88教案网

你的位置: 教案 > 高中教案 > 导航 > 4.2微积分基本定理

小学微课教案

发表时间:2020-11-12

4.2微积分基本定理。

一名合格的教师要充分考虑学习的趣味性,准备好一份优秀的教案往往是必不可少的。教案可以让学生们有一个良好的课堂环境,帮助教师更好的完成实现教学目标。写好一份优质的教案要怎么做呢?为满足您的需求,小编特地编辑了“4.2微积分基本定理”,相信能对大家有所帮助。

4.2微积分基本定理
教学过程:
1、复习:
定积分的概念及用定义计算
2、引入新课
我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。
变速直线运动中位置函数与速度函数之间的联系
设一物体沿直线作变速运动,在时刻t时物体所在位置为S(t),速度为v(t)(),
则物体在时间间隔内经过的路程可用速度函数表示为。
另一方面,这段路程还可以通过位置函数S(t)在上的增量来表达,即
=

而。
对于一般函数,设,是否也有
若上式成立,我们就找到了用的原函数(即满足)的数值差来计算在上的定积分的方法。
注:1:定理如果函数是上的连续函数的任意一个原函数,则
证明:因为=与都是的原函数,故
-=C()
其中C为某一常数。
令得-=C,且==0
即有C=,故=+
=-=
令,有
此处并不要求学生理解证明的过程
为了方便起见,还常用表示,即
该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。
例1.计算下列定积分:
(1);(2)。
解:(1)因为,
所以。
(2))因为,
所以

练习:计算
解:由于是的一个原函数,所以根据牛顿—莱布尼兹公式有
===
例2.计算下列定积分:

由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论。
解:因为,
所以


.
可以发现,定积分的值可能取正值也可能取负值,还可能是0:
(l)当对应的曲边梯形位于x轴上方时(图1.6一3),定积分的值取正值,且等于曲边梯形的面积;
图1.6一3(2)
(2)当对应的曲边梯形位于x轴下方时(图1.6一4),定积分的值取负值,且等于曲边梯形的面积的相反数;
(3)当位于x轴上方的曲边梯形面积等于位于x轴下方的曲边梯形面积时,定积分的值为0(图1.6一5),且等于位于x轴上方的曲边梯形面积减去位于x轴下方的曲边梯形面积.
例3.汽车以每小时32公里速度行驶,到某处需要减速停车。设汽车以等减速度=1.8米/秒2刹车,问从开始刹车到停车,汽车走了多少距离?
解:首先要求出从刹车开始到停车经过了多少时间。当t=0时,汽车速度=32公里/小时=米/秒8.88米/秒,刹车后汽车减速行驶,其速度为当汽车停住时,速度,故从解得秒
于是在这段时间内,汽车所走过的距离是
=米,即在刹车后,汽车需走过21.90米才能停住.
微积分基本定理揭示了导数和定积分之间的内在联系,同时它也提供了计算定积分的一种有效方法.微积分基本定理是微积分学中最重要的定理,它使微积分学蓬勃发展起来,成为一门影响深远的学科,可以毫不夸张地说,微积分基本定理是微积分中最重要、最辉煌的成果.
四:课堂小结:
本节课借助于变速运动物体的速度与路程的关系以及图形得出了特殊情况下的牛顿-莱布尼兹公式.成立,进而推广到了一般的函数,得出了微积分基本定理,得到了一种求定积分的简便方法,运用这种方法的关键是找到被积函数的原函数,这就要求大家前面的求导数的知识比较熟练,希望,不明白的同学,回头来多复习!
五:教学后记:

相关推荐

微积分基本定理导学案及练习题


一、基础过关
1.已知物体做变速直线运动的位移函数s=s(t),那么下列命题正确的是()
①它在时间段[a,b]内的位移是s=s(t)|ba;
②它在某一时刻t=t0时,瞬时速度是v=s′(t0);
③它在时间段[a,b]内的位移是s=limn→∞i=1nb-ans′(ξi);
④它在时间段[a,b]内的位移是s=bas′(t)dt.
A.①B.①②
C.①②④D.①②③④
2.若F′(x)=x2,则F(x)的解析式不正确的是()
A.F(x)=13x3B.F(x)=x3C.F(x)=13x3+1D.F(x)=13x3+c(c为常数)
3.10(ex+2x)dx等于()
A.1B.e-1C.eD.e+1
4.已知f(x)=x2,-1≤x≤0,1,0x≤1,则1-1f(x)dx的值为()
A.32B.43C.23D.-23
5.π20sin2x2dx等于()
A.π4B.π2-1C.2D.π-24
6.1-1|x|dx等于()
A.1-1xdx
B.1-1(-x)dx
C.0-1(-x)dx+10xdx
D.0-1xdx+10(-x)dx
二、能力提升
7.设f(x)=lgx,x0x+?a03t2dt,x≤0,若f[f(1)]=1,则a=________.
8.设函数f(x)=ax2+c(a≠0),若10f(x)dx=f(x0),0≤x0≤1,则x0的值为________.
9.设f(x)是一次函数,且10f(x)dx=5,10xf(x)dx=176,则f(x)的解析式为________.
10.计算下列定积分:
(1)21(ex+1x)dx;(2)91x(1+x)dx;(3)200(-0.05e-0.05x+1)dx;(4)211xx+1dx.

