88教案网

你的位置: 教案 > 初中教案 > 导航 > 解一元二次方程——直接开平方法导学案(新版新人教版)

一元二次方程高中教案

发表时间:2021-01-25

解一元二次方程——直接开平方法导学案(新版新人教版)。

教案课件是老师工作中的一部分,大家在着手准备教案课件了。将教案课件的工作计划制定好,这样我们接下来的工作才会更加好!你们知道适合教案课件的范文有哪些呢?下面的内容是小编为大家整理的解一元二次方程——直接开平方法导学案(新版新人教版),欢迎阅读,希望您能够喜欢并分享!

第2课时解一元二次方程-直接开平方法
一、学习目标了解形如的一元二次方程的解法——直接开平方法;
能够熟练而准确的运用开平方法求一元二次方程的解.
二、知识回顾1.什么叫做平方根?平方根有哪些性质?
平方根的定义:如果一个数的平方等于a,那么这个数就叫做a的平方根.
用式子表示:若x2=a,则x叫做a的平方根.
记作x=,即x=或x=.
如:9的平方根是;的平方根是.
平方根的性质:
(1)一个正数有两个平方根,这两个平方根是互为相反数的;
(2)0的平方根是0;
(3)负数没有平方根.
2.x2=4,则x=±2.
想一想:求x2=4的解的过程,就相当于求什么的过程?

三、新知讲解直接开平方法解一元二次方程
一般地,运用平方根的定义直接开平方求出一元二次方程的解的方法叫做直接开平方法.
对结构形如的一元二次方程来说,因为,所以在方程两边直接开平方,可得,进而求得.
注:
(1)直接开平方法是解一元二次方程最基本的方法,它主要针对形如的一元二次方程,它的理论依据就是平方根的定义.
(2)利用直接开平方法解一元二次方程时,要注意开方的结果取“正、负”.
(3)当时,方程没有实数根.

四、典例探究

1.用直接开平方法求一元二次方程的解
【例1】解方程:(1)2x2﹣8=0;(2)(2x﹣3)2=25.

总结:运用直接开平方法解一元二次方程,首先要将一元二次方程的左边化为含有未知数的完全平方式,右边化为非负数的形式,然后直接用开平方的方法求解.
练1.(2015东西湖区校级模拟)解方程:(2x+3)2﹣25=0

练2.(2014秋昆明校级期中)解方程:9(x+1)2=4(x﹣2)2.

2.用直接开平方法判断方程中字母参数的取值范围
【例2】(2015春南长区期末)若关于x的一元二次方程x2﹣k=0有实数根,则()
A.k<0B.k>0C.k≥0D.k≤0
总结:先把方程化为“左平方,右常数”的形式,且把系数化为1,再根据一元二次方程有无解来求方程中字母参数的取值范围.
练3.(2015春利辛县校级月考)已知一元二次方程mx2+n=0(m≠0,n≠0),若方程有解,则必须()
A.n=0B.m,n同号C.n是m的整数倍D.m,n异号
练4.(2015岳阳模拟)如果关于x的方程mx2=3有两个实数根,那么m的取值范围是.

五、课后小测一、选择题
1.(2015石城县模拟)方程x2﹣9=0的解是()
A.x=3B.x=9C.x=±3D.x=±9
2.(2015河北模拟)已知一元二次方程x2﹣4=0,则该方程的解为()
A.x1=x2=2B.x1=x2=﹣2C.x1=﹣4,x2=4D.x1=﹣2,x2=2
3.(2015杭州模拟)关于x的方程a(x+m)2+n=0(a,m,n均为常数,m≠0)的解是x1=﹣2,x2=3,则方程a(x+m﹣5)2+n=0的解是()
A.x1=﹣2,x2=3B.x1=﹣7,x2=﹣2C.x1=3,x2=﹣2D.x1=3,x2=8
4.(2015江岸区校级模拟)如果x=﹣3是一元二次方程ax2=c的一个根,那么该方程的另一个根是()
A.3B.﹣3C.0D.1
5.(2014枣庄)x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()
A.x1小于﹣1,x2大于3B.x1小于﹣2,x2大于3
C.x1,x2在﹣1和3之间D.x1,x2都小于3
6.(2014春淮阴区校级月考)方程(1﹣x)2=2的根是()
A.﹣1,3B.1,﹣3C.,D.,
7.(2012秋内江期末)已知a2﹣2ab+b2=6,则a﹣b的值是()
A.B.或C.3D.
8.方程x2=0的实数根有()
A.1个B.2个C.无数个D.0个
9.方程5y2﹣3=y2+3的实数根的个数是()
A.0个B.1个C.2个D.3个
二、填空题
10.(2015泉州)方程x2=2的解是.
11.(2014怀化模拟)方程8x2﹣72=0解为.
三、解答题
12.(2014祁阳县校级模拟)解方程:(x﹣2)2﹣16=0.

13.(2014秋青海校级月考)解方程:.

