88教案网

你的位置: 教案 > 高中教案 > 导航 > 2017高考数学必考点:闭区间上二次函数的最值

一元二次方程高中教案

发表时间:2020-11-24

2017高考数学必考点:闭区间上二次函数的最值。

一名优秀的教师就要对每一课堂负责,高中教师要准备好教案为之后的教学做准备。教案可以保证学生们在上课时能够更好的听课,帮助高中教师能够井然有序的进行教学。高中教案的内容要写些什么更好呢?为此,小编从网络上为大家精心整理了《2017高考数学必考点:闭区间上二次函数的最值》,欢迎大家与身边的朋友分享吧!

2017高考数学必考点:闭区间上二次函数的最值

数学是高考考试中最能拉分的学科,很多学生的数学成绩难以提高往往是因为没有掌握好大纲要求掌握的考点,为了帮助大家复习好这些考点,下面xx为大家带来2017高考数学必考点【闭区间上二次函数的最值】整理,希望高考生能够认真阅读。
二次函数问题是近几年高考的热点,很受命题者的青睐,二次函数在闭区间上的最值问题是二次函数的重要题型之一。本代系统归纳这种问题的常见类型及解题策略。
一、正向型
是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变,高考数学。
1.轴定区间定
例1.(2002年上海)已知函数,当时,求函数f(x)的最大值与最小值。
解析:时,
所以时,时,
2.轴定区间动
例2.(2002年全国)设a为实数,函数,求f(x)的最小值。
解析:
(1)当时,
①若,则;
②若,则
(2)当时,
①若,则;
②若,则
综上所述,当时,;当时,;当时,。
3.轴动区间定
例3.求函数在区间上的最小值。
解析:
(1)当,即时,;
(2)当,即时,;
(3)当,即时,。
综上,
评注:已知,按对称轴与定义域区间的位置关系,由数形结合可得在上的最大值或最小值。
4.轴变区间变
例4.已知,求的最小值。
解析:将代入u中,得
①,即时,
②,即时,
所以
二、逆向型
是指已知二次函数在某区间上的最值,求函数或区间中的参数值。
例5.已知函数在区间上的最大值为4,求实数a的值。
解析:
(1)若,不合题意。
(2)若,则
由,得
(3)若时,则
由,得
综上知或
例6.已知函数在区间上的值域是,求m,n的值。
解析1:讨论对称轴中1与的位置关系。
①若,则
解得
②若,则,无解
③若,则,无解
④若,则,无解
综上,
解析2:由,知,则,f(x)在上递增。
所以
解得
评注:解法2利用闭区间上的最值不超过整个定义域上的最值,缩小了m,n的取值范围,避开了繁难的分类讨论,解题过程简洁、明了。
例7.已知二次函数在区间上的最大值为3,求实数a的值。
分析:这是一个逆向最值问题,若从求最值入手,需分与两大类五种情形讨论,过程繁琐不堪。若注意到的最值总是在闭区间的端点或抛物线的顶点处取到,因此先计算这些点的函数值,再检验其真假,过程简明。
解:(1)令,得
此时抛物线开口向下,对称轴为,且
故不合题意;
(2)令,得,此时抛物线开口向上,闭区间的右端点距离对称轴远些,故符合题意;
(3)若,得,经检验,符合题意。
综上,或
评注:本题利用特殊值检验法,先计算特殊点(闭区间的端点、抛物线的顶点)的函数值,再检验其真假,思路明了、过程简洁,是解决逆向型闭区间二次函数最值问题的一种有效方法。
2017高考数学必考点【闭区间上二次函数的最值】整理xx为大家带来过了,希望高考生能够在记忆这些考点的时候多下功夫,这样在考试的时候就能熟练应用。

相关推荐

函数的最值


一名合格的教师要充分考虑学习的趣味性,教师要准备好教案,这是老师职责的一部分。教案可以让学生更好地进入课堂环境中来,帮助授课经验少的教师教学。怎么才能让教案写的更加全面呢?小编收集并整理了“函数的最值”,仅供参考,欢迎大家阅读。

