88教案网

你的位置: 教案 > 高中教案 > 导航 > 2018人教A版高中数学必修4.1平面向量数量积的物理背景及其含义讲义

高中向量的教案

发表时间:2020-10-13

2018人教A版高中数学必修4.1平面向量数量积的物理背景及其含义讲义。

俗话说,居安思危,思则有备,有备无患。高中教师要准备好教案,这是每个高中教师都不可缺少的。教案可以让上课时的教学氛围非常活跃,让高中教师能够快速的解决各种教学问题。我们要如何写好一份值得称赞的高中教案呢?以下是小编为大家收集的“2018人教A版高中数学必修4.1平面向量数量积的物理背景及其含义讲义”供大家参考,希望能帮助到有需要的朋友。

2.4.1平面向量数量积的物理背景及其含义
预习课本P103~105,思考并完成以下问题
(1)怎样定义向量的数量积?向量的数量积与向量数乘相同吗?
(2)向量b在a方向上的投影怎么计算?数量积的几何意义是什么?
(3)向量数量积的性质有哪些?
(4)向量数量积的运算律有哪些?
[新知初探]
1.向量的数量积的定义
(1)两个非零向量的数量积:
已知条件向量a,b是非零向量,它们的夹角为θ
定义a与b的数量积(或内积)是数量|a||b|cosθ
记法a·b=|a||b|cosθ
(2)零向量与任一向量的数量积:
规定:零向量与任一向量的数量积均为0.
[点睛](1)两向量的数量积,其结果是数量,而不是向量,它的值等于两向量的模与两向量夹角余弦值的乘积,其符号由夹角的余弦值来决定.
(2)两个向量的数量积记作a·b,千万不能写成a×b的形式.
2.向量的数量积的几何意义
(1)投影的概念:
①向量b在a的方向上的投影为|b|cosθ.
②向量a在b的方向上的投影为|a|cosθ.
(2)数量积的几何意义:
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
[点睛](1)b在a方向上的投影为|b|cosθ(θ是a与b的夹角),也可以写成a·b|a|.
(2)投影是一个数量,不是向量,其值可为正,可为负,也可为零.
3.向量数量积的性质
设a与b都是非零向量,θ为a与b的夹角.
(1)a⊥ba·b=0.
(2)当a与b同向时,a·b=|a||b|,
当a与b反向时,a·b=-|a||b|.
(3)a·a=|a|2或|a|=a·a=a2.
(4)cosθ=a·b|a||b|.
(5)|a·b|≤|a||b|.
[点睛]对于性质(1),可以用来解决有关垂直的问题,即若要证明某两个向量垂直,只需判定它们的数量积为0;若两个非零向量的数量积为0,则它们互相垂直.
4.向量数量积的运算律
(1)a·b=b·a(交换律).
(2)(λa)·b=λ(a·b)=a·(λb)(结合律).
(3)(a+b)·c=a·c+b·c(分配律).
[点睛](1)向量的数量积不满足消去律:若a,b,c均为非零向量,且a·c=b·c,但得不到a=b.
(2)(a·b)·c≠a·(b·c),因为a·b,b·c是数量积,是实数,不是向量,所以(a·b)·c与向量c共线,a·(b·c)与向量a共线,因此,(a·b)·c=a·(b·c)在一般情况下不成立.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)两个向量的数量积仍然是向量.()
(2)若a·b=b·c,则一定有a=c.()
(3)若a,b反向,则a·b=-|a||b|.()
(4)若a·b=0,则a⊥b.()
答案:(1)×(2)×(3)√(4)×
2.若|a|=2,|b|=12,a与b的夹角为60°,则a·b=()
A.2B.12
C.1D.14
答案:B
3.已知|a|=10,|b|=12,且(3a)·15b=-36,则a与b的夹角为()
A.60°B.120°
C.135°D.150°
答案:B
4.已知a,b的夹角为θ,|a|=2,|b|=3.
(1)若θ=135°,则a·b=________;
(2)若a∥b,则a·b=________;
(3)若a⊥b,则a·b=________.
答案:(1)-32(2)6或-6(3)0
向量数量积的运算

[典例](1)已知向量a与b的夹角为120°,且|a|=4,|b|=2,求:①a·b;②(a+b)·
(a-2b).

(2)如图,正三角形ABC的边长为2,=c,=a,=b,求a·b+b·c+c·a.
[解](1)①由已知得a·b=|a||b|cosθ=4×2×cos120°=-4.
②(a+b)·(a-2b)=a2-a·b-2b2=16-(-4)-2×4=12.
(2)∵|a|=|b|=|c|=2,且a与b,b与c,c与a的夹角均为120°,
∴a·b+b·c+c·a=2×2×cos120°×3=-3.
向量数量积的求法
(1)求两个向量的数量积,首先确定两个向量的模及向量的夹角,其中准确求出两向量的夹角是求数量积的关键.
(2)根据数量积的运算律,向量的加、减与数量积的混合运算类似于多项式的乘法
运算.

[活学活用]
已知|a|=3,|b|=4,a与b的夹角为120°,求:
(1)a·b;(2)a2-b2;
(3)(2a-b)·(a+3b).

解:(1)a·b=|a||b|cos120°=3×4×-12=-6.
(2)a2-b2=|a|2-|b|2=32-42=-7.
(3)(2a-b)·(a+3b)=2a2+5a·b-3b2
=2|a|2+5|a||b|·cos120°-3|b|2
=2×32+5×3×4×-12-3×42=-60.
与向量的模有关的问题

[典例](1)(浙江高考)已知e1,e2是平面单位向量,且e1·e2=12.若平面向量b满足b·e1=b·e2=1,则|b|=________.
(2)已知向量a,b的夹角为45°,且|a|=1,|2a-b|=10,则|b|=________.
[解析](1)令e1与e2的夹角为θ,
∴e1·e2=|e1|·|e2|cosθ=cosθ=12.
又0°≤θ≤180°,∴θ=60°.
∵b·(e1-e2)=0,
∴b与e1,e2的夹角均为30°,
∴b·e1=|b||e1|cos30°=1,
从而|b|=1cos30°=233.
(2)∵a,b的夹角为45°,|a|=1,
∴a·b=|a||b|cos45°=22|b|,
|2a-b|2=4-4×22|b|+|b|2=10,∴|b|=32.
[答案](1)233(2)32
求向量的模的常见思路及方法
(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.
(2)a·a=a2=|a|2或|a|=a2,可以实现实数运算与向量运算的相互转化.