14.已知一元二次方程x2﹣4x+1+m=5请你选取一个适当的m的值,使方程能用直接开平方法求解,并解这个方程.
(1)你选的m的值是;
(2)解这个方程.
典例探究答案:
【例1】解方程:(1)2x2﹣8=0;(2)(2x﹣3)2=25.
分析:(1)先变形得到x2=4,然后利用直接开平方法求解;
(2)首先两边直接开平方可得2x﹣3=±5,再解一元一次方程即可.
解答:解:(1)x2=4,
两边直接开平方,得x1=2,x2=﹣2.
(2)两边直接开平方,得2x﹣3=±5,
则2x﹣3=5,2x﹣3=﹣5,
所以x=4,x=﹣1.
点评:本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法求解.
练1.(2015东西湖区校级模拟)解方程:(2x+3)2﹣25=0
分析:先移项,写成(x+a)2=b的形式,然后利用数的开方解答.
解答:解:移项得,(2x+3)2=25,
开方得,2x+3=±5,
解得x1=1,x2=﹣4.
点评:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).
法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.
(2)运用整体思想,会把被开方数看成整体.
(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.
分析:两边开方,即可得出两个一元一次方程,求出方程的解即可.
解答:解:两边开方得:3(x+1)=±2(x﹣2),
即3(x+1)=2(x﹣2),3(x+1)=﹣2(x﹣2),
解得:x1=﹣7,x2=.
点评:本题考查了解一元二次方程和解一元一次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.
【例2】(2015春南长区期末)关于x的一元二次方程x2﹣k=0有实数根,则()
A.k<0B.k>0C.k≥0D.k≤0
分析:根据直接开平方法的步骤得出x2=k,再根据非负数的性质得出k≥0即可.
解答:解:∵x2﹣k=0,
∴x2=k,
∵一元二次方程x2﹣k=0有实数根,∴k≥0,
故选:C.
点评:此题考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.
练3.(2015春利辛县校级月考)已知一元二次方程mx2+n=0(m≠0,n≠0),若方程有解,则必须()
A.n=0B.m,n同号C.n是m的整数倍D.m,n异号
分析:首先求出x2的值为﹣,再根据x2≥0确定m、n的符号即可.
解答:解:mx2+n=0,x2=﹣,
∵x2≥0,∴﹣≥0,∴≤0,
∵n≠0,∴mn异号,
故选:D.
点评:此题主要考查了直接开平方法解一元二次方程,关键是表示出x2的值,根据x2的取值范围确定m、n的符号.
练4.(2015岳阳模拟)如果关于x的方程mx2=3有两个实数根,那么m的取值范围是.
解:∵关于x的方程mx2=3有两个实数根,
∴m>0.
故答案为:m>0.

课后小测答案:
一、选择题
1.(2015石城县模拟)方程x2﹣9=0的解是()
A.x=3B.x=9C.x=±3D.x=±9
解:移项得;x2=9,
两边直接开平方得:x=±3,
故选:C.
2.(2015河北模拟)已知一元二次方程x2﹣4=0,则该方程的解为()
A.x1=x2=2B.x1=x2=﹣2C.x1=﹣4,x2=4D.x1=﹣2,x2=2
解:x2﹣4=0,
(x+2)(x﹣2)=0,
x1=﹣2,x2=2.
故选D
3.(2015杭州模拟)关于x的方程a(x+m)2+n=0(a,m,n均为常数,m≠0)的解是x1=﹣2,x2=3,则方程a(x+m﹣5)2+n=0的解是()
A.x1=﹣2,x2=3B.x1=﹣7,x2=﹣2C.x1=3,x2=﹣2D.x1=3,x2=8
解:∵关于x的方程a(x+m)2+n=0的解是x1=﹣2,x2=3,(m,n,p均为常数,m≠0),
∴方程a(x+m﹣5)2+n=0变形为a[(x﹣5)+m]2+n=0,即此方程中x﹣5=﹣2或x﹣5=3,
解得x=3或x=8.
故选D.
4.(2015江岸区校级模拟)如果x=﹣3是一元二次方程ax2=c的一个根,那么该方程的另一个根是()
A.3B.﹣3C.0D.1
解:ax2=c,
x2=,
x=±,
∵x=﹣3是一元二次方程ax2=c的一个根,
∴该方程的另一个根是x=3,
故选A.
5.(2014枣庄)x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()
A.x1小于﹣1,x2大于3B.x1小于﹣2,x2大于3
C.x1,x2在﹣1和3之间D.x1,x2都小于3
解:∵x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,
∴(x﹣1)2=5,
∴x﹣1=±,
∴x2=1+>3,x1=1﹣<﹣1,
故选:A.
6.(2014春淮阴区校级月考)方程(1﹣x)2=2的根是()
A.﹣1,3B.1,﹣3C.,D.,
解:方程(1﹣x)2=2,
开方得:1﹣x=±,
解得:x1=1+,x2=1﹣,
故选D
7.(2012秋内江期末)已知a2﹣2ab+b2=6,则a﹣b的值是()
A.B.或C.3D.
解:∵a2﹣2ab+b2=6,
∴(a﹣b)2=6,
∴a﹣b=±,
故选:B.
8.方程x2=0的实数根有()
A.1个B.2个C.无数个D.0个
解:x2=0,
两边直接开平方得:x1=x2=0,
故选:B.
9.方程5y2﹣3=y2+3的实数根的个数是()
A.0个B.1个C.2个D.3个
解:5y2﹣3=y2+3,
4y2=6,
y2=,
y=±,
即实数根的个数是2个,
故选C.
二、填空题
10.(2015泉州)方程x2=2的解是±.
解:x2=2,
x=±.
故答案为±.
11.(2014怀化模拟)方程8x2﹣72=0解为x=±3.
解:8x2﹣72=0,
8x2=72,
x2=9,
x=±3,
故答案为:x=±3.
三、解答题
12.(2014祁阳县校级模拟)解方程:(x﹣2)2﹣16=0.
解:分解因式得:(x﹣2+4)(x﹣2﹣4)=0,
x﹣2﹣4=0,x﹣2+4=0,
解得x1=6,x2=﹣2.
13.(2014秋青海校级月考).
解:,
x﹣=±,
所以x1=1,x2=﹣.
14.已知一元二次方程x2﹣4x+1+m=5请你选取一个适当的m的值,使方程能用直接开平方法求解,并解这个方程.
(1)你选的m的值是8;
(2)解这个方程.
解:令m=8,则x2﹣4x+1+8=5,
即x2﹣4x+4=0,
(x﹣2)2=0,
开方得x﹣2=0,
即x=2.

