线幼儿园教案
发表时间:2020-10-26初一数学下第五章相交线与平行线知识点归纳及典型练习(含答案)。
第五章相交线与平行线
1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.
2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:_______________.
3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.
4.直线外一点到这条直线的垂线段的长度,叫做________________________.
5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.
6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.
7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.
推论:如果两条直线都与第三条直线平行,那么_____________________.
8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.
⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:
________________________________________.
9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______.
10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:_________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________.
11.判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.
12.把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.
平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______.
⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.
熟悉以下各题:
13.如图,那么点A到BC的距离是_____,点B到AC的距离是_______,点A、B两点的距离是_____,点C到AB的距离是________.
14.设、b、c为平面上三条不同直线,
a)若,则a与c的位置关系是_________;
b)若,则a与c的位置关系是_________;
c)若,,则a与c的位置关系是________.
15.如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数.
16.如图,与是邻补角,OD、OE分别是与的平分线,试判断OD与OE的位置关系,并说明理由.
17.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.
解:∠B+∠E=∠BCE
过点C作CF∥AB,
则____()
又∵AB∥DE,AB∥CF,
∴____________()
∴∠E=∠____()
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
18.⑴如图,已知∠1=∠2求证:a∥b.⑵直线,求证:.
19.阅读理解并在括号内填注理由:
如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.
证明:∵AB∥CD,
∴∠MEB=∠MFD()
又∵∠1=∠2,
∴∠MEB-∠1=∠MFD-∠2,
即∠MEP=∠______
∴EP∥_____.()
20.已知DB∥FG∥EC,A是FG上一点,∠ABD=60°,∠ACE=36°,AP平分∠BAC,求:⑴∠BAC的大小;⑵∠PAG的大小.
21.如图,已知,于D,为上一点,于F,交CA于G.求证.
22.已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.
参考答案
1.邻补角2.对顶角,对顶角相等3.垂直有且只有垂线段最短4.点到直线的距离5.同位角内错角同旁内角6.平行相交平行7.平行这两直线互相平行8.同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.9.平行10.两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.11.命题题设结论由已知事项推出的事项题设结论真命题假命题12.平移相同平行且相等13.6cm8cm10cm4.8cm.14.平行平行垂直15.28°118°59°16.OD⊥OE理由略17.1(两直线平行,内错角相等)DE∥CF(平行于同一直线的两条直线平行)2(两直线平行,内错角相等).18.⑴∵∠1=∠2,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a∥b(同位角相等两直线平行)⑵∵a∥b∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等)∴∠1=∠2.19.两直线平行,同位角相等MFQFQ同位角相等两直线平行20.96°,12°.21.22.∠A=∠F.∵∠1=∠DGF(对顶角相等)又∠1=∠2∴∠DGF=∠2∴DB∥EC(同位角相等,两直线平行)∴∠DBA=∠C(两直线平行,同位角相等)又∵∠C=∠D∴∠DBA=∠D∴DF∥AC(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等).jab88.COm
相关推荐
初一数学下册《相交线与平行线》知识点归纳
初一数学下册《相交线与平行线》知识点归纳
一、目标与要求
1.理解对顶角和邻补角的概念,能在图形中辨认;
2.掌握对顶角相等的性质和它的推证过程;
3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。
二、重点
在较复杂的图形中准确辨认对顶角和邻补角;
两条直线互相垂直的概念、性质和画法;
同位角、内错角、同旁内角的概念与识别。
三、难点
在较复杂的图形中准确辨认对顶角和邻补角;
对点到直线的距离的概念的理解;
对平行线本质属性的理解,用几何语言描述图形的性质;
能区分平行线的性质和判定,平行线的性质与判定的混合应用。
四、知识框架
五、知识点、概念总结
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.对顶角和邻补角的关系
4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7.垂线性质
(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
8.同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
10.平行线:在同一平面内,不相交的两条直线叫做平行线。
11.命题:判断一件事情的语句叫命题。
12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。
13.假命题:条件和结果相矛盾的命题是假命题。
14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
16.定理与性质
对顶角的性质:对顶角相等。
17.垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
19.平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
20.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
21.命题的扩展
三种命题
(1)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。
(2)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。
(3)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。
四种命题的相互关系
(1)四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。
(2)四种命题的真假关系:
两个命题互为逆否命题,它们有相同的真假性。两个命题为互逆命题或互否命题,它们的真假性没有关系
命题之间的关系
(1)能够判断真假的陈述句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题。
(2)“若p,则q”形式的命题中p叫做命题的条件,q叫做命题的结论。
(3)命题的分类:
A:原命题:一个命题的本身称之为原命题,如:若x1,则f(x)=(x-1)2单调递增。
B:逆命题:将原命题的条件和结论颠倒的新命题,如:若f(x)=(x-1)2单调递增,则x1.
