(-5.2,1.2).

∵点P4与P3关于点C成中心对称,且C(-1,0),

∴-5.2+x42=-1,1.2+y32=0,

解得x4=3.2,y4=-1.2,

∴P4(3.2,-1.2).

同理可得P5(-1.2,3.2)→P6(-2,1)→P7(0,-1)→P8(2,3).

(3)∵P1(0,-1)→P2(2,3)→P3(-5.2,1.2).→P4(3.2,-1.2)→P5(-1.2,3.2)→P6(-2,1)→P7(0,-1)→P8(2,3)…

∴P7的坐标和P1的坐标相同,P8的坐标和P2的坐标相同,即坐标以6为周期循环,

∵2012÷6=335……2,

∴P2012的坐标与P2的坐标相同,为P2012(2,3);

在x轴上与点P2012、点C构成等腰三角形的点的坐标为

(-32-1,0),(2,0),(32-1,0),(5,0)

第二部分练习部分

1.(2011湖南常德)先找规律,再填数:

2.(2011四川内江)同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+…+n2.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道0×1+1×2+2×3+…+(n—1)×n=n(n+1)(n—1)时,我们可以这样做:

(1)观察并猜想:

12+22=(1+0)×1+(1+1)×2=1+0×1+2+1×2=(1+2)+(0×1+1×2)

12+22+32=(1+0)×1+(1+1)×2+(1+2)×3

=1+0×1+2+1×2+3+2×3

=(1+2+3)+(0×1+1×2+2×3)

12+22+32+42=(1+0)×1+(1+1)×2+(1+2)×3+

=1+0×1+2+1×2+3+2×3+

=(1+2+3+4)+()

……

(2)归纳结论:

12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…+n

=1+0×1+2+1×2+3+2×3+…+n+(n一1)×n

=()+

=+

(3)实践应用:

通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是.

3.(2011广东肇庆)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第(是大于0的整数)个图形需要黑色棋子的个数是.

4.(2011广东东莞)如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和△1D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2F2,如图(3)中阴影部分;如此下去…,则正六角星形AnFnBnDnCnEnFn的面积为.

5.(2011广东汕头)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.

(1)表中第8行的最后一个数是,它是自然数的平方,第8行共有个数;

(2)用含n的代数式表示:第n行的第一个数是,最后一个数是,第n行共有个数;

(3)求第n行各数之和.

6.(2011四川凉山)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例。如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律。例如,在三角形中第三行的三个数1,2,1,恰好对应展开式中的系数;第四行的四个数1,3,3,1,恰好对应着展开式中的系数等等。

(1)根据上面的规律,写出的展开式。

(2)利用上面的规律计算:

7.(2011江苏南通)如图,三个半圆依次相外切,它们的圆心都在x轴上,并与直线y=33x相切.设三个半圆的半径依次为r1、r2、r3,则当r1=1时,r3=.

8.(2010年湖北恩施)(1)计算:如图10①,直径为的三等圆⊙O、⊙O、⊙O两两外切,切点分别为A、B、C,求OA的长(用含的代数式表示).

(2)探索:若干个直径为的圆圈分别按如图10②所示的方案一和如图10③所示的方案二的方式排放,探索并求出这两种方案中层圆圈的高度和(用含、的代数式表示).

(3)应用:现有长方体集装箱,其内空长为5米,宽为3.1米,高为3.1米.用这样的集装箱装运长为5米,底面直径(横截面的外圆直径)为0.1米的圆柱形钢管,你认为采用(2)中的哪种方案在该集装箱中装运钢管数最多?并求出一个这样的集装箱最多能装运多少根钢管?(≈1.73)

答案:

1.

2.(1+3)×4

4+3×4

0×1+1×2+2×3+3×4

1+2+3+…+n

0×1+1×2+2×3++…+(n-1)×n

n(n+1)(n—1)

n(n+1)(2n+1)

3.

4.

5.(1)64,8,15;

(2),,;

(3)第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×7-13;类似的,第n行各数之和等于=.

6.⑴

⑵原式=

7.设直线y=33x与三个半圆分别切于A,

B,C,作AEX轴于E,则在RtAEO1中,易得∠AOE=∠EAO1=300,由r1=1得EO=,

AE=,OE=,OO1=2。则。同理,。

8.(1)∵⊙O、⊙O、⊙O两两外切,

∴OO=OO=OO=a

又∵OA=OA

∴OA⊥OO

∴OA=

=

3.方案二装运钢管最多.即:按图10③的方式排放钢管,放置根数最多.

根据题意,第一层排放31根,第二层排放30根,

设钢管的放置层数为n,可得

解得

∵为正整数∴=35

钢管放置的最多根数为:31×18+30×17=1068(根)

【答案】

1.(1)

=1260

2.根据如图所示的运算程序,分情况列出算式,当x为偶数时,结果为;当x为奇数时,结果为,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,第三次输出的结果为6,第四次输出的结果为3,第五次输出的结果为3,以后每次输出的结果都是3.所以选择B。

3.图案是一圈一圈的。可以根据每圈中棋子的个数得出规律。第1个图案需要7=1+6枚棋子,第2个图案需要19=1+6+12枚棋子,第3个图案需要37=1+6+12+18枚棋子,由此规律可得第6个图案需要1+6+12+…+3×(6+1)枚棋子,第n个图案需要1+6+12+…+3×(n+1)=1+3×=枚棋子。所以,摆第6个图案需要127枚棋子,摆第n个图案需要枚棋子.