1.3.1.2函数的最值
【内容与解析】
本节课要学的内容有函数的最值指的是函数值的最大值和最小值,理解它关键就是把握好最值的定义。学生已经学过了函数的相关知识,本节课的内容函数的最值就是在此基础上的发展的。由于它还与函数的单调性、值域等内容有必要的联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容。教学的重点是最值的定义,所以解决重点的关键是通过大量实例,归纳出最值的定义。
【教学目标与解析】
1.教学目标
(1)理解函数最值的含义及其几何意义;
(2)初步掌握用定义及函数的单调性求最值的方法;
2.目标解析
(1)理解函数最值的含义及其几何意义指的是能叙述函数最大值、最小值的概念,理解函数的最大值与图像最高点纵坐标的对应,最小值与图像最低点纵坐标的对应;
(2)初步掌握用定义求最值的方法指的是能够利用定义证明或者求解一些简单函数的最值;
【问题诊断分析】
在本节课的教学中,学生可能遇到的问题是最值的定义难以归纳出来,产生这一问题的原因是:最值中的“最”不是“大于其它”或者“小于其它”,而是“不小于”与“不大于”。要解决这一问题,就要在教学中通过具体函数的图像,让学生去说,其中关键是选例精当,引导到位。
【教学过程】
问题1:我们已经学习过函数的图像,并利用图像研究了函数的单调性,下面,请看几张幻灯片:
1.1这些函数图像是否具备单调性?
1.2请观察图像的特殊点,你有什么发现?
1.3对于最高点和最低点,你有什么发现?
设计意图:通过以上问题,让学生通过函数图像,对最值有一个直观的认识。
问题2:图像仅仅是函数的表示法之一,对于一般的函数,不一定用图像来表达,那么,相应于刚才我们研究的结论,如何将其一般化?
2.1图像的最高点、最低点可能有很多,对应到一般的函数,就对到什么?
2.2图像的最高点、最低点也可能很多,也可能没有,在叙述中要注意什么?
2.3最高点或最低点对应的函数值应在值域中,这点如何表达?
2.4如果我们把最高点的纵坐标叫做相应函数的最大值,请你说出最大值的含义。
2.5仿照最大值的含义,你能说出最小值的含义吗?
设计意图:通过这些问题,让学生理解最值的含义的发生、发展过程,并且自主归纳出函数最值的含义,实现有特殊到一般,由具体形象到一般概念的转化。
问题3:判断下列函数的最值,并说明理由:
(1),
(2),
(3),
设计意图:通过这些问题,让学生理解用定义的方法来处理最值问题,需要先对最值有一个判断,可能是猜测的,可能是有图像的最高点、最低点获得直观感受的,但,要对问题做出完整的解答,最终是必须要依据定义的;同时,通过这些问题,让学生进一步明确函数最值可能存在可能不存在,可能存在多个最值,最大值和最小值也有可能相等.
【课堂目标检测】
1,已知函数
(1)判断
(2)根据
设计意图:通过这些问题,让学生理解利用函数的单调性来求函数的最值的一般方法,并复习前面学习过的函数的单调性。
【课堂小结】
1、最大值和最小值的含义;
2、利用定义来说明函数的最小值;
3、利用函数的单调性来求函数的最值。

2017高考数学必考点:二项分布


作为杰出的教学工作者,能够保证教课的顺利开展,作为高中教师就要在上课前做好适合自己的教案。教案可以让上课时的教学氛围非常活跃,帮助高中教师缓解教学的压力,提高教学质量。那么一篇好的高中教案要怎么才能写好呢?下面是小编精心收集整理,为您带来的《2017高考数学必考点:二项分布》,仅供参考,欢迎大家阅读。