[活学活用]
已知向量a,b满足|a|=|b|=5,且a与b的夹角为60°,求|a+b|,|a-b|,|2a+b|.
解:∵|a+b|2=(a+b)2=(a+b)(a+b)
=|a|2+|b|2+2a·b=25+25+2|a||b|cos60°
=50+2×5×5×12=75,
∴|a+b|=53.
∵|a-b|2=(a-b)2=(a-b)(a-b)
=|a|2+|b|2-2a·b
=|a|2+|b|2-2|a||b|cos60°=25,
∴|a-b|=5.
∵|2a+b|2=(2a+b)(2a+b)
=4|a|2+|b|2+4a·b
=4|a|2+|b|2+4|a||b|cos60°=175,
∴|2a+b|=57.

两个向量的夹角和垂直
题点一:求两向量的夹角
1.(重庆高考)已知非零向量a,b满足|b|=4|a|,且a⊥(2a+b),则a与b的夹角为()
A.π3B.π2
C.2π3D.5π6
解析:选C∵a⊥(2a+b),∴a·(2a+b)=0,
∴2|a|2+a·b=0,
即2|a|2+|a||b|cos〈a,b〉=0.
∵|b|=4|a|,∴2|a|2+4|a|2cos〈a,b〉=0,
∴cos〈a,b〉=-12,∴〈a,b〉=2π3.
题点二:证明两向量垂直
2.已知向量a,b不共线,且|2a+b|=|a+2b|,求证:(a+b)⊥(a-b).
证明:∵|2a+b|=|a+2b|,
∴(2a+b)2=(a+2b)2.
即4a2+4a·b+b2=a2+4a·b+4b2,
∴a2=b2.
∴(a+b)·(a-b)=a2-b2=0.
又a与b不共线,a+b≠0,a-b≠0,
∴(a+b)⊥(a-b).
题点三:利用夹角和垂直求参数
3.已知a⊥b,|a|=2,|b|=3且向量3a+2b与ka-b互相垂直,则k的值为()
A.-32B.32
C.±32D.1
解析:选B∵3a+2b与ka-b互相垂直,
∴(3a+2b)·(ka-b)=0,
∴3ka2+(2k-3)a·b-2b2=0.
∵a⊥b,∴a·b=0,
又|a|=2,|b|=3,
∴12k-18=0,k=32.

求向量a与b夹角的思路
(1)求向量夹角的关键是计算a·b及|a||b|,在此基础上结合数量积的定义或性质计算cosθ=a·b|a||b|,最后借助θ∈[0,π],求出θ的值.
(2)在个别含有|a|,|b|与a·b的等量关系式中,常利用消元思想计算cosθ的值.

层级一学业水平达标
1.已知向量a,b满足|a|=1,|b|=4,且a·b=2,则a与b的夹角θ为()
A.π6B.π4
C.π3D.π2
解析:选C由题意,知a·b=|a||b|cosθ=4cosθ=2,又0≤θ≤π,所以θ=π3.
2.已知|b|=3,a在b方向上的投影为32,则a·b等于()
A.3B.92
C.2D.12
解析:选B设a与b的夹角为θ.∵|a|cosθ=32,
∴a·b=|a||b|cosθ=3×32=92.
3.已知|a|=|b|=1,a与b的夹角是90°,c=2a+3b,d=ka-4b,c与d垂直,则k的值为()
A.-6B.6
C.3D.-3
解析:选B∵c·d=0,
∴(2a+3b)·(ka-4b)=0,
∴2ka2-8a·b+3ka·b-12b2=0,
∴2k=12,∴k=6.
4.已知a,b满足|a|=4,|b|=3,夹角为60°,则|a+b|=()
A.37B.13
C.37D.13
解析:选C|a+b|=a+b2=a2+2a·b+b2
=42+2×4×3cos60°+32=37.
5.在四边形ABCD中,=,且·=0,则四边形ABCD是()
A.矩形B.菱形
C.直角梯形D.等腰梯形
解析:选B∵=,即一组对边平行且相等,·=0,即对角线互相垂直,∴四边形ABCD为菱形.
6.给出以下命题:
①若a≠0,则对任一非零向量b都有a·b≠0;
②若a·b=0,则a与b中至少有一个为0;
③a与b是两个单位向量,则a2=b2.
其中,正确命题的序号是________.
解析:上述三个命题中只有③正确,因为|a|=|b|=1,所以a2=|a|2=1,b2=|b|2=1,故a2=b2.当非零向量a,b垂直时,有a·b=0,显然①②错误.
答案:③
7.设e1,e2是两个单位向量,它们的夹角为60°,则(2e1-e2)·(-3e1+2e2)=________.
解析:(2e1-e2)·(-3e1+2e2)=-6e21+7e1·e2-2e22=-6+7×cos60°-2=-92.
答案:-92
8.若|a|=1,|b|=2,c=a+b,且c⊥a,则向量a与b的夹角为________.
解析:∵c⊥a,∴c·a=0,
∴(a+b)·a=0,即a2+a·b=0.
∵|a|=1,|b|=2,∴1+2cos〈a,b〉=0,
∴cos〈a,b〉=-12.
又∵0°≤〈a,b〉≤180°,∴〈a,b〉=120°.
答案:120°
9.已知e1与e2是两个夹角为60°的单位向量,a=2e1+e2,b=2e2-3e1,求a与b的
夹角.
解:因为|e1|=|e2|=1,
所以e1·e2=1×1×cos60°=12,
|a|2=(2e1+e2)2=4+1+4e1·e2=7,故|a|=7,
|b|2=(2e2-3e1)2=4+9-12e1·e2=7,故|b|=7,
且a·b=-6e21+2e22+e1·e2=-6+2+12=-72,
所以cos〈a,b〉=a·b|a|·|b|=-727×7=-12,
所以a与b的夹角为120°.
10.已知|a|=2|b|=2,且向量a在向量b方向上的投影为-1.
(1)求a与b的夹角θ;
(2)求(a-2b)·b;
(3)当λ为何值时,向量λa+b与向量a-3b互相垂直?
解:(1)∵|a|=2|b|=2,
∴|a|=2,|b|=1.
又a在b方向上的投影为|a|cosθ=-1,
∴a·b=|a||b|cosθ=-1.
∴cosθ=-12,∴θ=2π3.
(2)(a-2b)·b=a·b-2b2=-1-2=-3.
(3)∵λa+b与a-3b互相垂直,
∴(λa+b)·(a-3b)=λa2-3λa·b+b·a-3b2
=4λ+3λ-1-3=7λ-4=0,∴λ=47.
层级二应试能力达标
1.已知|a|=2,|b|=1,且a与b的夹角为π3,则向量m=a-4b的模为()
A.2B.23
C.6D.12
解析:选B|m|2=|a-4b|2=a2-8a·b+16b2=4-8×2×1×12+16=12,所以|m|=23.
2.在Rt△ABC中,C=90°,AC=4,则·等于()
A.-16B.-8
C.8D.16
解析:选D法一:因为cosA=ACAB,故·=||·||cosA=||2=16,故选D.
法二:在上的投影为||cosA=||,故·=||||cosA=||2=16,故选D.