4.正△A1B1C1的面积,第二个正三角形的面积是前一个正三角形面积的四分之一,第8个正△A8B8C8的面积是第一个正方形面积的,所以,第8个正△A8B8C8的面积是,选择C。

5.当OAn与轴正半轴重合时,度数为360m+90是10的倍数,从2+22+23+…,只有2+22+23+24=30和2+22+23+24+25+26+27+28=510,所以n必须是8的倍数或是8的倍数多4,当m为1,2,3时,无解,当m为4时,360m+90=1530,符合题意。故答案选B。

7.(1)∵⊙O、⊙O、⊙O两两外切,

∴OO=OO=OO=a

又∵OA=OA

∴OA⊥OO

∴OA=

=

(2)=

=

4.方案二装运钢管最多.即:按图10③的方式排放钢管,放置根数最多.

根据题意,第一层排放31根,第二层排放30根,

设钢管的放置层数为n,可得

解得

∵为正整数∴=35

钢管放置的最多根数为:31×18+30×17=1068(根)

4.(2010年浙江绍兴中考题)(1)如图1,在正方形ABCD中,点E,F分别在边BC,

CD上,AE,BF交于点O,∠AOF=90°.

求证:BE=CF.

(2)如图2,在正方形ABCD中,点E,H,F,G分别在边AB,

BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF

=4.求GH的长.

(3)已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,

∠FOH=90°,EF=4.直接写出下列两题的答案:

①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;

②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).

(1)证明:如图1,∵四边形ABCD为正方形,

∴AB=BC,∠ABC=∠BCD=90°,

∴∠EAB+∠AEB=90°.

∵∠EOB=∠AOF=90°,

∴∠FBC+∠AEB=90°,∴∠EAB=∠FBC,

∴△ABE≌△BCF,∴BE=CF.

(2)如图2,过点A作AM//GH交BC于M,

过点B作BN//EF交CD于N,AM与BN交于点O/,

则四边形AMHG和四边形BNFE均为平行四边形,

∴EF=BN,GH=AM,

∵∠FOH=90°,AM//GH,EF//BN,∴∠NO/A=90°,

故由(1)得,△ABM≌△BCN,∴AM=BN,

∴GH=EF=4.

(3)①8.②4n。

相关推荐

中考数学操作型问题专题复习


初三第二轮复习专题二:操作型问题

【知识梳理】

操作型问题主要借助三角板、纸片等工具进行图形的折与展、割与补、平移与旋转等变换,通过动手操作和理性的思考,考查学生的空间想象、推理和创新能力。

解决这类问题需要通过观察、操作、比较、猜想、分析、综合、抽象和概括等实践活动和思维过程,灵活运用所学知识和生活经验,探索和发现结论,从而解决问题.关键是抓住图形变化中的不变性。

【课前预习】

1、如图,在一张△ABC纸片中,∠C=90°,∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形,以上图形一定能被拼成的有()

A.1个B.2个C.3个D.4个

2.如图,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,那么展开后三角形的周长是()

A.2+B.2+2C.12D.18

3.将两个形状相同的三角尺放置在一张矩形纸片上,按如图所示画线得到四边形ABCD,则四边形ABCD的形状是_______.

【例题精讲】

例1、动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图①所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为______.

例2、如图,在一块正方形ABCD木板上需贴三种不同的墙纸,正方形EFCG部分贴A型墙纸,△ABE部分贴B型墙纸,其余部分贴C型墙纸.A型、B型、C型三种墙纸的单价分别为每平方米60元、80元、40元.

【探究1】如果木板边长为2米,FC=1米,则一块木板用墙纸的费用需________元;

【探究2】如果木板边长为1米,求一块木板需用墙纸的最省费用;

【探究3】设木板的边长为a(a为整数),当正方形EFCG的边长为多少时,墙纸费用最省?如果用这样的多块木板贴一堵墙(7×3平方米)进行装饰,要求每块木板A型的墙纸不超过1平方米,且尽量不浪费材料,则需要这样的木板多少块?

例3、如下图,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片如图②,量得它们的斜边长为10cm,较小锐角为30°,再将这两张三角形纸片摆成如图③的形状,使点B、C、F、D在同一条直线上,且点C与点F重合(在图③至图⑥中统一用F表示).

小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.

(1)将图③中的△ABF沿BD向右平移到图④的位置,使点B与点F重合,请你求出平移的距离.

(2)将图③中的△ABF绕点F顺时针方向旋转30°到图⑤的位置,A1F交DE于点G,请你求出线段FG的长度.

(3)将图③中的△ABF沿直线AF翻折到图⑥的位置,AB1交DE于点H,请证明:AH=DH.

例4.如图所示,有一张长为5,宽为3的矩形纸片ABCD,要通过适当的剪拼,得到一个与之面积相等的正方形.

(1)该正方形的边长为______(结果保留根号);

(2)现要求只能用两条裁剪线,请你设计一种裁剪的方法,在图中画出裁剪线,并简要说明剪拼的过程.

【巩固练习】

1、七巧板是我们祖先的一项卓越创造,用它可以拼出多种图形.请你用七巧板中标号为①②③的三块板(如图①)经过平移、旋转拼成图形.