相关阅读

九年级上册《直接开平方法解一元二次方程》教案新人教版


老师职责的一部分是要弄自己的教案课件,大家在认真准备自己的教案课件了吧。只有规划好了教案课件新的工作计划,新的工作才会如鱼得水!你们知道适合教案课件的范文有哪些呢?下面是小编帮大家编辑的《九年级上册《直接开平方法解一元二次方程》教案新人教版》,欢迎您参考,希望对您有所助益!

九年级上册《直接开平方法解一元二次方程》教案新人教版

一、复习引入
学生活动:请同学们完成下列各题
问题1.填空
(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.
问题2.如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?
问题1:根据完全平方公式可得:(1)164;(2)42;(3)()2.
问题2:设x秒后△PBQ的面积等于8cm2
则PB=x,BQ=2x
依题意,得:x·2x=8
x2=8
根据平方根的意义,得x=±2即x1=2,x2=-2可以验证,2和-2都是方程x·2x=8的两根,但是移动时间不能是负值.
所以2秒后△PBQ的面积等于8cm2.
二、探索新知
上面我们已经讲了x2=8,根据平方根的意义,直接开平方得x=±2,如果x换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢?
分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
解:由已知,得:(x+2)2=1
直接开平方,得:x+2=±1
即x+2=1,x+2=-1
所以,方程的两根x1=-1,x2=-3
例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2
解:设每年人均住房面积增长率为x,
则:10(1+x)2=14.4
(1+x)2=1.44
直接开平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2

解一元二次方程——配方法导学案(新版新人教版)


第3课时解一元二次方程-配方法
一、学习目标1.掌握用配方法解一元二次方程的一般步骤;
2.学会利用配方法解一元二次方程.
二、知识回顾1.形如(≥0)的一元二次方程,利用求平方根的方法,立即可得ax+m=±,从而解出方程的根,这种解一元二次方程的方法叫“直接开平方法”.
2.如果方程能化成x2=p或(mx+n)2=p(p≥0)的形式,那么利用直接开平方法可得x=±或mx+n=±.
三、新知讲解1.配方法的依据
配方法解一元二次方程的依据是完全平方公式及直接开平方法.
2.配方法的步骤
(1)化——化二次项系数为1
如果一元二次方程的二次项系数不是1,那么在方程的两边同时除以二次项系数,把二次项系数化为1.
(2)移——移项
通过移项使方程左边为二次项和一次项,右边为常数项.
(3)配——配方
在方程两边都加上一次项系数一半的平方,根据完全平方公式把原方程变为(≥0)的形式.
(4)解——用直接开平方法解方程.
四、典例探究
1.配方法解一元二次方程
【例1】(2015科左中旗校级一模)用配方法解下列方程时,配方有错误的是()
A.x2﹣2x﹣99=0化为(x﹣1)2=100B.x2+8x+9=0化为(x+4)2=25
C.2t2﹣7t﹣4=0化为(t﹣)2=D.3x2﹣4x﹣2=0化为(x﹣)2=
总结:配方法解一元二次方程的一般步骤:
(1)把二次项的系数化为1;
(2)把常数项移到等号的右边;
(3)等式两边同时加上一次项系数一半的平方.
(4)用直接开平方法解这个方程.
练1用配方法解方程:
x2﹣2x﹣24=0;(2)3x2+8x-3=0;(3)x(x+2)=120.

2.用配方法求多项式的最值
【例2】(2015春龙泉驿区校级月考)当x,y取何值时,多项式x2+4x+4y2﹣4y+1取得最小值,并求出最小值.

总结:配方法是求代数式的最值问题中最常用的方法.基本思路是:把代数式配方成完全平方式与常数项的和,根据完全平方式的非负性求代数式的最值.
练2(2014甘肃模拟)用配方法证明:二次三项式﹣8x2+12x﹣5的值一定小于0.

练3(2014秋崇州市期末)已知a、b、c为△ABC三边的长.
(1)求证:a2﹣b2+c2﹣2ac<0.
(2)当a2+2b2+c2=2b(a+c)时,试判断△ABC的形状.

五、课后小测一、选择题
1.(2015延庆县一模)若把代数式x2﹣2x+3化为(x﹣m)2+k形式,其中m,k为常数,结果为()
A.(x+1)2+4B.(x﹣1)2+2
C.(x﹣1)2+4D.(x+1)2+2
2.(2015东西湖区校级模拟)一元二次方程x2﹣8x﹣1=0配方后为()
A.(x﹣4)2=17B.(x+4)2=15
C.(x+4)2=17D.(x﹣4)2=17或(x+4)2=17
二、填空题
3.(2015春盐城校级期中)一元二次方程x2﹣6x+a=0,配方后为(x﹣3)2=1,则a=.
4.(2014秋营山县校级月考)当x=时,代数式3x2﹣6x的值等于12.
三、解答题
5.(2015东西湖区校级模拟)用配方法解方程:x2﹣2x﹣4=0.

6.(2013秋安龙县校级期末)试说明:不论x,y取何值,代数式x2+4y2﹣2x+4y+5的值总是正数.你能求出当x,y取何值时,这个代数式的值最小吗?