11.若函数f(x)=x3,x∈[0,1],x,x∈1,2],2x,x∈2,3].求30f(x)dx的值.

12.已知f(a)=10(2ax2-a2x)dx,求f(a)的最大值.

平面向量基本定理


每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。只有写好教案课件计划,可以更好完成工作任务!有哪些好的范文适合教案课件的?以下是小编为大家精心整理的“平面向量基本定理”,希望能为您提供更多的参考。

课时5平面向量基本定理
【学习目标】
1.掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个向量。
2.能应用平面向量基本定理解决一些几何问题。
【知识梳理】
若,是不共线向量,是平面内任一向量
在平面内取一点O,作=,=,=,使=λ1=λ2
==+=λ1+λ2
得平面向量基本定理:

注意:1、必须不共线,且它是这一平面内所有向量的一组基底
2这个定理也叫共面向量定理
3λ1,λ2是被,,唯一确定的实数。
【例题选讲】
1.如图,ABCD是平行四边形,对角线AC,BD交于M,,,试用基底、表示。
2.设、是平面内一组基底,如果=3-2,=4+,=8-9,求证:A,B,D三点共线。

3.设、是平面内一组基底,如果=2+k,=--3,=2-,若A,B,D三点共线,求实数k的值。

4.中,,DE//BC,与边AC相交于点E,中线AM与DE交于点N,如图,,,试用、表示。

【归纳反思】
1.平面向量基本定理是平面向量坐标表示的基础,它说明同一平面内的任一向量都可以表示为其他两个不共线向量的线性组合。
2.在解具体问题时适当地选取基底,使其它向量能够用基底来表示,选择了两个不共线地向量,平面内的任何一个向量都可以用唯一表示,这样几何问题就可以转化为代数问题,转化为只含的代数运算。
【课内练习】
1.下面三种说法,正确的是
(1)一个平面内只有一对不共线的向量可作为表示该平面所有向量的基底;
(2)一个平面内有无数对不共线的向量可作为表示该平面所有向量的基底;
(3)零向量不可为基底中的向量;
2.如果、是平面内一组基底,,那么下列命题中正确的是
(1)若实数m,n,使m+n=,则m=n=0;
(2)空间任一向量可以表示为=m+n,这里m,n是实数;
(3)对实数m,n,向量m+n不一定在平面;
(4)对平面内的任一向量,使=m+n的实数m,n有无数组。
3.若G是的重心,D、E、F分别是AB、BC、CA的中点,则=
4.如图,在中,AM:AB=1:3,AN:AC=1:4,BN与CM交于点P,设,试用,表示。

5.设,,,求证:A、B、D三点共线。

【巩固提高】
1.设是平面内所有向量的一组基底,则下面四组中不能作为基底的是
A+和-B3-2和-6+4
C+2和+2D和+
2.若,,,则=
A+B+C+D+
3.平面直角坐标系中,O为原点,A(3,1),B(-1,3),点C满足,其中,且=1,则点C的轨迹方程为
4.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足
,则P的轨迹一定通过的心
5.若点D在的边BC上,且=,则3m+n的值为
6.设=+5,=-2+8,=3(-),求证:A、B、D三点共线。

7.在图中,对于平行四边形ABCD,点M是AB的中点,点N在BD上,且BN=BD,求证:M,N,C三点共线。

8.已知=5+2,=6+y,,,是一组基底,求y的值。

9.如图,在中,D、E分别是线段AC的两个四等份点,点F是线段BC的中点,设,,试用,为基底表示向量。

问题统计与分析

平面向量的基本定理


一位优秀的教师不打无准备之仗,会提前做好准备,教师要准备好教案,这是教师的任务之一。教案可以让学生们能够在上课时充分理解所教内容,帮助教师有计划有步骤有质量的完成教学任务。你知道怎么写具体的教案内容吗?经过搜索和整理,小编为大家呈现“平面向量的基本定理”,仅供参考,欢迎大家阅读。