(1)拼成矩形,在图②中画出示意图;

(2)拼成等腰直角三角形.在图③中画出示意图.

注意:相邻两块板之间无空隙,无重叠;示意图的顶点画在小方格的顶点上.

2、如图,△ABC是直角三角形,∠ACB=90°.

(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应的字母

(保留作图痕迹,不写作法).

①作△ABC的外接圆,圆心为O;

②以线段AC为一边,在AC的右侧作等边△ACD;

③连接BD,交⊙O于点E,连接AE.

(2)综合与运用:在你所作的图中,若AB=4,BC=2,

则:①AD与⊙O的位置关系是_______.②线段AE的长为_______.

【课后作业】班级姓名

一、必做题:

1、如图,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形,又能拼成三角形和梯形的是()

2、如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;…,根据以上操作,若要得到2011个小正方形,则需要操作的次数是()A.669B.670C.671D.672

3、如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()

A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm2

4、请将含60°顶角的菱形分割成至少含一个等腰梯形且面积相等的六部分,用实线画出分割后的图形.

5.如图,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0).

(1)请直接写出点A关于y轴对称的点的坐标;

(2)将△ABC绕坐标原点O逆时针旋转90°.画出图形,

直接写出点B的对应点的坐标;

(3)请直接写出:以A,B、C为顶点的平行四边形的第四个顶点D的坐标.

6、如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°,正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.

(1)请在所给的图中,用尺规画出点A在正方形整个翻滚过程中所经过的路线图;

(2)求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S.

二、选做题:

7、在二行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点),在每一种翻动方式中,骰子不能后退.开始时骰子如图①那样摆放,朝上的点数是2;最后翻动到如图②所示的位置,此时骰子朝上的点数不可能是下列数中的()

A.5B.4C.3D.1

8、正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=b(b2a),且边AD和AE在同一直线上.小明发现:当b=a时,如图①,在BA上选取中点G,连接FG和CG,移动△FAG和△CBG的位置可构成正方形FGCH.

(1)类比小明的剪拼方法,请你就图②和图③两种情形分别画出剪拼成一个新正方形的示意图.

⑵要使(1)中所剪拼的新图形是正方形须满足BG:AE=.

9、阅读下面的材料:

小伟遇到这样一个问题,如图①,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O.若梯形ABCD的面积为1,试求以AC、BD、AD+BC的长度为三边长的三角形的面积.

小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题,他的方法是过点D作AC的平行线交BC的延长线于点E,得到的△BDE即是以AC、BD、AD+BC的长度为三边长的三角形(如图②).

请你回答:图②中△BDE的面积等于_______.

参考小伟同学思考问题的方法,解决下面的问题:

如图③,△ABC的三条中线分别为AD、BE、CF.

(1)在图③中利用图形变换画出并指明以AD、BE、CF的长度为三边长的一个三角形(保留画图痕迹);

(2)若△ABC的面积为1,则以AD、BE、CF的长度为三边长的三角形的面积等于_______.

中考数学专题:几何图形的归纳,猜想,证明问题


老师会对课本中的主要教学内容整理到教案课件中,大家在认真写教案课件了。只有制定教案课件工作计划,可以更好完成工作任务!你们了解多少教案课件范文呢?下面是由小编为大家整理的“中考数学专题:几何图形的归纳,猜想,证明问题”,供您参考,希望能够帮助到大家。

中考数学专题10几何图形的归纳,猜想,证明问题

【前言】实行新课标以来,中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。根据学生反映,这种问题一般较难,得分率很低,经常有同学选择+填空就只错了这一道。对于这类归纳总结问题来说,思考的方法是最重要的,所以一下我们通过今年的一二模真题来看看如何应对这种新题型。

第一部分真题精讲

【例1】
如图,+1个边长为2的等边三角形有一条边在同一直线上,设的面积为,的面积为,…,的面积为,则=;=____(用含的式子表示).
【思路分析】拿到这种题型,第一步就是认清所求的图形到底是什么样的。本题还好,将阴影部分标出,不至于看错。但是如果不标就会有同学误以为所求的面积是,这种的,第二步就是看这些图形之间有什么共性和联系.首先所代表的三角形的底边是三角形的底边,而这个三角形和△是相似的.所以边长的比例就是与的比值.于是.接下来通过总结,我们发现所求的三角形有一个最大的共性就是高相等,为(连接上面所有的B点,将阴影部分放在反过来的等边三角形中看)。那么既然是求面积,高相等,剩下的自然就是底边的问题了。我们发现所有的B,C点连线的边都是平行的,于是自然可以得出自然是所在边上的n+1等分点.例如就是的一个三等分点.于是(n+1-1是什么意思?为什么要减1?)

【例2】
在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点正方形,如图,菱形的四个顶点坐标分别是,,,,则菱形能覆盖的单位格点正方形的个数是_______个;若菱形的四个顶点坐标分别为,,,(为正整数),则菱形能覆盖的单位格点正方形的个数为_________(用含有的式子表示).
【思路分析】此题方法比较多,例如第一空直接数格子都可以数出是48(笑)。这里笔者提供一种方法,其他方法大家可以自己去想想看。因为求的是菱形包涵的正方形个数,所以只需求出被X,Y轴所分的四个三角形包涵的个数,再乘以4即可。比如我们来看第二象限那个三角形。第二象限菱形那条边过(-2n,0)(0,n),自然可以写出直线解析式为,斜率意味着什么?看上图,注意箭头标注的那些空白三角形,这些RT三角形一共有2n/2=n个,他们的纵直角边与横直角边的比是不是就是?而且这些直角三角形都是全等的,面积均为两个单位格点正方形的一半.那么整个的△AOB的面积自然就是,所有n个空白小三角形的面积之和为,相减之后自然就是所有格点正方形的面积,也就是数量了.所以整个菱形的正方形格点就是.