7.(2014秋蓟县期末)阅读下面的材料并解答后面的问题:
小李:能求出x2+4x﹣3的最小值吗?如果能,其最小值是多少?
小华:能.求解过程如下:
因为x2+4x﹣3=x2+4x+4﹣4﹣3=(x2+4x+4)﹣(4+3)=(x+2)2﹣7
而(x+2)2≥0,所以x2+4x﹣3的最小值是﹣7.
问题:
(1)小华的求解过程正确吗?
(2)你能否求出x2﹣3x+4的最小值?如果能,写出你的求解过程.

8.(2014秋安陆市期末)阅读下面的解答过程,求y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4﹣(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值为4
仿照上面的解答过程,求m2+m+4的最小值和4﹣2x﹣x2的最大值.

9.(2014春乳山市期末)已知代数式x2﹣2mx﹣m2+5m﹣5的最小值是﹣23,求m的值.

10.(2014秋江阴市期中)配方法可以用来解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1≥1,即:3a2+1有最小值1,此时a=0;同样,因为﹣3(a+1)2≤0,所以﹣3(a+1)2+6≤6,即﹣3(a+1)2+6有最大值6,此时a=﹣1.
①当x=时,代数式﹣2(x﹣1)2+3有最(填写大或小)值为.
②当x=时,代数式﹣x2+4x+3有最(填写大或小)值为.
③矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?

典例探究答案:
【例1】【解析】配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.根据以上步骤进行变形即可.
解:A、∵x2﹣2x﹣99=0,∴x2﹣2x=99,∴x2﹣2x+1=99+1,∴(x﹣1)2=100,故A选项正确.
B、∵x2+8x+9=0,∴x2+8x=﹣9,∴x2+8x+16=﹣9+16,∴(x+4)2=7,故B选项错误.
C、∵2t2﹣7t﹣4=0,∴2t2﹣7t=4,∴t2﹣t=2,∴t2﹣t+=2+,∴(t﹣)2=,故C选项正确.
D、∵3x2﹣4x﹣2=0,∴3x2﹣4x=2,∴x2﹣x=,∴x2﹣x+=+,∴(x﹣)2=.故D选项正确.
故选:B.
点评:此题考查了配方法解一元二次方程,选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
练1.【解析】(1)移项,得x2﹣2x=24,
配方,得:x2﹣2x+1=24+1,
即:(x﹣1)2=25,
开方,得:x﹣1=±5,
∴x1=6,x2=﹣4.
(2)两边除以3,得:,
移项,得:,
配方,得:,
即:,
开方,得:

(3)整理,得:,
配方,得:,
即:,
开方,得:

点评:本题考查了解一元二次方程﹣﹣配方法.
【例2】【解析】把所给代数式整理为两个完全平方式子与一个常数的和,最小值应为那个常数,从而确定最小值.
解:x2+4x+4y2﹣4y+1=x2+4x+4+4y2﹣4y+1﹣4=(x+2)2+(2y﹣1)2﹣4,
又∵(x+2)2+(2y﹣1)2的最小值是0,
∴x2+4x+4y2﹣4y+1的最小值为﹣4.
∴当x=﹣2,y=时有最小值为﹣4.
点评:本题考查配方法的应用;根据﹣4y,4x把所给代数式整理为两个完全平方式子的和是解决本题的关键.
练2.【解析】将﹣8x2+12x﹣5配方,先把二次项系数化为1,然后再加上一次项系数一半的平方,然后根据配方后的形式,再根据a2≥0这一性质即可证得.
解:﹣8x2+12x﹣5=﹣8(x2﹣x)﹣5=﹣8[x2﹣x+()2]﹣5+8×()2=﹣8(x﹣)2﹣,
∵(x﹣)2≥0,
∴﹣8(x﹣)2≤0,
∴﹣8(x﹣)2﹣<0,
即﹣8x2+12﹣5的值一定小于0.
点评:此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.
练3.【解析】(1)将不等式的左边因式分解后根据三角形三边关系判断代数式的符号即可;
(2)将等式右边的项移至左边,然后配方即可.
解:(1)a2﹣b2+c2﹣2ac=(a﹣c)2﹣b2=(a﹣c+b)(a﹣c﹣b)
∵a、b、c为△ABC三边的长,
∴(a﹣c+b)>0,(a﹣c﹣b)<0,
∴a2﹣b2+c2﹣2ac<0.
(2)由a2+2b2+c2=2b(a+c)
得:a2﹣2ab+b2+b2﹣2bc+c2=0
配方得:(a﹣b)2+(b﹣c)2=0
∴a=b=c
∴△ABC为等边三角形.
点评:本题考查了配方法的应用,解题的关键是对原式正确的配方.