3.已知向量a,b满足|a|=1,|b|=2,且a在b方向上的投影与b在a方向上的投影相等,则|a-b|=()
A.1B.3
C.5D.3
解析:选C由于投影相等,故有|a|cos〈a,b〉=|b|cos〈a,b〉,因为|a|=1,|b|
=2,所以cos〈a,b〉=0,即a⊥b,则|a-b|=|a|2+|b|2-2a·b=5.
4.如图,在边长为2的菱形ABCD中,∠BAD=60°,E为BC的中点,则·=()
A.-3B.0
C.-1D.1
解析:选C·=AB―→+12AD―→·(-)
=12·-||2+12||2
=12×2×2×cos60°-22+12×22=-1.
5.设向量a,b,c满足a+b+c=0,(a-b)⊥c,a⊥b,若|a|=1,则|a|2+|b|2+|c|2的值是________.
解析:法一:由a+b+c=0得c=-a-b.
又(a-b)·c=0,∴(a-b)·(-a-b)=0,即a2=b2.
则c2=(a+b)2=a2+b2+2a·b=a2+b2=2,
∴|a|2+|b|2+|c|2=4.
法二:如图,作==a,
=b,则=c.
∵a⊥b,∴AB⊥BC,
又∵a-b=-=,
(a-b)⊥c,∴CD⊥CA,
所以△ABC是等腰直角三角形,
∵|a|=1,∴|b|=1,|c|=2,∴|a|2+|b|2+|c|2=4.
答案:4
6.已知向量a,b的夹角为45°,且|a|=4,12a+b·(2a-3b)=12,则|b|=________;b在a方向上的投影等于________.
解析:12a+b·(2a-3b)=a2+12a·b-3b2=12,即3|b|2-2|b|-4=0,解得|b|=2(舍负),b在a方向上的投影是|b|cos45°=2×22=1.
答案:21
7.已知非零向量a,b,满足|a|=1,(a-b)·(a+b)=12,且a·b=12.
(1)求向量a,b的夹角;(2)求|a-b|.
解:(1)∵(a-b)·(a+b)=12,
∴a2-b2=12,
即|a|2-|b|2=12.
又|a|=1,
∴|b|=22.
∵a·b=12,
∴|a|·|b|cosθ=12,
∴cosθ=22,
∴向量a,b的夹角为45°.
(2)∵|a-b|2=(a-b)2
=|a|2-2|a||b|cosθ+|b|2=12,
∴|a-b|=22.
8.设两个向量e1,e2,满足|e1|=2,|e2|=1,e1与e2的夹角为π3,若向量2te1+7e2与e1+te2的夹角为钝角,求实数t的取值范围.
解:由向量2te1+7e2与e1+te2的夹角为钝角,
得2te1+7e2·e1+te2|2te1+7e2|·|e1+te2|0.即
(2te1+7e2)·(e1+te2)0,化简即得
2t2+15t+70,解得-7t-12.
当夹角为π时,也有(2te1+7e2)·(e1+te2)0,
但此时夹角不是钝角,
设2te1+7e2=λ(e1+te2),λ0,可得
2t=λ,7=λt,λ0,λ=-14,t=-142.
∴所求实数t的取值范围是
-7,-142∪-142,-12.

相关知识

平面向量的数量积的物理背景及其含义


2.4.1平面向量的数量积的物理背景及其含义

一、教材分析
本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律.
二.教学目标
1.了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;
2.体会平面向量的数量积与向量投影的关系,理解掌握数量积的性质和运算律,并能运用性质和运算律进行相关的判断和运算;
3.体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。
三、教学重点难点
重点:1、平面向量数量积的含义与物理意义,2、性质与运算律及其应用。
难点:平面向量数量积的概念
四、学情分析
我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。有些学生对于基本概念不清楚,所以讲解时需要详细
五、教学方法
1.实验法:多媒体、实物投影仪。
2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1.学生的学习准备:预习学案。
2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。。
七、课时安排:1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

(二)情景导入、展示目标。
创设问题情景,引出新课
1、提出问题1:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?
期望学生回答:向量的加法、减法及数乘运算。
2、提出问题2:请同学们继续回忆,我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?
期望学生回答:物理模型→概念→性质→运算律→应用
3、新课引入:本节课我们仍然按照这种研究思路来研究向量的另外一种运算:平面向量数量积的物理背景及其含义
(三)合作探究,精讲点拨
探究一:数量积的概念
1、给出有关材料并提出问题3:
(1)如图所示,一物体在力F的作用下产生位移S,
那么力F所做的功:W=|F||S|cosα。
(2)这个公式的有什么特点?请完成下列填空:
①W(功)是量,
②F(力)是量,
③S(位移)是量,
④α是。
(3)你能用文字语言表述“功的计算公式”吗?
期望学生回答:功是力与位移的大小及其夹角余弦的乘积
2、明晰数量积的定义
(1)数量积的定义:
已知两个非零向量与,它们的夹角为,我们把数量︱︱︱b︱cos叫做与的数量积(或内积),记作:,即:=︱︱︱︱cos
(2)定义说明:
①记法“”中间的“”不可以省略,也不可以用“”代替。
②“规定”:零向量与任何向量的数量积为零。
(3)提出问题4:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?
期望学生回答:线性运算的结果是向量,而数量积的结果则是数,这个数值的大小不仅和向量与的模有关,还和它们的夹角有关。
(4)学生讨论,并完成下表:
的范围
0°≤90°
=90°
0°≤180°
的符号

例1:已知||=3,||=6,当①∥,②⊥,③与的夹角是60°时,分别求.
解:①当∥时,若与同向,则它们的夹角θ=0°,
∴=||||cos0°=3×6×1=18;
若与b反向,则它们的夹角θ=180°,
∴=||||cos180°=3×6×(-1)=-18;
②当⊥时,它们的夹角θ=90°,
∴=0;
③当与的夹角是60°时,有
=||||cos60°=3×6×=9
评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当∥时,有0°或180°两种可能.
变式:对于两个非零向量、,求使|+t|最小时的t值,并求此时与+t的夹角。

探究二:研究数量积的意义
1.给出向量投影的概念:
如图,我们把││cos(││cos)
叫做向量在方向上(在方向上)的投影,
记做:OB1=︱││︱cos
2.提出问题5:数量积的几何意义是什么?
期望学生回答:数量积等于的长度︱︱与在的方向上的投影
︱︱cos的乘积。