【例3】
如图,,过上到点的距离分别为的点作的垂线与相交,得到并标出一组黑色梯形,它们的面积分别为.则第一个黑色梯形的面积;观察图中的规律,第(为正整数)个黑色梯形的面积.
【思路分析】本题方法也比较多样。所有阴影部分都是一个直角梯形,而因为,所以梯形的上下底长度分别都对应了垂足到0点的距离,而高则是固定的2。第一个梯形上底是1,下底是3,所以.第二个梯形面积,第三个是,至此,我们发现本题中梯形面积数值上其实就是上下底的和.而且各个梯形的上底都是前一个梯形上底加上4。于是第n个梯形的上底就是1+4(n-1)=4n-3,(第一个梯形的上底1加上(n-1)个4.)下底自然就是4n-1,于是就是8n-4.

【例4】
在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3……每个正方形四条边上的整点的个数.按此规律推算出正方形A10B10C10D10四条边上的整点共有个.
【思路分析】此题看似麻烦,但是只要把握住“正方形”这个关键就可以了。对于来说,每条边的长度是2n,那么自然整点个数就是2n+1,所以四条边上整点一共有(2n+1)x4-4=8n(个)(要减去四个被重复算的顶点),于是就是80个.

【例5】
如图,△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与△ABC的BC边重叠为止,此时这个三角形的斜边长为_____.

【思路分析】本题依然要找出每个三角形和上一个三角形之间的规律联系。关键词“中点”“垂线”“等腰直角”。这就意味着每个三角形的锐角都是45度,并且直角边都是上一个三角形直角边的一半。绕一圈是360度,包涵了8个45°。于是绕到第八次就可以和BC重叠了,此时边长为△ABC的,故而得解。

【例6】
如图,以等腰三角形的斜边为直角边向外作第个等腰直角三角形,再以等腰直角三角形的斜边为直角边向外作第个等腰直角三角形,……,如此作下去,若,则第个等腰直角三角形的面积________(n为正整数).
【思路分析】和上题很类似的几何图形外延拓展问题。还是一样慢慢找小三角形面积的规律。由题可得,分子就是1,2,4,8,16这样的数列。于是

【总结】几何图形的归纳总结问题其实就包括了代数方面的数列问题,只不过需要考生自己找出图形与图形之间的联系而已。对于这类问题,首先就是要仔细读题,看清楚题目所求的未知量是什么,然后找出各个未知量之间的联系,这其中就包括了寻找未知量的拓展过程中,哪些变了,哪些没有变。最后根据这些联系列出通项去求解。在遇到具体关系很难找的问题时,不妨先写出第一项,第二项,第三项然后去找数式上的规律,如上面例6就是一例,如果纠结于几何图形当中等腰三角形直角边的平方,反而会使问题复杂化,直接列出前几项的面积就可以大胆的猜测出来结果了。这类题目计算量往往不大,重在思考和分析的方法,还请考生细心掌握。
第二部分发散思考

【思考1】
如图,在平面直角坐标系xOy中,,,,
,…,以为对角线作第一个正方形,以
为对角线作第二个正方形,以为对角线作第
三个正方形,…,如果所作正方形的对角线都在
y轴上,且的长度依次增加1个单位,顶点都在第一象
限内(n≥1,且n为整数).那么的纵坐标为;用n
的代数式表示的纵坐标:.

【思考2】
如图,在平面直角坐标系中,一颗棋子从点处开始跳动,第一
次跳到点关于x轴的对称点处,接着跳到点关于y轴
的对称点处,第三次再跳到点关于原点的对称点处,…,
如此循环下去.当跳动第2009次时,棋子落点处的坐标是

【思考3】
对于大于或等于2的自然数n的平方进行如下“分裂”,分裂成n个连续奇数的和,则自然数72的分裂数中最大的数是,自然数n的分裂数中最大的数是.

【思考4】
一个质点在第一象限及轴、轴上运动,在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,即,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是_______

【思考5】
如图,将边长为的正方形纸片从左到右顺次摆放,其对应的正方形的中心依次为A1,A2,A3,….①若摆放前6
个正方形纸片,则图中被遮盖的线段(虚线部分)
之和为;②若摆放前n(n为大于1的正
整数)个正方形纸片,则图中被遮盖的线段(虚线部分)之和为.