课后小测答案:
一、选择题
1.【解析】二次项系数为1,则常数项是一次项系数的一半的平方.
解:x2﹣2x+3=x2﹣2x+1+2=(x﹣1)2+2.
故选:B.
点评:此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.
2.【解析】先移项,得x2﹣8x=1,然后在方程的左右两边同时加上16,即可得到完全平方的形式.
解:移项,得x2﹣8x=1,
配方,得x2﹣8x+16=1+16,
即(x﹣4)2=17.
故选A.
点评:本题考查了用配方法解一元二次方程,对多项式进行配方,不仅应用于解一元二次方程,还可以应用于二次函数和判断代数式的符号等,应熟练掌握.
二、填空题
3.【解析】利用完全平方公式化简后,即可确定出a的值.
解:∵(x﹣3)2=x2﹣6x+9,∴a=9;
故答案为:9.
点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.
4.【解析】根据题意列出方程,两边除以3变形后,再加上1配方后,开方即可求出解.
解:根据题意得:3x2﹣6x=12,即x2﹣2x=4,
配方得:x2﹣2x+1=5,即(x﹣1)2=5,
开方得:x﹣1=±,
解得:x=1±.
故答案为:1±.
点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.
三、解答题
5.【解析】按照配方法的一般步骤计算:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
解:把方程x2﹣2x﹣4=0的常数项移到等号的右边,得到x2﹣2x=4,
方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=4+1,
配方得(x﹣1)2=5,
∴x﹣1=±,
∴x1=1﹣,x2=1+.
点评:本题考查了用配方法解一元二次方程的步骤,解题的关键是牢记步骤,并能熟练运用,此题比较简单,易于掌握.
6.【解析】原式利用完全平方公式变形,根据完全平方式恒大于等于0,即可求出最小值.
解:原式=x2﹣2x+1+4y2+4y+1+3
=(x﹣1)2+(2y+1)2+3≥3,
当x=1,y=﹣时,x2+4y2﹣2x+4y+5有最小值是3.
点评:此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.
7.【解析】对于x2+4x﹣3和x2﹣3x+4都是同时加上且减去一次项系数一半的平方.配成一个完全平方式与常数的和,利用完全平方式为非负数的性质得到原代数式的最小值.
解:(1)正确
(2)能.过程如下:
x2﹣3x+4=x2﹣3x+﹣+4=(x﹣)2+
∵(x﹣)2≥0,
所以x2﹣3x+4的最小值是.
点评:此题考查配方法的运用,配方法是常用的数学思想方法.不仅用于解方程,还可利用它解决某些代数式的最值问题.它的一个重要环节就是要配上一次项系数一半的平方.同时要理解完全平方式的非负数的性质.
8.【解析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;
(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值.
解:(1)m2+m+4=(m+)2+,
∵(m+)2≥0,
∴(m+)2+≥.
则m2+m+4的最小值是;
(2)4﹣x2+2x=﹣(x﹣1)2+5,
∵﹣(x﹣1)2≤0,
∴﹣(x﹣1)2+5≤5,
则4﹣x2+2x的最大值为5.
点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.
9.【解析】先将原式变形为x2﹣2m﹣m2+5m﹣5=(x﹣m)2﹣2m2+5m﹣5,由非负数的性质就可以求出最小值.
解:x2﹣2m﹣m2+5m﹣5=(x﹣m)2﹣2m2+5m﹣5.
∵代数式x2﹣2m﹣m2+5m﹣5的最小值是﹣23,
∴﹣2m2+5m﹣5=﹣23
解得m=﹣2或m=
点评:本题考查了配方法的运用,非负数的性质,一个数的偶次幂为非负数的运用.解答时配成完全平方式是关键.
10.【解析】①由完全平方式的最小值为0,得到x=1时,代数式的最大值为3;
②将代数式前两项提取﹣1,配方为完全平方式,根据完全平方式的最小值为0,即可得到代数式的最大值及此时x的值;
③设垂直于墙的一边长为xm,根据总长度为16m,表示出平行于墙的一边为(16﹣2x)m,表示出花园的面积,整理后配方,利用完全平方式的最小值为0,即可得到面积的最大值及此时x的值.
解:①∵(x﹣1)2≥0,
∴当x=1时,(x﹣1)2的最小值为0,
则当x=1时,代数式﹣2(x﹣1)2+3的最大值为3;
②代数式﹣x2+4x+3=﹣(x2﹣4x+4)+7=﹣(x﹣2)2+7,
则当x=2时,代数式﹣x2+4x+3的最大值为7;
③设垂直于墙的一边为xm,则平行于墙的一边为(16﹣2x)m,
∴花园的面积为x(16﹣2x)=﹣2x2+16x=﹣2(x2﹣8x+16)+32=﹣2(x﹣4)2+32,
则当边长为4米时,花园面积最大为32m2.
故答案为:①1;大;3;②2;大;7
点评:此题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.

解一元二次方程——公式法导学案(新版新人教版)


教案课件是每个老师工作中上课需要准备的东西,是认真规划好自己教案课件的时候了。此时就可以对教案课件的工作做个简单的计划,新的工作才会如鱼得水!适合教案课件的范文有多少呢?小编特地为大家精心收集和整理了“解一元二次方程——公式法导学案(新版新人教版)”,供您参考,希望能够帮助到大家。

第4课时解一元二次方程-公式法
一、学习目标了解掌握一元二次方程根的判别式,不解方程能判定一元二次方程根的情况;
理解一元二次方程求根公式的推导过程;
掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况;
学会利用求根公式解简单数字系数的一元二次方程.
二、知识回顾1.什么是配方法?配方法解一元二次方程的一般步骤是什么?
配方法:通过配方,先把方程的左边配成一个含有未知数的完全平方式,右边是一个非负数,然后运用直接开平方法求解,这种解一元二次方程的方法叫做配方法.
配方法解一元二次方程的一般步骤:
(1)移常数项到方程右边;
(2)化二次项系数为1;
(3)方程两边同时加上一次项系数一半的平方;
(4)化方程左边为完全平方式;
(5)若方程右边为非负数,则利用直接开平方法解得方程的根.
2.怎样用配方法解形如一般形式ax2+bx+c=0(a≠0)的一元二次方程?
解:移项,得
二次项系数化为1,得
配方,得
即:,
因为所以
当;

三、新知讲解一元二次方程根的判别式
叫做一元二次方程ax2+bx+c=0(a≠0)根的判别式,通常用希腊字母表示它,即.
一元二次方程根的情况与判别式的关系
(1)方程有两个不相等的实数根;
(2)方程有两个相等的实数根;
(3)方程没有实数根.
公式法解一元二次方程
一般地,对于一般形式的一元二次方程ax2+bx+c=0(a≠0),当时,它的两个根分别是
,,
这里,叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.
公式法解一元二次方程的一般步骤
把方程化成一般形式:ax2+bx+c=0(a≠0);
确定a,b,c的值;
求出的值,并判断方程根的情况:
当时,方程有两个不相等的实数根;
当时,方程有两个相等的实数根;
当时,方程没有实数根.
当时,将a,b,c和的值代入公式(注意符号).