3.研究数量积的物理意义
请同学们用一句话来概括功的数学本质:功是力与位移的数量积。

探究三:探究数量积的运算性质
1、提出问题6:
比较︱︱与︱︱×︱︱的大小,你有什么结论?
2、明晰:数量积的性质

3.数量积的运算律
(1)、提出问题7:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?
预测:学生可能会提出以下猜想:
①=
②()=()
③(+)=+
(2)、分析猜想:
猜想①的正确性是显而易见的。
关于猜想②的正确性,请同学们先来讨论:猜测②的左右两边的结果各是什么?它们一定相等吗?
期望学生回答:左边是与向量共线的向量,而右边则是与向量共线的向量,显然在向量与向量不共线的情况下猜测②是不正确的。
(3)、明晰:数量积的运算律:

例2、(师生共同完成)已知︱︱=6,︱︱=4,与的夹角为60°,求(+2)(-3),并思考此运算过程类似于实数哪种运算?
解:(+2)(-3)=.-3.+2.-6.
=36-3×4×6×0.5-6×4×4

=-72
评述:可以和实数做类比记忆数量积的运算律

变式:(1)(+)2=2+2+2
(2)(+)(-)=2—2

(四)反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)
(五)发导学案、布置预习。
我们已经学习平面向量数量积的物理背景及含义,那么,在下一节课我们一起来学习数量积的坐标运算。模。夹角。这节课后大家可以先预习这一部分,着重分析坐标的作用
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
九、板书设计

十、教学反思
本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。我首先安排让学生讨论影响数量积结果的因素并完成表格,其次将数量积的几何意义提前,这样使学生从代数和

几何两个方面对数量积的“质变”特征有了更加充分的认识。通过尝试练习,一方面使学生尝试计算数量积,另一方面使学生理解数量积的物理意义,同时也为数量积的性质埋下伏笔。数量积的性质和运算律是数量积概念的延伸,教材中这两方面的内容都是以探究的形式出现,为了让学生很好的完成这两个探究活动,我始终按照先创设一定的情景,让学生去发现结论,教师明晰后,再由学生或师生共同完成证明。比如数量积的运算性质是将尝试练习的结论推广得到,数量积的运算律则是通过和实数乘法相类比得到,这样不仅使学生感到亲切自然,同时也培养了学生由特殊到一般的思维品质和类比创新的意识。
临清三中数学组编写人:王晓燕审稿人:刘桂江李怀奎
2.4.1平面向量的数量积的物理背景及其含义

课前预习学案
一、预习目标:
预习平面向量的数量积及其几何意义;平面向量数量积的重要性质及运算律;
二、预习内容:
1.平面向量数量积(内积)的定义:
2.两个向量的数量积与向量同实数积有很大区别
3.“投影”的概念:作图
4.向量的数量积的几何意义:
5.两个向量的数量积的性质:
设、为两个非零向量,e是与同向的单位向量.
1e=e=
2=
设、为两个非零向量,e是与同向的单位向量.
e=e=
3当与同向时,=当与反向时,=特别的=||2或
4cos=
5||≤||||

三、提出疑惑:
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点疑惑内容

课内探究学案
一、学习目标
1说出平面向量的数量积及其几何意义;
2.学会用平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;
学习重难点:。平面向量的数量积及其几何意义
二、学习过程
创设问题情景,引出新课
1、提出问题1:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?

2、提出问题2:请同学们继续回忆,我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?

3、新课引入:本节课我们仍然按照这种研究思路来研究向量的另外一种运算:平面向量数量积的物理背景及其含义
探究一:
数量积的概念
1、给出有关材料并提出问题3:
(1)如图所示,一物体在力F的作用下产生位移S,
那么力F所做的功:W=
(2)这个公式的有什么特点?请完成下列填空:
①W(功)是量,
②F(力)是量,
③S(位移)是量,
④α是。
(3)你能用文字语言表述“功的计算公式”吗?
2、明晰数量积的定义
(1)数量积的定义:
已知两个非零向量与,它们的夹角为,我们把数量︱︱︱︱cos叫做与的数量积(或内积),记作:,即:=︱︱︱︱cos
(2)定义说明:
①记法“”中间的“”不可以省略,也不可以用“”代替。
②“规定”:零向量与任何向量的数量积为零。
(3)提出问题4:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?

(4)学生讨论,并完成下表:
的范围
0°≤90°
=90°
0°≤180°
的符号

例1:已知||=3,||=6,当①∥,②⊥,③与的夹角是60°时,分别求.
解:
变式:
.对于两个非零向量、,求使|+t|最小时的t值,并求此时与+t的夹角.

探究二:研究数量积的意义
1.给出向量投影的概念:
如图,我们把││cos(││cos)
叫做向量在方向上(在方向上)的投影,
记做:OB1=︱││︱cos
2.提出问题5:数量积的几何意义是什么?

3.研究数量积的物理意义
请同学们用一句话来概括功的数学本质:

探究三:探究数量积的运算性质
1、提出问题6:比较︱︱与︱︱×︱︱的大小,你有什么结论?

2、明晰:数量积的性质

3.数量积的运算律
(1)、提出问题7:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也用?

(2)、明晰:数量积的运算律:

例2、(师生共同完成)已知︱︱=6,︱︱=4,与的夹角为60°,求(+2)(-3),并思考此运算过程类似于实数哪种运算?
解:

变式:(1)(+)2=2+2+2
(2)(+)(-)=2—2

(三)反思总结

(四)当堂检测

1.已知||=5,||=4,与的夹角θ=120o,求.

2.已知||=6,||=4,与的夹角为60o求(+2)(-3)
.
3.已知||=3,||=4,且与不共线,k为何值时,向量+k与-k互相垂直.

4.已知||=3,||=6,当①∥,②⊥,③与的夹角是60°时,分别求.

5.已知||=1,||=,(1)若∥,求;(2)若、的夹角为60°,求|+|;(3)若-与垂直,求与的夹角.

6.设m、n是两个单位向量,其夹角为60°,求向量=2m+n与=2n-3m的夹角.

课后练习与提高
1.已知||=1,||=,且(-)与垂直,则与的夹角是()
A.60°B.30°C.135°D.45°
2.已知||=2,||=1,与之间的夹角为,那么向量m=-4的模为()
A.2B.2C.6D.12
3.已知、是非零向量,则||=||是(+)与(-)垂直的()
A.充分但不必要条件B.必要但不充分条件?
C.充要条件D.既不充分也不必要条件
4.已知向量、的夹角为,||=2,||=1,则|+||-|=.
5.已知+=2i-8j,-=-8i+16j,其中i、j是直角坐标系中x轴、y轴正方向上的单位向量,那么=.
6.已知⊥、c与、的夹角均为60°,且||=1,||=2,|c|=3,则(+2-c)2=______.