第三部分思考题解析

【思考1答案】2;
【思考2答案】(3,-2)
【思考3答案】13;2n-1
【思考4答案】(5,0)
【思考5答案】10,

中考数学新概念型问题专题复习


教案课件是老师需要精心准备的,大家在仔细设想教案课件了。只有写好教案课件计划,这对我们接下来发展有着重要的意义!你们会写一段优秀的教案课件吗?下面是小编为大家整理的“中考数学新概念型问题专题复习”,供大家参考,希望能帮助到有需要的朋友。

2013年中考数学专题讲座二:新概念型问题
一、中考专题诠释
所谓“新概念”型问题,主要是指在问题中概念了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新概念进行运算、推理、迁移的一种题型.“新概念”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力
二、解题策略和解法精讲
“新概念型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.
三、中考典例剖析
考点一:规律题型中的新概念
例1(2012永州)我们把按照一定顺序排列的一列数称为数列,如1,3,9,19,33,…就是一个数列,如果一个数列从第二个数起,每一个数与它前一个数的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做这个等差数列的公差.如2,4,6,8,10就是一个等差数列,它的公差为2.如果一个数列的后一个数与前一个数的差组成的新数列是等差数列,则称这个数列为二阶等差数列.例如数列1,3,9,19,33,…,它的后一个数与前一个数的差组成的新数列是2,6,10,14,…,这是一个公差为4的等差数列,所以,数列1,3,9,19,33,…是一个二阶等差数列.那么,请问二阶等差数列1,3,7,13,…的第五个数应是.
思路分析:由于3-1=2,7-3=4,13-7=6,…,由此得出相邻两数之差依次大2,故13的后一个数比13大8.
解答:解:由数字规律可知,第四个数13,设第五个数为x,
则x-13=8,解得x=21,即第五个数为21,
故答案为:21.
点评:本题考查了数字变化规律类问题.关键是确定二阶等差数列的公差为2.
对应训练
1.(2012自贡)若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=-1,-1的差倒数为=,现已知x1=-,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依次类推,则x2012=.
考点二:运算题型中的新概念
例2(2012菏泽)将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,概念=ad-bc,上述记号就叫做2阶行列式.若=8,则x=.
思路分析:根据题中的新概念将所求的方程化为普通方程,整理后即可求出方程的解,即为x的值.
解:根据题意化简=8,得:(x+1)2-(1-x)2=8,
整理得:x2+2x+1-(1-2x+x2)-8=0,即4x=8,
解得:x=2.
故答案为:2
点评:此题考查了整式的混合运算,属于新概念的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键.
对应训练
2.(2012株洲)若(x1,y1)(x2,y2)=x1x2+y1y2,则(4,5)(6,8)=.
考点三:探索题型中的新概念
例3(2012南京)如图,A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合)、我们称∠APB是⊙O上关于点A、B的滑动角.
(1)已知∠APB是⊙O上关于点A、B的滑动角,
①若AB是⊙O的直径,则∠APB=°;
②若⊙O的半径是1,AB=,求∠APB的度数;
(2)已知O2是⊙O1外一点,以O2为圆心作一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于点A、B的滑动角,直线PA、PB分别交⊙O2于M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系.

思路分析:(1)①根据直径所对的圆周角等于90°即可求解;
②根据勾股定理的逆定理可得∠AOB=90°,再分点P在优弧上;点P在劣弧上两种情况讨论求解;
(2)根据点P在⊙O1上的位置分为四种情况得到∠APB与∠MAN、∠ANB之间的数量关系.
解:(1)①若AB是⊙O的直径,则∠APB=90.
②如图,连接AB、OA、OB.
在△AOB中,
∵OA=OB=1.AB=,
∴OA2+OB2=AB2.
∴∠AOB=90°.
当点P在优弧上时,∠AP1B=∠AOB=45°;
当点P在劣弧上时,∠AP2B=(360°﹣∠AOB)=135°…6分

(2)根据点P在⊙O1上的位置分为以下四种情况.
第一种情况:点P在⊙O2外,且点A在点P与点M之间,点B在点P与点N之间,如图①
∵∠MAN=∠APB+∠ANB,
∴∠APB=∠MAN﹣∠ANB;
第二种情况:点P在⊙O2外,且点A在点P与点M之间,点N在点P与点B之间,如图②.
∵∠MAN=∠APB+∠ANP=∠APB+(180°﹣∠ANB),
∴∠APB=∠MAN+∠ANB﹣180°;
第三种情况:点P在⊙O2外,且点M在点P与点A之间,点B在点P与点N之间,如图③.
∵∠APB+∠ANB+∠MAN=180°,
∴∠APB=180°﹣∠MAN﹣∠ANB,
第四种情况:点P在⊙O2内,如图④,
∠APB=∠MAN+∠ANB.
点评:综合考查了圆周角定理,勾股定理的逆定理,点与圆的位置关系,本题难度较大,注意分类思想的运用.
对应训练
3.(2012陕西)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是三角形;
(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;
(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.
考点四:开放题型中的新概念
例4(2012北京)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下概念:
若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|;
若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.
例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点).
(1)已知点A(-,0),B为y轴上的一个动点,
①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;
②直接写出点A与点B的“非常距离”的最小值;
(2)已知C是直线y=x+3上的一个动点,
①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;
②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标.
思路分析:(1)①根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的概念可以确定|0-y|=2,据此可以求得y的值;
②设点B的坐标为(0,y).因为|--0|≥|0-y|,所以点A与点B的“非常距离”最小值为|--0|=;
(2)①设点C的坐标为(x0,x0+3).根据材料“若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|”知,C、D两点的“非常距离”的最小值为-x0=x0+2,据此可以求得点C的坐标;
②当点E在过原点且与直线y=x+3垂直的直线上时,点C与点E的“非常距离”最小,即E(-,).解答思路同上.
解:(1)①∵B为y轴上的一个动点,
∴设点B的坐标为(0,y).
∵|--0|=≠2,
∴|0-y|=2,
解得,y=2或y=-2;
∴点B的坐标是(0,2)或(0,-2);
②点A与点B的“非常距离”的最小值为;