2.3.1平面向量基本定理

一、课题:平面向量基本定理
二、教学目标:1.理解向量的坐标表示法,掌握平面向量与一对有序实数一一对应关系;
2.正确地用坐标表示向量,对起点不在原点的平面向量能利用向量相等的
关系来用坐标表示;
3.掌握两向量的和、差,实数与向量积的坐标表示法。
三、教学重、难点:1.平面向量的坐标运算;
2.对平面向量的坐标表示的理解。
四、教学过程:
(一)复习:
1.平面向量的基本定理:;
2.在平面直角坐标系中,每一个点都可用一对实数表示,那么,每一个向量可否也用
一对实数来表示?
(二)新课讲解:
1.向量的坐标表示的定义:
分别选取与轴、轴方向相同的单位向量,作为基底,对于任一向量,,(),实数对叫向量的坐标,记作.
其中叫向量在轴上的坐标,叫向量在轴上的坐标。
说明:(1)对于,有且仅有一对实数与之对应;
(2)相等的向量的坐标也相同;
(3),,;
(4)从原点引出的向量的坐标就是点的坐标。

例1如图,用基底,分别表示向量、、、,并求出它们的坐标。
解:由图知:;

2.平面向量的坐标运算:
问题:已知,,求,.
解:
即.
同理:.
结论:两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。
3.向量的坐标计算公式:
已知向量,且点,,求的坐标.

归纳:(1)一个向量的坐标等于表示它的有向线段的终点坐标减去始点坐标;
(2)两个向量相等的充要条件是这二个向量的坐标相等。

4.实数与向量的积的坐标:
已知和实数,求
结论:实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。
例2已知,,求,,的坐标.
解:=;;

例3已知ABCD的三个顶点的坐标分别为、、,求顶点的坐标。
解:设顶点的坐标为.
∵,,
由,得.
∴∴∴顶点的坐标为.

例4(1)已知的方向与轴的正向所成的角为,且,则的坐标为,

(2)已知,,,且,求,.
解:(2)由题意,,
∴∴.

五、课堂小结:1.正确理解平面向量的坐标意义;
2.掌握平面向量的坐标运算;
3.能用平面向量的坐标及其运算解决一些实际问题。
六、作业:
补充:1.已知向量与相等,其中,,求;
2.已知向量,,,,且,求.

课时5平面向量基本定理


课时5平面向量基本定理
【学习目标】
1.掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个向量。
2.能应用平面向量基本定理解决一些几何问题。
【知识梳理】
若,是不共线向量,是平面内任一向量

在平面内取一点O,作=,=,=,使=λ1=λ2
==+=λ1+λ2
得平面向量基本定理:

注意:1、必须不共线,且它是这一平面内所有向量的一组基底
2这个定理也叫共面向量定理
3λ1,λ2是被,,唯一确定的实数。
【例题选讲】
1.如图,ABCD是平行四边形,对角线AC,BD交于M,,,试用基底、表示。

2.设、是平面内一组基底,如果=3-2,=4+,=8-9,求证:A,B,D三点共线。

3.设、是平面内一组基底,如果=2+k,=--3,=2-,若A,B,D三点共线,求实数k的值。

4.中,,DE//BC,与边AC相交于点E,中线AM与DE交于点N,如图,,,试用、表示。

【归纳反思】
1.平面向量基本定理是平面向量坐标表示的基础,它说明同一平面内的任一向量都可以表示为其他两个不共线向量的线性组合。
2.在解具体问题时适当地选取基底,使其它向量能够用基底来表示,选择了两个不共线地向量,平面内的任何一个向量都可以用唯一表示,这样几何问题就可以转化为代数问题,转化为只含的代数运算。
【课内练习】
1.下面三种说法,正确的是
(1)一个平面内只有一对不共线的向量可作为表示该平面所有向量的基底;
(2)一个平面内有无数对不共线的向量可作为表示该平面所有向量的基底;
(3)零向量不可为基底中的向量;
2.如果、是平面内一组基底,,那么下列命题中正确的是
(1)若实数m,n,使m+n=,则m=n=0;
(2)空间任一向量可以表示为=m+n,这里m,n是实数;
(3)对实数m,n,向量m+n不一定在平面;
(4)对平面内的任一向量,使=m+n的实数m,n有无数组。
3.若G是的重心,D、E、F分别是AB、BC、CA的中点,则=
4.如图,在中,AM:AB=1:3,AN:AC=1:4,BN与CM交于点P,设,试用,表示。

5.设,,,求证:A、B、D三点共线。

【巩固提高】
1.设是平面内所有向量的一组基底,则下面四组中不能作为基底的是
A+和-B3-2和-6+4
C+2和+2D和+
2.若,,,则=
A+B+C+D+
3.平面直角坐标系中,O为原点,A(3,1),B(-1,3),点C满足,其中,且=1,则点C的轨迹方程为
4.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足
,则P的轨迹一定通过的心
5.若点D在的边BC上,且=,则3m+n的值为
6.设=+5,=-2+8,=3(-),求证:A、B、D三点共线。

7.在图中,对于平行四边形ABCD,点M是AB的中点,点N在BD上,且BN=BD,求证:M,N,C三点共线。

8.已知=5+2,=6+y,,,是一组基底,求y的值。

9.如图,在中,D、E分别是线段AC的两个四等份点,点F是线段BC的中点,设,,试用,为基底表示向量。

问题统计与分析