参考答案:
1.D2.B3.A
4.5.1446.11

高二数学平面向量数量积的物理背景及含义


2.4.1平面向量的数量积的物理背景及其含义
教学目的:
1.掌握平面向量的数量积及其几何意义;
2.掌握平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理垂直的问题;
4.掌握向量垂直的条件.
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学过程:
一、复习引入:
(1)两个非零向量夹角的概念:
已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.
说明:(1)当θ=0时,a与b同向;
(2)当θ=π时,a与b反向;
(3)当θ=时,a与b垂直,记a⊥b;
(4)注意在两向量的夹角定义,两向量必须是同起点的.范围0≤≤180
(2)两向量共线的判定
(3)练习
1.若a=(2,3),b=(4,-1+y),且a∥b,则y=(C)
A.6B.5C.7D.8
2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为(B)?
A.-3B.-1C.1D.3
(4)力做的功:W=|F||s|cos,是F与s的夹角.
二、讲解新课:
1.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,
则数量|a||b|cos叫a与b的数量积,记作ab,即有ab=|a||b|cos,(0≤θ≤π).
并规定0向量与任何向量的数量积为0.
探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?
2、两个向量的数量积与实数乘向量的积有什么区别?
(1)两个向量的数量积是一个实数,不是向量,符号由cos的符号所决定.
(2)两个向量的数量积称为内积,写成ab;今后要学到两个向量的外积a×b,而ab是两个向量的数量的积,书写时要严格区分.符号“”在向量运算中不是乘号,既不能省略,也不能用“×”代替.
(3)在实数中,若a0,且ab=0,则b=0;但是在数量积中,若a0,且ab=0,不能推出b=0.因为其中cos有可能为0.
(4)已知实数a、b、c(b0),则ab=bca=c.但是ab=bca=c
如右图:ab=|a||b|cos=|b||OA|,bc=|b||c|cos=|b||OA|
ab=bc但ac
(5)在实数中,有(ab)c=a(bc),但是(ab)ca(bc)
显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线.
2.“投影”的概念:作图
定义:|b|cos叫做向量b在a方向上的投影.投影也是一个数量,不是向量;
当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;
当=0时投影为|b|;当=180时投影为|b|.
3.向量的数量积的几何意义:
数量积ab等于a的长度与b在a方向上投影|b|cos的乘积.
探究:两个向量的数量积的性质:设a、b为两个非零向量,
1、abab=0
2、当a与b同向时,ab=|a||b|;当a与b反向时,ab=|a||b|.
特别的aa=|a|2或|ab|≤|a||b|cos=
探究:平面向量数量积的运算律
1.交换律:ab=ba
证:设a,b夹角为,则ab=|a||b|cos,ba=|b||a|cos∴ab=ba
2.数乘结合律:(a)b=(ab)=a(b)
证:若0,(a)b=|a||b|cos,(ab)=|a||b|cos,a(b)=|a||b|cos,
若0,(a)b=|a||b|cos()=|a||b|(cos)=|a||b|cos,(ab)=|a||b|cos,
a(b)=|a||b|cos()=|a||b|(cos)=|a||b|cos.
3.分配律:(a+b)c=ac+bc
在平面内取一点O,作=a,=b,=c,∵a+b(即)在c方向上的投影等于a、b在c方向上的投影和,即|a+b|cos=|a|cos1+|b|cos2
∴|c||a+b|cos=|c||a|cos1+|c||b|cos2,∴c(a+b)=ca+cb即:(a+b)c=ac+bc
说明:(1)一般地,(ab)с≠a(bс)
(2)aс=bс,с≠0a=b
(3)有如下常用性质:a2=|a|2,
(a+b)(с+d)=aс+ad+bс+bd
三、讲解范例:
例1.证明:(a+b)2=a2+2ab+b2
例2.已知|a|=12,|b|=9,,求与的夹角。
例3.已知|a|=6,|b|=4,a与b的夹角为60o求:(1)(a+2b)(a-3b).(2)|a+b|与|a-b|.
(利用)
例4.已知|a|=3,|b|=4,且a与b不共线,k为何值时,向量a+kb与a-kb互相垂直.
四、课堂练习:
1.P106面1、2、3题。
2.下列叙述不正确的是()
A.向量的数量积满足交换律B.向量的数量积满足分配律
C.向量的数量积满足结合律D.ab是一个实数
3.|a|=3,|b|=4,向量a+b与a-b的位置关系为()
A.平行B.垂直C.夹角为D.不平行也不垂直
4.已知|a|=8,|b|=10,|a+b|=16,求a与b的夹角.
五、小结:
1.平面向量的数量积及其几何意义;
2.平面向量数量积的重要性质及运算律;
3.向量垂直的条件.
六、作业:《习案》作业二十三。

2018人教A版高中数学必修42.3.4平面向量共线的坐标表示讲义


2.3.4平面向量共线的坐标表示
预习课本P98~100,思考并完成以下问题
如何利用向量的坐标运算表示两个向量共线?
[新知初探]
平面向量共线的坐标表示
前提条件a=(x1,y1),b=(x2,y2),其中b≠0
结论当且仅当x1y2-x2y1=0时,向量a、b(b≠0)共线

[点睛](1)平面向量共线的坐标表示还可以写成x1x2=y1y2(x2≠0,y2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例;
(2)当a≠0,b=0时,a∥b,此时x1y2-x2y1=0也成立,即对任意向量a,b都有:x1y2-x2y1=0a∥b.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)已知a=(x1,y1),b=(x2,y2),若a∥b,则必有x1y2=x2y1.()
(2)向量(2,3)与向量(-4,-6)反向.()
答案:(1)√(2)√
2.若向量a=(1,2),b=(2,3),则与a+b共线的向量可以是()
A.(2,1)B.(-1,2)C.(6,10)D.(-6,10)
答案:C
3.已知a=(1,2),b=(x,4),若a∥b,则x等于()
A.-12B.12C.-2D.2
答案:D
4.已知向量a=(-2,3),b∥a,向量b的起点为A(1,2),终点B在x轴上,则点B的坐标为________.
答案:73,0
向量共线的判定