(2)①∵C是直线y=x+3上的一个动点,
∴设点C的坐标为(x0,x0+3),
∴-x0=x0+2,
此时,x0=-,
∴点C与点D的“非常距离”的最小值为:,
此时C(-,);
②E(-,).
--x0=x0+3-,
解得,x0=-,
则点C的坐标为(-,),
最小值为1.
点评:本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的概念是正确解题的关键.
对应训练
4.(2012台州)请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:
1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-,(-3)⊕5=5⊕(-3)=-,…
你规定的新运算a⊕b=(用a,b的一个代数式表示).
考点五:阅读材料题型中的新概念
例5(2012常州)平面上有两条直线AB、CD相交于点O,且∠BOD=150°(如图),现按如下要求规定此平面上点的“距离坐标”:
(1)点O的“距离坐标”为(0,0);
(2)在直线CD上,且到直线AB的距离为p(p>0)的点的“距离坐标”为(p,0);在直线AB上,且到直线CD的距离为q(q>0)的点的“距离坐标”为(0,q);
(3)到直线AB、CD的距离分别为p,q(p>0,q>0)的点的“距离坐标”为(p,q).
设M为此平面上的点,其“距离坐标”为(m,n),根据上述对点的“距离坐标”的规定,解决下列问题:
(1)画出图形(保留画图痕迹):
①满足m=1,且n=0的点M的集合;
②满足m=n的点M的集合;
(2)若点M在过点O且与直线CD垂直的直线l上,求m与n所满足的关系式.(说明:图中OI长为一个单位长)
思路分析:(1)①以O为圆心,以2为半径作圆,交CD于两点,则此两点为所求;②分别作∠BOC和∠BOD的角平分线并且反向延长,即可求出答案;
(2)过M作MN⊥AB于N,根据已知得出OM=n,MN=m,求出∠NOM=60°,根据锐角三角函数得出sin60°==,求出即可.
解:(1)①如图所示:
点M1和M2为所求;

②如图所示:
直线MN和直线EF(O除外)为所求;

(2)如图:
过M作MN⊥AB于N,
∵M的“距离坐标”为(m,n),
∴OM=n,MN=m,
∵∠BOD=150°,直线l⊥CD,
∴∠MON=150°-90°=60°,
在Rt△MON中,sin60°==,
即m与n所满足的关系式是:m=n.
点评:本题考查了锐角三角函数值,角平分线性质,含30度角的直角三角形的应用,主要考查学生的动手操作能力和计算能力,注意:角平分线上的点到角两边的距离相等.
对应训练
5.(2012钦州)在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:
①f(x,y)=(y,x).如f(2,3)=(3,2);
②g(x,y)=(-x,-y),如g(2,3)=(-2,-3).
按照以上变换有:f(g(2,3))=f(-2,-3)=(-3,-2),那么g(f(-6,7))等于()
A.(7,6)B.(7,-6)C.(-7,6)D.(-7,-6)
四、中考真题演练
一、选择题
1.(2012六盘水)概念:f(a,b)=(b,a),g(m,n)=(-m,-n).例如f(2,3)=(3,2),g(-1,-4)=(1,4).则g[f(-5,6)]等于()
A.(-6,5)B.(-5,-6)C.(6,-5)D.(-5,6)
2.(2012湘潭)文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1,若输入,则输出的结果为()
A.5B.6C.7D.8
点评:本题考查的是实数的运算,根据题意得出输出数的式子是解答此题的关键.
3.(2012丽水)小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是()
A.2010B.2012C.2014D.2016
二、填空题
4.(2012常德)规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为.
5.(2012随州)概念:平面内的直线与相交于点O,对于该平面内任意一点M,点M到直线、的距离分别为a、b,则称有序非实数对(a,b)是点M的“距离坐标”,根据上述概念,距离坐标为(2,3)的点的个数是()
A.2B.1C.4D.3
6.(2012荆门)新概念:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m-2]的一次函数是正比例函数,则关于x的方程+=1的解为.
7.(2012自贡)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.

8.(2012泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(lx)(x为自然数).
(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC的相似线(其中l1⊥BC,l2∥AC),此外,还有条;
(2)如图②,∠C=90°,∠B=30°,当=时,P(lx)截得的三角形面积为△ABC面积的.
三、解答题
9.(2012铜仁地区)如图,概念:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切概念,解下列问题:
(1)ctan30°=;
(2)如图,已知tanA=,其中∠A为锐角,试求ctanA的值.

10.(2012无锡)对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1-x2|+|y1-y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).
(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;
(2)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.
11.(2012厦门)如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB.如果点P在直线y=x-1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“临近点”.
(1)判断点C()是否是线段AB的“临近点”,并说明理由;
(2)若点Q(m,n)是线段AB的“临近点”,求m的取值范围.

12.(2012兰州)如图,概念:若双曲线y=(k>0)与它的其中一条对称轴y=x相交于A、B两点,则线段AB的长度为双曲线y=(k>0)的对径.
(1)求双曲线y=的对径.
(2)若双曲线y=(k>0)的对径是10,求k的值.
(3)仿照上述概念,概念双曲线y=(k<0)的对径.