2017高考数学必考点:二项分布

高考数学一直是很多考生头疼的科目,考生难以取得数学高分是因为没有掌握好考点,为了帮助大家掌握好数学考点,下面xx为大家带来2017高考数学必考点【二项分布】整理,希望大家用心记住这些数学考点。
二项分布:
一般地,在n次独立重复的试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则,k=0,1,2,…n,
此时称随机变量X服从二项分布,记作X~B(n,p),并记。
独立重复试验:
(1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验.
(2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,高考数学,事件A恰好发生k次的概率为此时称随机变量X服从二项分布,记作并称p为成功概率.
(3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的.
(4)独立重复试验概率公式的特点:是n次独立重复试验中某事件A恰好发生k次的概率.其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p,k的意义,才能正确运用公式.
二项分布的判断与应用:
(1)二项分布,实际是对n次独立重复试验从概率分布的角度作出的阐述,判断二项分布,关键是看某一事件是否是进行n次独立重复试验,且每次试验只有两种结果,如果不满足这两个条件,随机变量就不服从二项分布.
(2)当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果时,我们可以把它看作独立重复试验,利用二项分布求其分布列.
求独立重复试验的概率:
(1)在n次独立重复试验中,“在相同条件下”等价于各次试验的结果不会受其他试验的影响,即2,…,n)是第i次试验的结果.
(2)独立重复试验是相互独立事件的特例,只要有“恰好”“恰有”字样的用独立重复试验的概率公式计算更简单,要弄清n,p,k的意义。
求二项分布:
二项分布是概率分布的一种,与独立重复试验密切相关,解题时要注意结合二项式定理与组合数等性质。
2017高考数学必考点【二项分布】整理是xx为大家精心总结的,希望大家能够在复习数学考点的时候多下功夫,这样就能在高考数学考试中取得满意的成绩。

函数的极值与最值


23.函数的极值与最值
一、课前准备:
【自主梳理】
1.若函数f(x)在点x0的附近恒有(或),则称函数f(x)在点x0处取得极大值(或极小值),称点x0为极大值点(或极小值点).
2.求可导函数极值的步骤:
①求导数;
②求方程的根;
③检验在方程根的左右的符号,如果左正右负,那么函数y=f(x)在这个根处取得极值;如果左负右正,那么函数y=f(x)在这个根处取得极值.
3.求可导函数最大值与最小值的步骤:
①求y=f(x)在[a,b]内的极值;
②将y=f(x)在各极值点的极值与f(a)、f(b)比较,其中最大的一个为最大值,最小的一个是最小值。
【自我检测】
1.函数的极大值为.
2.函数在上的最大值为.
3.若函数既有极大值又有极小值,则的取值范围为.
4.已知函数,若对任意都有,则的取值范围是.
(说明:以上内容学生自主完成,原则上教师课堂不讲)

二、课堂活动:
【例1】填空题:
(1)函数的极小值是__________.
(2)函数在区间上的最小值是________;最大值是__________.
(3)若函数在处取极值,则实数=_.
(4)已知函数在时有极值0,则=_.

【例2】设函数.
(Ⅰ)求的最小值;
(Ⅱ)若对恒成立,求实数的取值范围.

【例3】如图6所示,等腰的底边,高,点是线段上异于点的动点,点在边上,且,现沿将折起到的位置,使,记,表示四棱锥的体积.
(1)求的表达式;
(2)当为何值时,取得最大值?
课堂小结
三、课后作业
1.若没有极值,则的取值范围为.?
2.如图是导数的图象,对于下列四个判断:?
①在[-2,-1]上是增函数;?
②是的极小值点;?
③在[-1,2]上是增函数,在[2,4]上是减函数;?
④是的极小值点.?
其中判断正确的是.?
3.若函数在(0,1)内有极小值,则的取值范围为.
4.函数,在x=1时有极值10,则的值为.
5.下列关于函数的判断正确的是.
①f(x)0的解集是{x|0x2};?
②f(-)是极小值,f()是极大值;?
③f(x)没有最小值,也没有最大值.?
6.设函数在处取得极值,则的值为.
7.已知函数(为常数且)有极值9,则的值为.
8.若函数在上的最大值为,则的值为.

9.设函数在及时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对于任意的,都有成立,求c的取值范围.