四、典例探究

1.根据根的判别式判断一元二次方程根的情况
【例1】(2015重庆)已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()
A.有两个不相等的实数根B.有两个相等的实数根
两个根都是自然数D.无实数根
总结:
求根的判别式时,应该先将方程化为一般形式,正确找出a,b,c的值.
根的判别式与一元二次方程根的情况的关系如下:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.
练1.(2015铜仁市)已知关于x的一元二次方程3x2+4x﹣5=0,下列说法不正确的是()
A.方程有两个相等的实数根B.方程有两个不相等的实数根
C.没有实数根D.无法确定
练2.(2015泰州)已知:关于x的方程x2+2mx+m2﹣1=0
(1)不解方程,判别方程根的情况;
(2)若方程有一个根为3,求m的值.

2.根据一元二次方程根的情况求参数的值或取值范围
【例2】(2015温州)若关于x的一元二次方程4x2﹣4x+c=0有两个相等实数根,则c的值是()
A.﹣1B.1C.﹣4D.4
总结:已知方程根的情况求字母的值或取值范围时:
先计算根的判别式;
再根据方程根的情况列出关于根的判别式的等式或不等式求解;
若二次项系数出现了字母,应注意“二次项系数不为0”.
练3.(2015凉山州)关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是()
A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠2

3.用公式法解一元二次方程
【例3】用公式法解下列方程:
(1)x2+2x﹣2=0;
(2)y2﹣3y+1=0;
(3)x2+3=2x.

总结:
公式法的实质是配方法,只不过省去了配方的过程,而直接利用了配方的结论;
运用公式法求解一元二次方程要注意两个前提:
(1)先将一元二次方程化为一般形式,即确定a,b,c的值;
(2)必须保证b2-4ac≥0.
练4.(2014锦江区模拟)解方程:x(x﹣2)=3x+1.

练5.当x是何值时,3x2+4x﹣8的值和2x2﹣1的值相等?

五、课后小测一、选择题
1.(2015云南)下列一元二次方程中,没有实数根的是()
A.4x2﹣5x+2=0B.x2﹣6x+9=0C.5x2﹣4x﹣1=0D.3x2﹣4x+1=0
2.(2015贵港)若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为()
A.﹣1B.0C.1D.2
3.(2015烟台)等腰直角三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()
A.9B.10C.9或10D.8或10
4.(2015株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c.下列四个结论中,错误的是()
A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根
B.如果方程M的两根符号相同,那么方程N的两根符号也相同
C.如果5是方程M的一个根,那么是方程N的一个根
D.如果方程M和方程N有一个相同的根,那么这个根必是x=1
5.(2013日照)已知一元二次方程x2﹣x﹣3=0的较小根为x1,则下面对x1的估计正确的是()
A.﹣2<x1<﹣1B.﹣3<x1<﹣2C.2<x1<3D.﹣1<x1<0
二、填空题
6.(2011秋册亨县校级月考)用公式法解方程2x2﹣7x+1=0,其中b2﹣4ac=,x1=,x2=.
三、解答题
7.(2014秋通山县期中)用公式法解方程:2x2﹣4x=5.

8.(2014秋金溪县校级月考)解方程:2x2﹣2x﹣5=0.

9.(2013春石景山区期末)用公式法解方程:x(x)=4.

10.(2015梅州)已知关于x的方程x2+2x+a﹣2=0.
(1)若该方程有两个不相等的实数根,求实数a的取值范围;
(2)当该方程的一个根为1时,求a的值及方程的另一根.

11.(2015咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.
(1)证明:不论m为何值时,方程总有实数根;
(2)m为何整数时,方程有两个不相等的正整数根.

12.(2015昆山市一模)已知关于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求证:无论m取何值,原方程总有两个不相等的实数根;
(2)若x1、x2是原方程的两根,且|x1﹣x2|=2,求m的值.