13.(2012绍兴)联想三角形外心的概念,我们可引入如下概念.
概念:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.
举例:如图1,若PA=PB,则点P为△ABC的准外心.
应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数.
探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.
14.(2012嘉兴)将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].
(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=;直线BC与直线B′C′所夹的锐角为度;
(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC作变换[θ,n]得△ABC,使点B、C、C′在同一直线上,且四边形ABBC为矩形,求θ和n的值;
(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABBC为平行四边形,求θ和n的值.
15.(2012台州)概念:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的距离.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.
(1)根据上述概念,当m=2,n=2时,如图1,线段BC与线段OA的距离是;当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB长)为;
(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,
①求出点M随线段BC运动所围成的封闭图形的周长;
②点D的坐标为(0,2),m≥0,n≥0,作MN⊥x轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m的值;若不存在,请说明理由.
专题讲座二:新概念型问题参考答案
三、中考典例剖析
对应训练
1.
解:∵x1=-,
∴x2==,x3==4,x4=,
∴差倒数为3个循环的数,
∵2012=670×3+2,
∴x2012=x2=,
故答案为:.
2.64
解:∵(x1,y1)(x2,y2)=x1x2+y1y2,
∴(4,5)(6,8)=4×6+5×8=64,
故答案为64.
3.解:(1)如图;
根据抛物线的对称性,抛物线的顶点A必在O、B的垂直平分线上,所以OA=AB,即:“抛物线三角形”必为等腰三角形.
故填:等腰.
(2)∵抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,
∴该抛物线的顶点()满足(b>0).
∴b=2.

(3)存在.
如图,作△OCD与△OAB关于原点O中心对称,则四边形ABCD为平行四边形.
当OA=OB时,平行四边形ABCD是矩形,
又∵AO=AB,
∴△OAB为等边三角形.
作AE⊥OB,垂足为E,
∴AE=OE.
∴=(b′>0).
∴b′=2.
∴A(,3),B(2,0).
∴C(-,-3),D(-2,0).
设过点O、C、D的抛物线为y=mx2+nx,则

解得.
故所求抛物线的表达式为y=x2+2x.
4.解:根据题意可得:
1⊕2=2⊕1=3=,
(-3)⊕(-4)=(-4)⊕(-3)=-=,
(-3)⊕5=5⊕(-3)=-=,
则a⊕b==.
故答案为:.
5.C
解:∵f(-6,7)=(7,-6),
∴g(f(-6,7))=g(7,-6)=(-7,6).
故选C.
四、中考真题演练
一、选择题
1.A
2.B.
3.D
解:∵3,6,9,12,…称为三角形数,
∴三角数都是3的倍数,
∵4,8,12,16,…称为正方形数,
∴正方形数都是4的倍数,
∴既是三角形数又是正方形数的是12的倍数,
∵2010÷12=167…6,
2012÷12=167…8,
2014÷12=167…10,
2016÷12=168,
∴2016既是三角形数又是正方形数.
故选D.
二、填空题
4.4
解:∵3<<4,
∴3+1<+1<4+1,
∴4<+1<5,
∴[+1]=4,
故答案为:4.
5.C
解:如图所示,所求的点有4个,
故选C.
6.x=3
解:根据题意可得:y=x+m-2,
∵“关联数”[1,m-2]的一次函数是正比例函数,
∴m-2=0,
解得:m=2,
则关于x的方程+=1变为+=1,
解得:x=3,
检验:把x=3代入最简公分母2(x-1)=4≠0,
故x=3是原分式方程的解,
故答案为:x=3.
7.4π
解:弧CD的长是=,
弧DE的长是:=,
弧EF的长是:=2π,
则曲线CDEF的长是:++2π=4π.
故答案是:4π.
8.(1)1;(2)或或
解:(1)存在另外1条相似线.
如图1所示,过点P作l3∥BC交AC于Q,则△APQ∽△ABC;
故答案为:1;
(2)设P(lx)截得的三角形面积为S,S=S△ABC,则相似比为1:2.
如图2所示,共有4条相似线:
①第1条l1,此时P为斜边AB中点,l1∥AC,∴=;
②第2条l2,此时P为斜边AB中点,l2∥AC,∴=;
③第3条l3,此时BP与BC为对应边,且=,∴==;
④第4条l4,此时AP与AC为对应边,且=,∴,
∴=.
故答案为:或或.
三、解答题
9.解:(1)∵Rt△ABC中,α=30°,
∴BC=AB,
∴AC===AB,
∴ctan30°==.
故答案为:;

(2)∵tanA=,
∴设BC=3,AC=4,则AB=5,
∴ctanA==.
10.解:(1)由题意,得|x|+|y|=1,
所有符合条件的点P组成的图形如图所示。
(2)∵d(M,Q)=|x-2|+|y-1|=|x-2|+|x+2-1|=|x-2|+|x+1|,
又∵x可取一切实数,|x-2|+|x+1|表示数轴上实数x所对应的点到数2和-1所对应的点的距离之和,其最小值为3.
∴点M(2,1)到直线y=x+2的直角距离为3。
11.解:(1)点C()是线段AB的“临近点”.理由是:
∵点P到直线AB的距离小于1,A、B的纵坐标都是3,
∴AB∥x轴,3-1=2,3+1=4,
∴当纵坐标y在2<y<4范围内时,点是线段AB的“临近点”,点C的坐标是(),
∴y=>2,且小于4,
∵C()在直线y=x-1上,
∴点C()是线段AB的“临近点”.
(2)由(1)知:线段AB的“临近点”的纵坐标的范围是2<y<4,
把y=2代入y=x-1得:x=3,
把y=4代入y=x-1得:x=5,
∴3<x<5,
∵点Q(m,n)是线段AB的“临近点”,
∴m的取值范围是3<m<5.
12.解:过A点作AC⊥x轴于C,如图,
(1)解方程组,得,,
∴A点坐标为(1,1),B点坐标为(-1,-1),
∴OC=AC=1,
∴OA=OC=,
∴AB=2OA=2,
∴双曲线y=的对径是2;