[典例](1)已知向量a=(1,2),b=(λ,1),若(a+2b)∥(2a-2b),则λ的值等于()
A.12B.13C.1D.2
(2)已知A(2,1),B(0,4),C(1,3),D(5,-3).判断与是否共线?如果共线,它们的方向相同还是相反?
[解析](1)法一:a+2b=(1,2)+2(λ,1)=(1+2λ,4),2a-2b=2(1,2)-2(λ,1)=(2-2λ,2),由(a+2b)∥(2a-2b)可得2(1+2λ)-4(2-2λ)=0,解得λ=12.
法二:假设a,b不共线,则由(a+2b)∥(2a-2b)可得a+2b=μ(2a-2b),从而1=2μ,2=-2μ,方程组显然无解,即a+2b与2a-2b不共线,这与(a+2b)∥(2a-2b)矛盾,从而假设不成立,故应有a,b共线,所以1λ=21,即λ=12.
[答案]A
(2)[解]=(0,4)-(2,1)=(-2,3),=(5,-3)-(1,3)=(4,-6),
∵(-2)×(-6)-3×4=0,∴,共线.
又=-2,∴,方向相反.
综上,与共线且方向相反.
向量共线的判定方法
(1)利用向量共线定理,由a=λb(b≠0)推出a∥b.
(2)利用向量共线的坐标表达式x1y2-x2y1=0直接求解.
[活学活用]
已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b平行,平行时它们的方向相同还是相反?
解:ka+b=k(1,2)+(-3,2)=(k-3,2k+2),
a-3b=(1,2)-3(-3,2)=(10,-4),
若ka+b与a-3b平行,则-4(k-3)-10(2k+2)=0,
解得k=-13,此时ka+b=-13a+b=-13(a-3b),故ka+b与a-3b反向.
∴k=-13时,ka+b与a-3b平行且方向相反.
三点共线问题

[典例](1)已知=(3,4),=(7,12),=(9,16),求证:A,B,C三点共线;
(2)设向量=(k,12),=(4,5),=(10,k),当k为何值时,A,B,C三点
共线?
[解](1)证明:∵=-=(4,8),
=-=(6,12),
∴=32,即与共线.
又∵与有公共点A,∴A,B,C三点共线.
(2)若A,B,C三点共线,则,共线,
∵=-=(4-k,-7),
=-=(10-k,k-12),
∴(4-k)(k-12)+7(10-k)=0.
解得k=-2或k=11.

有关三点共线问题的解题策略
(1)要判断A,B,C三点是否共线,一般是看与,或与,或与是否共线,若共线,则A,B,C三点共线;
(2)使用A,B,C三点共线这一条件建立方程求参数时,利用=λ,或=λ,或=λ都是可以的,但原则上要少用含未知数的表达式.
[活学活用]
设点A(x,1),B(2x,2),C(1,2x),D(5,3x),当x为何值时,与共线且方向相同,此时,A,B,C,D能否在同一条直线上?
解:=(2x,2)-(x,1)=(x,1),
=(1,2x)-(2x,2)=(1-2x,2x-2),
=(5,3x)-(1,2x)=(4,x).
由与共线,所以x2=1×4,所以x=±2.
又与方向相同,所以x=2.
此时,=(2,1),=(-3,2),
而2×2≠-3×1,所以与不共线,
所以A,B,C三点不在同一条直线上.
所以A,B,C,D不在同一条直线上.
向量共线在几何中的应用

题点一:两直线平行判断
1.如图所示,已知直角梯形ABCD,AD⊥AB,AB=2AD=2CD,过点C作CE⊥AB于E,用向量的方法证明:DE∥BC;
证明:如图,以E为原点,AB所在直线为x轴,EC所在直线为y轴建立直角坐标系,
设||=1,则||=1,||=2.
∵CE⊥AB,而AD=DC,
∴四边形AECD为正方形,
∴可求得各点坐标分别为E(0,0),B(1,0),C(0,1),D(-1,1).
∵=(-1,1)-(0,0)=(-1,1),
=(0,1)-(1,0)=(-1,1),
∴=,∴∥,即DE∥BC.

题点二:几何形状的判断
2.已知直角坐标平面上四点A(1,0),B(4,3),C(2,4),D(0,2),求证:四边形ABCD是等腰梯形.
证明:由已知得,=(4,3)-(1,0)=(3,3),
=(0,2)-(2,4)=(-2,-2).
∵3×(-2)-3×(-2)=0,∴与共线.
=(-1,2),=(2,4)-(4,3)=(-2,1),
∵(-1)×1-2×(-2)≠0,∴与不共线.
∴四边形ABCD是梯形.
∵=(-2,1),=(-1,2),
∴||=5=||,即BC=AD.
故四边形ABCD是等腰梯形.
题点三:求交点坐标
3.如图所示,已知点A(4,0),B(4,4),C(2,6),求AC和OB交点P的坐标.
解:法一:设=t=t(4,4)
=(4t,4t),
则=-=(4t,4t)-(4,0)=(4t-4,4t),
=-=(2,6)-(4,0)=(-2,6).
由,共线的条件知(4t-4)×6-4t×(-2)=0,
解得t=34.∴=(3,3).
∴P点坐标为(3,3).
法二:设P(x,y),
则=(x,y),=(4,4).
∵,共线,
∴4x-4y=0.①
又=(x-2,y-6),=(2,-6),
且向量,共线,
∴-6(x-2)+2(6-y)=0.②
解①②组成的方程组,得x=3,y=3,
∴点P的坐标为(3,3).

应用向量共线的坐标表示求解几何问题的步骤
层级一学业水平达标
1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是()
A.e1=(0,0),e2=(1,-2)
B.e1=(-1,2),e2=(5,7)
C.e1=(3,5),e2=(6,10)
D.e1=(2,-3),e2=12,-34
解析:选BA中向量e1为零向量,∴e1∥e2;C中e1=12e2,∴e1∥e2;D中e1=4e2,∴e1∥e2,故选B.
2.已知点A(1,1),B(4,2)和向量a=(2,λ),若a∥,则实数λ的值为()
A.-23B.32
C.23D.-32
解析:选C根据A,B两点的坐标,可得=(3,1),
∵a∥,∴2×1-3λ=0,解得λ=23,故选C.
3.已知A(2,-1),B(3,1),则与平行且方向相反的向量a是()
A.(2,1)B.(-6,-3)
C.(-1,2)D.(-4,-8)
解析:选D=(1,2),向量(2,1)、(-6,-3)、(-1,2)与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.
4.已知向量a=(x,2),b=(3,-1),若(a+b)∥(a-2b),则实数x的值为()
A.-3B.2
C.4D.-6