13.(2015南充一模)已知关于x的一元二次方程kx2﹣2(k﹣1)x+k﹣2=0(k≠0)
(1)小明考查后说,它总有两个不相等的实数根.
(2)小华补充说,其中一个根与k无关.
请你说说其中的道理.
典例探究答案:
【例1】(2015重庆)已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()
A.有两个不相等的实数根B.有两个相等的实数根
C.两个根都是自然数D.无实数根
分析:判断方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.
解答:解:∵a=2,b=﹣5,c=3,
∴△=b2﹣4ac=(﹣5)2﹣4×2×3=1>0,
∴方程有两个不相等的实数根.
故选:A.
点评:此题主要考查了一元二次方程根的判别式,要熟练掌握一元二次方程根的情况与判别式△的关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.
练1.(2015铜仁市)已知关于x的一元二次方程3x2+4x﹣5=0,下列说法不正确的是()
A.方程有两个相等的实数根B.方程有两个不相等的实数根
C.没有实数根D.无法确定
分析:先求出△的值,再判断出其符号即可.
解答:解:∵△=42﹣4×3×(﹣5)=76>0,
∴方程有两个不相等的实数根.
故选B.
点评:本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.
练2.(2015泰州)已知:关于x的方程x2+2mx+m2﹣1=0
(1)不解方程,判别方程根的情况;
(2)若方程有一个根为3,求m的值.
分析:(1)找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断;
(2)将x=3代入已知方程中,列出关于系数m的新方程,通过解新方程即可求得m的值.
解答:解:(1)∵a=1,b=2m,c=m2﹣1,
∵△=b2﹣4ac=(2m)2﹣4×1×(m2﹣1)=4>0,
∴方程x2+2mx+m2﹣1=0有两个不相等的实数根;
(2)∵x2+2mx+m2﹣1=0有一个根是3,
∴32+2m×3+m2﹣1=0,
解得,m=﹣4或m=﹣2.
点评:此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.也考查了一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.即用这个数代替未知数所得式子仍然成立.
【例2】(2015温州)若关于x的一元二次方程4x2﹣4x+c=0有两个相等实数根,则c的值是()
A.﹣1B.1C.﹣4D.4
分析:根据方程根的情况与判别式的关系知△=42﹣4×4c=0,然后解一次方程即可.
解答:解:∵一元二次方程4x2﹣4x+c=0有两个相等实数根,
∴△=42﹣4×4c=0,
∴c=1,
故选B.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
练3.(2015凉山州)关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是()
A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠2
分析:根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac的意义得到m-2≠0且△≥0,即22-4×(m-2)×1≥0,然后解不等式组即可得到m的取值范围.
解答:解:∵关于x的一元二次方程(m-2)x2+2x+1=0有实数根,
∴m-2≠0且△≥0,即22-4×(m-2)×1≥0,解得m≤3,
∴m的取值范围是m≤3且m≠2.
故选:D.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
【例3】用公式法解下列方程:
(1)x2+2x﹣2=0;
(2)y2﹣3y+1=0;
(3)x2+3=2x.
分析:(1)求出b2﹣4ac的值,代入公式x=求出即可;
(2)求出b2﹣4ac的值,代入公式y=求出即可;
(3)求出b2﹣4ac的值是负数,即可得出原方程无解.
解答:解:(1)这里a=1,b=2,c=﹣2,
∵b2﹣4ac=22﹣4×1×(﹣2)=12>0,
∴x==﹣1,
∴x1=﹣1+,x2=﹣1﹣;
(2)这里a=1,b=﹣3,c=1.
∵b2﹣4ac=(﹣3)2﹣4×1×1=5>0,
∴?y=,
∴y1=,y2=;
(3)移项,得x2﹣2x+3=0,
这里a=1,b=﹣2,c=3.?
∵b2﹣4ac=(﹣2)2﹣4×1×3=﹣4<0.
∴原方程没有实数根.????
点评:本题主要考查学生运用公式法正确解方程的能力,前提是先判断判别式的符号,再根据情况代入求根公式求解.
练4.(2014锦江区模拟)解方程:x(x﹣2)=3x+1.
分析:整理后求出b2﹣4ac的值,再代入公式求出即可.
解答:解:x(x﹣2)=3x+1,
整理得:x2﹣5x﹣1=0,
b2﹣4ac=(﹣5)2﹣4×1×(﹣1)=29,
x=,
x1=,x2=.
点评:本题考查了解一元二次方程的应用,能正确运用公式法解一元二次方程是解此题的关键,难度适中.
练5.当x是何值时,3x2+4x﹣8的值和2x2﹣1的值相等?
分析:根据3x2+4x﹣8的值和2x2﹣1的值相等,即可列出方程,然后利用公式法即可求解.
解答:解:根据题意得:3x2+4x﹣8=2x2﹣1,
即x2+4x﹣7=0,
a=1,b=4,c=﹣7,
△=b2﹣4ac=16+28=44>0,
则x==﹣2.
点评:本题考查了公式法解一元二次方程,注意公式运用的条件:判别式△≥0.
课后小测答案:
一、选择题
1.(2015云南)下列一元二次方程中,没有实数根的是()
A.4x2﹣5x+2=0B.x2﹣6x+9=0C.5x2﹣4x﹣1=0D.3x2﹣4x+1=0
解:A、∵△=25﹣4×2×4=﹣7<0,∴方程没有实数根,故本选项正确;
B、∵△=36﹣4×1×4=0,∴方程有两个相等的实数根,故本选项错误;
C、∵△=16﹣4×5×(﹣1)=36>0,∴方程有两个相等的实数根,故本选项错误;
D、∵△=16﹣4×1×3=4>0,∴方程有两个相等的实数根,故本选项错误;
故选A.
2.(2015贵港)若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为()
A.﹣1B.0C.1D.2
解:∵关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,
∴△=(﹣2)2﹣8(a﹣1)=12﹣8a≥0且a﹣1≠0,
∴a≤且a≠1,
∴整数a的最大值为0.
故选:B.
3.(2015烟台)等腰直角三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为
()
A.9B.10C.9或10D.8或10
解:∵三角形是等腰直角三角形,
∴①a=2,或b=2,②a=b两种情况,
①当a=2,或b=2时,
∵a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,
∴x=2,
把x=2代入x2﹣6x+n﹣1=0得,22﹣6×2+n﹣1=0,
解得:n=9,
当n=9,方程的两根是2和4,而2,4,2不能组成三角形,
故n=9不合题意,
②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,
∴△=(﹣6)2﹣4(n﹣1)=0
解得:n=10,
故选B.
4.(2015株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c.下列四个结论中,错误的是()
A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根
B.如果方程M的两根符号相同,那么方程N的两根符号也相同
C.如果5是方程M的一个根,那么是方程N的一个根
D.如果方程M和方程N有一个相同的根,那么这个根必是x=1
解:A、如果方程M有两个相等的实数根,那么△=b2﹣4ac=0,所以方程N也有两个相等的实数根,结论正确,不符合题意;
B、如果方程M的两根符号相同,那么方程N的两根符号也相同,那么△=b2﹣4ac≥0,>0,所以a与c符号相同,>0,所以方程N的两根符号也相同,结论正确,不符合题意;
C、如果5是方程M的一个根,那么25a+5b+c=0,两边同时除以25,得c+b+a=0,所以是方程N的一个根,结论正确,不符合题意;
D、如果方程M和方程N有一个相同的根,那么ax2+bx+c=cx2+bx+a,(a﹣c)x2=a﹣c,由a≠c,得x2=1,x=±1,结论错误,符合题意;
故选D.
5.(2013日照)已知一元二次方程x2﹣x﹣3=0的较小根为x1,则下面对x1的估计正确的是()
A.﹣2<x1<﹣1B.﹣3<x1<﹣2C.2<x1<3D.﹣1<x1<0
解:x2﹣x﹣3=0,
b2﹣4ac=(﹣1)2﹣4×1×(﹣3)=13,
x=,
方程的最小值是,
∵3<<4,
∴﹣3>﹣>﹣4,
∴﹣>﹣>﹣2,
∴﹣>﹣>﹣2,
∴﹣1>>﹣
故选:A.
二、填空题
6.(2011秋册亨县校级月考)用公式法解方程2x2﹣7x+1=0,其中b2﹣4ac=41,x1=,x2=.
解:2x2﹣7x+1=0,
a=2,b=﹣7,c=1,
∴b2﹣4ac=(﹣7)2﹣4×2×1=41,
∴x==,
∴x1=,x2=,
故答案为:41,,.
三、解答题
7.(2014秋通山县期中)用公式法解方程:2x2﹣4x=5.
解:原方程可化为:2x2﹣4x﹣5=0,
∵a=2,b=﹣4,c=﹣5,
∴b2﹣4ac=(﹣4)2﹣4×2×(﹣5)=56>0,
∴x=frac{4±sqrt{56}}{4}=1±.
∴x1=1+,x2=1﹣.
8.(2014秋金溪县校级月考)解方程:2x2﹣2x﹣5=0.
解:这里a=2,b=﹣2,c=﹣5,
∵△=8+40=48,
∴x==.
9.(2013春石景山区期末)用公式法解方程:x(x)=4.
解:整理得:x2+2x﹣4=0,
△=b2﹣4ac=(2)2﹣4×1×(﹣4)=28,
x=,
x1=﹣+,x2=﹣﹣.
10.(2015梅州)已知关于x的方程x2+2x+a﹣2=0.
(1)若该方程有两个不相等的实数根,求实数a的取值范围;
(2)当该方程的一个根为1时,求a的值及方程的另一根.
解:(1)∵b2﹣4ac=(﹣2)2﹣4×1×(a﹣2)=12﹣4a>0,
解得:a<3.
∴a的取值范围是a<3;
(2)设方程的另一根为x1,由根与系数的关系得:

解得:,
则a的值是﹣1,该方程的另一根为﹣3.
11.(2015咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.
(1)证明:不论m为何值时,方程总有实数根;
(2)m为何整数时,方程有两个不相等的正整数根.
解:(1)△=(m+2)2﹣8m=m2﹣4m+4=(m﹣2)2,
∵不论m为何值时,(m﹣2)2≥0,
∴△≥0,
∴方程总有实数根;
(2)解方程得,x=,
x1=,x2=1,
∵方程有两个不相等的正整数根,
∴m=1或2,m=2不合题意,
∴m=1.
12.(2015昆山市一模)已知关于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求证:无论m取何值,原方程总有两个不相等的实数根;
(2)若x1、x2是原方程的两根,且|x1﹣x2|=2,求m的值.
解:(1)∵△=(m+3)2﹣4(m+1)=m2+2m+5=(m+1)2+4>0,
∴无论m取何值,原方程总有两个不相等的实数根;
(2)∵x1、x2是原方程的两根,
∴x1+x2=﹣m﹣3,x1x2=m+1,
∵|x1﹣x2|=2,
∴(x1﹣x2)2=8,
∴(x1+x2)2﹣4x1x2=8,
∴(﹣m﹣3)2﹣4(m+1)=8,
∴m1=1,m2=﹣3.
13.(2015南充一模)已知关于x的一元二次方程kx2﹣2(k﹣1)x+k﹣2=0(k≠0)
(1)小明考查后说,它总有两个不相等的实数根.
(2)小华补充说,其中一个根与k无关.
请你说说其中的道理.
解:(1)∵△=4(k﹣1)2﹣4k(k﹣2)=4>0,
∴一元二次方程kx2﹣2(k﹣1)x+k﹣2=0(k≠0)总有两个不相等的实数根;
(2)当x=1时,k﹣2(k﹣1)+k﹣2=0,
即一元二次方程kx2﹣2(k﹣1)x+k﹣2=0(k≠0)有一根为1,
x=1是一元二次方程kx2﹣2(k﹣1)x+k﹣2=0(k≠0)的根,与k无关.

热门主题