(2)∵双曲线的对径为10,即AB=10,OA=5,
∴OA=OC=AC,
∴OC=AC=5,
∴点A坐标为(5,5),
把A(5,5)代入双曲线y=(k>0)得k=5×5=25,
即k的值为25;

(3)若双曲线y=(k<0)与它的其中一条对称轴y=-x相交于A、B两点,
则线段AB的长称为双曲线y=(k<0)的对径.
13.解:①若PB=PC,连接PB,则∠PCB=∠PBC,
∵CD为等边三角形的高,
∴AD=BD,∠PCB=30°,
∴∠PBD=∠PBC=30°,
∴PD=DB=AB,
与已知PD=AB矛盾,∴PB≠PC,
②若PA=PC,连接PA,同理可得PA≠PC,
③若PA=PB,由PD=AB,得PD=BD,
∴∠APD=45°,
故∠APB=90°;

探究:解:∵BC=5,AB=3,
∴AC===4,
①若PB=PC,设PA=x,则x2+32=(4-x)2,
∴x=,即PA=,
②若PA=PC,则PA=2,
③若PA=PB,由图知,在Rt△PAB中,不可能.
故PA=2或.
14.解:(1)根据题意得:△ABC∽△AB′C′,
∴S△AB′C′:S△ABC=()2=()2=3,∠B=∠B′,
∵∠ANB=∠B′NM,
∴∠BMB′=∠BAB′=60°;
故答案为:3,60;
(2)∵四边形ABB′C′是矩形,
∴∠BAC′=90°.
∴θ=∠CAC′=∠BAC′-∠BAC=90°-30°=60°.
在Rt△ABC中,∠ABB=90°,∠BAB′=60°,
∴∠AB′B=30°,
∴n==2;

(3)∵四边形ABB′C′是平行四边形,
∴AC′∥BB′,
又∵∠BAC=36°,
∴θ=∠CAC′=∠ACB=72°.
∴∠BB′A=∠BAC=36°,而∠B=∠B,
∴△ABC∽△B′BA,
∴AB:BB′=CB:AB,
∴AB2=CBBB′=CB(BC+CB′),
而CB′=AC=AB=B′C′,BC=1,
∴AB2=1(1+AB),
∴AB=,
∵AB>0,
∴n==.
15.解:(1)当m=2,n=2时,
如题图1,线段BC与线段OA的距离等于平行线之间的距离,即为2;
当m=5,n=2时,
B点坐标为(5,2),线段BC与线段OA的距离,即为线段AB的长,
如答图1,过点B作BN⊥x轴于点N,则AN=1,BN=2,
在Rt△ABN中,由勾股定理得:AB==.
(2)如答图2所示,当点B落在⊙A上时,m的取值范围为2≤m≤6:
当4≤m≤6,显然线段BC与线段OA的距离等于⊙A半径,即d=2;
当2≤m<4时,作BN⊥x轴于点N,线段BC与线段OA的距离等于BN长,
ON=m,AN=OA-ON=4-m,在Rt△ABN中,由勾股定理得:
∴d===.
(3)①依题意画出图形,点M的运动轨迹如答图3中粗体实线所示:
由图可见,封闭图形由上下两段长度为8的线段,以及左右两侧半径为2的半圆所组成,
其周长为:2×8+2×π×2=16+4π,
∴点M随线段BC运动所围成的封闭图形的周长为:16+4π.
②结论:存在.
∵m≥0,n≥0,∴点M位于第一象限.
∵A(4,0),D(0,2),∴OA=2OD.
如图4所示,相似三角形有三种情形:

(I)△AM1H1,此时点M纵坐标为2,点H在A点左侧.
如图,OH1=m+2,M1H1=2,AH1=OA-OH1=2-m,
由相似关系可知,M1H1=2AH1,即2=2(2-m),
∴m=1;

(II)△AM2H2,此时点M纵坐标为2,点H在A点右侧.
如图,OH2=m+2,M2H2=2,AH2=OH2-OA=m-2,
由相似关系可知,M2H2=2AH2,即2=2(m-2),
∴m=3;
(III)△AM3H3,此时点B落在⊙A上.
如图,OH3=m+2,AH3=OH3-OA=m-2,
过点B作BN⊥x轴于点N,则BN=M3H3=n,AN=m-4,
由相似关系可知,AH3=2M3H3,即m-2=2n(1)
在Rt△ABN中,由勾股定理得:22=(m-4)2+n2(2)
由(1)、(2)式解得:m1=,m2=2,
当m=2时,点M与点A横坐标相同,点H与点A重合,故舍去,
∴m=.
综上所述,存在m的值使以A、M、H为顶点的三角形与△AOD相似,m的取值为:1、3或.