10.已知函数,求函数在[1,2]上的最大值.
四、纠错分析
错题卡题号错题原因分析

参考答案:
【自我检测】
1.72.3.4.
例1:(1)0(2)1,(3)3(4)11

例2:解:(Ⅰ),
当时,取最小值,
即.
(Ⅱ)令,
由得,(不合题意,舍去).
当变化时,的变化情况如下表:

递增极大值
递减
在内有最大值.
在内恒成立等价于在内恒成立,
即等价于,
所以的取值范围为.

例3:解:(1)由折起的过程可知,PE⊥平面ABC,,
V(x)=()
(2),所以时,,V(x)单调递增;时,V(x)单调递减;因此x=6时,V(x)取得最大值;

课后作业
1.[-1,2]2.②③3.0b14.a=-4,b=11
5.?①②6.17.28.
9.解:(Ⅰ),
因为函数在及取得极值,则有,.

解得,.
(Ⅱ)由(Ⅰ)可知,,

当时,;
当时,;
当时,.
所以,当时,取得极大值,又,.
则当时,的最大值为.
因为对于任意的,有恒成立,
所以,
解得或,
因此的取值范围为.
10.解:∵,∴
令,即,得.?
∴f(x)在(-∞,0),上是减函数,在上是增函数.?
①当,即时,在(1,2)上是减函数,?∴.
②当,即时,在上是减函数,
?∴.
③当,即时,在上是增函数,?
∴.
综上所述,当时,的最大值为,?
当时,的最大值为,
当时,的最大值为.

2012届高考数学第二轮备考复习:函数的单调性、最值、极值问题


一名优秀的教师在教学时都会提前最好准备,作为高中教师就要精心准备好合适的教案。教案可以让学生们充分体会到学习的快乐,帮助授课经验少的高中教师教学。那么,你知道高中教案要怎么写呢?急您所急,小编为朋友们了收集和编辑了“2012届高考数学第二轮备考复习:函数的单调性、最值、极值问题”,欢迎阅读,希望您能够喜欢并分享!

题型九函数的单调性、最值、极值问题
(推荐时间:30分钟)
1.已知函数f(x)=ax3+bx2+cx在点x0处取得极小值5,其导函数的图象经过(1,0),(2,0),如图所示,求:
(1)x0的值;
(2)a,b,c的值;
(3)f(x)的极大值.
2.已知函数f(x)=xlnx.
(1)求f(x)的最小值;
(2)讨论关于x的方程f(x)-m=0(m∈R)的解的个数.
答案
1.解f′(x)=3ax2+2bx+c,
(1)观察图象,我们可发现当x∈(-∞,1)时,f′(x)0,此时f(x)为增函数;
当x∈(1,2)时,f′(x)0,此时f(x)为减函数;
当x∈(2,+∞)时,f′(x)0,此时f(x)为增函数,
因此在x=2处函数取得极小值.
结合已知,可得x0=2.
(2)由(1)知f(2)=5,即8a+4b+2c=5.
再结合f′(x)的图象可知,方程f′(x)=3ax2+2bx+c=0的两根分别为1,2,
那么1+2=-2b3a,1×2=c3a即2b=-9a,c=6a.
联立8a+4b+2c=5,得a=52,b=-454,c=15.
(3)由(1)知f(x)在x=1处函数取得极大值,
∴f(x)极大值=f(1)=a+b+c=52-454+15=254.
2.解(1)f(x)的定义域为(0,+∞),f′(x)=lnx+1,
令f′(x)=0,得x=1e,
当x∈(0,+∞)时,f′(x),f(x)的变化情况如下:
x0,1e
1e
1e,+∞

f′(x)-0+
f(x)?
极小值?

所以,f(x)在(0,+∞)上的最小值是f1e=-1e.
(2)当x∈0,1e时,f(x)单调递减且f(x)的取值范围是-1e,0;
当x∈1e,+∞时,f(x)单调递增且f(x)的取值范围是-1e,+∞,
下面讨论f(x)-m=0的解,
当m-1e时,原方程无解;
当m=-1e或m≥0,原方程有唯一解;
当-1em0时,原方程有两解.