解析:选D因为(a+b)∥(a-2b),a+b=(x+3,1),a-2b=(x-6,4),所以4(x+3)-(x-6)=0,解得x=-6.
5.设a=32,tanα,b=cosα,13,且a∥b,则锐角α为()
A.30°B.60°
C.45°D.75°
解析:选A∵a∥b,
∴32×13-tanαcosα=0,
即sinα=12,α=30°.
6.已知向量a=(3x-1,4)与b=(1,2)共线,则实数x的值为________.
解析:∵向量a=(3x-1,4)与b=(1,2)共线,
∴2(3x-1)-4×1=0,解得x=1.
答案:1
7.已知A(-1,4),B(x,-2),若C(3,3)在直线AB上,则x=________.
解析:=(x+1,-6),=(4,-1),
∵∥,∴-(x+1)+24=0,∴x=23.
答案:23
8.已知向量a=(1,2),b=(-2,3),若λa+μb与a+b共线,则λ与μ的关系是________.
解析:∵a=(1,2),b=(-2,3),
∴a+b=(1,2)+(-2,3)=(-1,5),
λa+μb=λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ),
又∵(λa+μb)∥(a+b),
∴-1×(2λ+3μ)-5(λ-2μ)=0,
∴λ=μ.
答案:λ=μ
9.已知A,B,C三点的坐标为(-1,0),(3,-1),(1,2),并且=13,=13,求证:∥.
证明:设E,F的坐标分别为(x1,y1)、(x2,y2),
依题意有=(2,2),=(-2,3),=(4,-1).
∵=13,∴(x1+1,y1)=13(2,2).
∴点E的坐标为-13,23.
同理点F的坐标为73,0,=83,-23.
又83×(-1)-4×-23=0,∴∥.
10.已知向量a=(2,1),b=(1,1),c=(5,2),m=λb+c(λ为常数).
(1)求a+b;
(2)若a与m平行,求实数λ的值.
解:(1)因为a=(2,1),b=(1,1),
所以a+b=(2,1)+(1,1)=(3,2).
(2)因为b=(1,1),c=(5,2),
所以m=λb+c=λ(1,1)+(5,2)=(λ+5,λ+2).
又因为a=(2,1),且a与m平行,
所以2(λ+2)=λ+5,解得λ=1.
层级二应试能力达标
1.已知平面向量a=(x,1),b=(-x,x2),则向量a+b()
A.平行于x轴
B.平行于第一、三象限的角平分线
C.平行于y轴
D.平行于第二、四象限的角平分线
解析:选C因为a+b=(0,1+x2),所以a+b平行于y轴.
2.若A(3,-6),B(-5,2),C(6,y)三点共线,则y=()
A.13B.-13
C.9D.-9
解析:选DA,B,C三点共线,
∴∥,而=(-8,8),=(3,y+6),
∴-8(y+6)-8×3=0,即y=-9.
3.已知向量a=(1,0),b=(0,1),c=ka+b(k∈R),d=a-b,如果c∥d,那么()
A.k=1且c与d同向
B.k=1且c与d反向
C.k=-1且c与d同向
D.k=-1且c与d反向
解析:选D∵a=(1,0),b=(0,1),若k=1,则c=a+b=(1,1),d=a-b=(1,-1),显然,c与d不平行,排除A、B.若k=-1,则c=-a+b=(-1,1),d=a-b=-(-1,1),即c∥d且c与d反向.

4.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个顶点的坐标是()
A.(1,5)或(5,5)
B.(1,5)或(-3,-5)
C.(5,-5)或(-3,-5)
D.(1,5)或(5,-5)或(-3,-5)
解析:选D设A(-1,0),B(3,0),C(1,-5),第四个顶点为D,
①若这个平行四边形为ABCD,
则=,∴D(-3,-5);
②若这个平行四边形为ACDB,
则=,∴D(5,-5);
③若这个平行四边形为ACBD,
则=,∴D(1,5).
综上所述,D点坐标为(1,5)或(5,-5)或(-3,-5).
5.已知=(6,1),=(x,y),=(-2,-3),∥,则x+2y的值为________.
解析:∵=++=(6,1)+(x,y)+(-2,-3)
=(x+4,y-2),
∴=-=-(x+4,y-2)=(-x-4,-y+2).
∵∥,
∴x(-y+2)-(-x-4)y=0,即x+2y=0.
答案:0
6.已知向量=(3,-4),=(6,-3),=(5-m,-3-m).若点A,B,C能构成三角形,则实数m应满足的条件为________.
解析:若点A,B,C能构成三角形,则这三点不共线,即与不共线.
∵=-=(3,1),=-=(2-m,1-m),
∴3(1-m)≠2-m,即m≠12.
答案:m≠12
7.已知A(1,1),B(3,-1),C(a,b).
(1)若A,B,C三点共线,求a与b之间的数量关系;
(2)若=2,求点C的坐标.
解:(1)若A,B,C三点共线,则与共线.
=(3,-1)-(1,1)=(2,-2),=(a-1,b-1),
∴2(b-1)-(-2)(a-1)=0,∴a+b=2.
(2)若=2,则(a-1,b-1)=(4,-4),
∴a-1=4,b-1=-4,∴a=5,b=-3,
∴点C的坐标为(5,-3).
8.如图所示,在四边形ABCD中,已知A(2,6),B(6,4),C(5,0),D(1,0),求直线AC与BD交点P的坐标.
解:设P(x,y),则=(x-1,y),
=(5,4),=(-3,6),=(4,0).
由B,P,D三点共线可得==(5λ,4λ).
又∵=-=(5λ-4,4λ),
由于与共线得,(5λ-4)×6+12λ=0.
解得λ=47,
∴=47=207,167,
∴P的坐标为277,167.

高中数学必修四2.4平面向量的数量积小结导学案


2.4平面向量的数量积小结
【学习目标】
1.理解数量积的含义掌握数量积的坐标表达式,会进行平面向量数量积的运算.
2.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.
3.会用向量方法解决某些简单的实际问题.
【新知自学】
知识梳理:
1.向量的夹角
已知两个________向量a和b,作OA→=a,OB→=b,则_________称作向量a与向量b的夹角,记作〈a,b〉.
向量夹角〈a,b〉的范围是______,且______=〈b,a〉.
若〈a,b〉=______,则a与b垂直,记作__________.
2.平面向量的数量积
__________叫做向量a和b的数量积(或内积),记作ab=__________.可见,ab是实数,可以等于正数、负数、零.其中|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影.
数量积的记号是ab,不能写成a×b,也不能写成ab.
向量数量积满足下列运算律:
①ab=__________(交换律)
②(a+b)c=__________(分配律)
③(λa)b=__________=a(λb)(数乘结合律).
3.平面向量数量积的性质:已知非零向量a=(a1,a2),b=(b1,b2)
性质几何表示坐标表示
定义ab=|a||b|cos〈a,b〉ab=a1b1+a2b2
模aa=|a|2或|a|=aa
|a|=a21+a22

若A(x1,y1),B(x2,y2),则AB→=(x2-x1,y2-y1)|AB→|=

a⊥bab=0a1b1+a2b2=0
夹角cos〈a,b〉=ab|a||b|(|a||b|≠0)cos〈a,b〉=a1b1+a2b2a21+a22b21+b22

|ab|与|a||b|的关系|ab|≤|a||b||a1b1+a2b2|≤a21+a22b21+b22

对点练习:
1.已知下列各式:
①|a|2=a2;②ab|a|2=ba;③(ab)2=a2b2;
④(a-b)2=a2-2ab+b2,其中正确的有().
A.1个B.2个
C.3个D.4个
2.设向量a=(1,0),b=12,12,则下列结论中正确的是().
A.|a|=|b|B.ab=22
C.a∥bD.a-b与b垂直
3.已知a=(1,-3),b=(4,6),c=(2,3),则(bc)a等于().
A.(26,-78)B.(-28,-42)
C.-52D.-78
4.若向量a,b满足|a|=1,|b|=2且a与b的夹角为π3,则|a+b|=__________.

5.已知|a|=2,|b|=4且a⊥(a-b),则a与b的夹角是__________.

【合作探究】
典例精析:
一、平面向量数量积的运算
例1、(1)在等边△ABC中,D为AB的中点,AB=5,求AB→BC→,|CD→|;
(2)若a=(3,-4),b=(2,1),求(a-2b)(2a+3b)和|a+2b|.

变式练习:
如图,在菱形ABCD中,若AC=4,则CA→AB→=________.

规律总结:
向量数量积的运算与实数运算不同:
(1)若a,b为实数,且ab=0,则有a=0或b=0,但ab=0却不能得出a=0或b=0.
(2)若a,b,c∈R,且a≠0,则由ab=ac可得b=c,但由ab=ac及a≠0却不能推出b=c.
(3)若a,b,c∈R,则a(bc)=(ab)c(结合律)成立,但对于向量a,b,c,而(ab)c与a(bc)一般是不相等的,向量的数量积是不满足结合律的.
(4)若a,b∈R,则|ab|=|a||b|,但对于向量a,b,却有|ab|≤|a||b|,等号当且仅当a∥b时成立.
二、两平面向量的夹角与垂直
例2、已知|a|=4,|b|=3,(2a-3b)(2a+b)=61.
(1)求a与b的夹角θ;
(2)若AB→=a,BC→=b,求△ABC的面积.
规律总结:
1.数量积大于0说明两向量的夹角为锐角或共线同向;数量积等于0说明两向量的夹角为直角;数量积小于0说明两向量的夹角为钝角或反向.
2.当a,b是非坐标形式时,求a与b的夹角,需求得ab及|a|,|b|或得出它们的关系.
变式练习:
已知平面内A,B,C三点在同一条直线上,OA→=(-2,m),OB→=(n,1),OC→=(5,-1),且OA→⊥OB→,求实数m,n的值.

三、求平面向量的模
例3、(1)设单位向量m=(x,y),b=(2,-1).若m⊥b,则|x+2y|=__________.
(2)已知向量a=cos3x2,sin3x2,b=cosx2,-sinx2,且x∈-π3,π4.
(1)求ab及|a+b|;
(2)若f(x)=ab-|a+b|,求f(x)的最大值和最小值.

规律总结:
利用数量积求长度问题是数量积的重要应用,要掌握此类问题的处理方法:
(1)|a|2=a2=aa;
(2)|a±b|2=(a±b)2=a2±2ab+b2;
(3)若a=(x,y),则|a|=x2+y2.
变式练习:
已知a与b是两个非零向量,且|a|=|b|=|a-b|,求a与a+b的夹角.

四、平面向量的应用
例4、已知向量OA→=a=(cosα,sinα),OB→=b=(2cosβ,2sinβ),OC→=c=(0,d)(d>0),其中O为坐标原点,且0<α<π2<β<π.
(1)若a⊥(b-a),求β-α的值;
(2)若OB→OC→|OC→|=1,OA→OC→|OC→|=32,求△OAB的面积S.

变式练习:
△ABC的面积是30,内角A,B,C所对边长分别为a,b,c,cosA=1213.
(1)求AB→AC→;
(2)若c-b=1,求a的值.

【课堂小结】

【当堂达标】
1.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是().
A.x=-12B.x=-1
C.x=5D.x=0
2.在△ABC中,∠A=90°,AB=1,AC=2.设点P,Q满足AP→=λAB→,AQ→=(1-λ)AC→,λ∈R.若BQ→CP→=-2,则λ=().
A.13B.23C.43D.2
3.在长江南岸渡口处,江水以12.5km/h的速度向东流,渡船的速度为25km/h.渡船要垂直地渡过长江,则航向为__________.
4.给出以下四个命题:
①对任意两个向量a,b都有|ab|=|a||b|;
②若a,b是两个不共线的向量,且AB→=λ1a+b,AC→=a+λ2b(λ1,λ2∈R),则A,B,C共线λ1λ2=-1;
③若向量a=(cosα,sinα),b=(cosβ,sinβ),则a+b与a-b的夹角为90°;
④若向量a,b满足|a|=3,|b|=4,|a+b|=13,则a,b的夹角为60°.
以上命题中,错误命题的序号是__________.

【课时作业】
1.已知向量a和b的夹角为120°,|a|=1,|b|=3,则|a-b|=()
A.13B.23C.15D.4
2.已知a,b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是()
A.π6B.π3C.2π3D.5π6
3.已知两个非零向量a与b,定义|a×b|=|a||b|sinθ,其中θ为a与b的夹角.若a=(-3,4),b=(0,2),则|a×b|的值为()
A.-8B.-6C.8D.6
4.已知向量a=(2,1),b=(1,m),若a与b的夹角是锐角,则实数m的取值范围是________.
5.已知向量a,b满足|2a+b|=7,且a⊥b,则|2a-b|=________.
6.在△ABC中,∠A=90°,且AB→BC→=-1,则边c的长为________.
7、已知a=(4,2),(1)求与a垂直的单位向量;
(2)与垂直的单位向量;(3)与平行的单位向量

8、已知点A(1,2),B(3,4),C(5,0),求∠BAC的正弦值。
【延伸探究】
已知平面上三点A,B,C,向量BC→=(2-k,3),AC→=(2,4).
(1)若三点A,B,C不能构成三角形,求实数k应满足的条件;
(2)若△ABC为直角三角形,求k的值.