C:否命题:将原命题的条件和结论全否定的新命题,但不改变条件和结论的顺序,
如:若x小于1,则f(x)=(x-1)2不单调递增。
D:逆否命题:将原命题的条件和结论颠倒,然后再将条件和结论全否定的新命题,
如:若f(x)=(x-1)2不单调递增,则x小于1.
(4)命题的否定
命题的否定是只将命题的结论否定的新命题,这与否命题不同。
(5)4种命题及命题的否定的真假性关系
原命题和逆否命题等价,否命题和逆命题等价,命题的否定与原命题的真假性相反。
充分条件与必要条件
(1)“若p,则q”为真命题,叫做由p推出q,记作p=q,并且说p是q的充分条件,q是p的必要条件。
(2)“若p,则q”为假命题,叫做由p推不出q,记作p≠q,并且说p不是q的充分条件(或p是q的非充分条件),q不是p的必要条件(或q是p的非必要条件)。
充要条件
如果既有p=q,又有q=p,就记作p=q,并且说p是q的充分必要条件(或q是p的充分必要条件),简称充要条件。
初一数学下册第二章平行线与相交线教案
老师在新授课程时,一般会准备教案课件,大家应该开始写教案课件了。对教案课件的工作进行一个详细的计划,可以更好完成工作任务!你们会写适合教案课件的范文吗?下面是小编为大家整理的“初一数学下册第二章平行线与相交线教案”,仅供您在工作和学习中参考。
第二章平行线与相交线
2.1台球桌面上的角
教学目标:1、经历观察、操作、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力。
2、在具体情景中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等,并能解决一些实际问题。
教学重点:1、余角、补角、对顶角的概念
2、理解等角的余角相等、等角的补角相等、对顶角相等。
教学难点:理解等角的余角相等、等角的补角相等。判断是否是对顶角。
教学方法:观察、探索、归纳总结。
准备活动:在打桌球的时候,如果是不能直接的把球打入袋中,那么应该怎么打才能保证球能入袋呢?
教学过程:
内容一:观察图中各角与∠1之间的关系:
∠ADF+∠1=180
∠ADC+∠1=180
∠BDC+∠1=180
∠EDB+∠1=180
∠2=∠1
教学中要鼓励学生自己去寻找,但是不要求学生说出图中所有的角与∠1的关系。在对图中角的关系的充分讨论的基础上,概括出互为余角和互为补角的概念。
提醒学生:互为余角、互为补角仅仅表明了两个角之间的度量关系,并没有对其位置关系作出限制。(为下面的对顶角的学习作铺垫)
让学生探索出“同角或等角的余角相等,同角或等角的补角相等”的结论。鼓励学生用自己的语言表达,并说明理由。
内容二:
议一议:
(1)用剪刀剪东西的时候,哪对角同时变大或变小?
(2)如果将剪刀简单的表示为右图,那么∠1和∠2有什么位置关系?它们的大小有什么关系?能试着说明理由吗?
由此引出对顶角的概念和“对顶角相等”的结论。
思考:如下图所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量角的度数是多少度吗?你的根据是什么?
小结:熟(1)余角、补角的概念。
(2)同角或等角的余角相等,同角或等角的补角相等。
(3)对顶角的概念和“对顶角相等”。
2.2探索直线平行的条件(1)
教学目标:1、经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达的能力。
2、会认由三线八角所成的同位角
3、经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题
教学重点:会认各种图形下的同位角,并掌握直线平行的条件是“同位角相等,两直线平行”
教学难点:判断两直线平行的说理过程
教学方法:实践法
教学过程:
(一)课前复习:
(1)在同一平面内,两条直线的位置关系是
(2)在同一平面内,两条直线的是平行线
(二)创设情景:
如书中彩图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹的角为多少度时才能使木条a与木条b平行?
(三)新课:
1、动手操作移动活动木条,完成书中的做一做内容。
2、改变图中∠1的大小,按照上面的方式再做一做,∠1与∠2的大小满足什么关系时,木条a与木条b平行?小组内交流。
3、由∠1与∠2的位置引出同位角的概念,如图∠1与∠2、∠5与∠6、∠7与∠8、∠3与∠4等都是同位角
练习:如图,哪些是同位角?
4、几何画板动画演示两直线平行的条件——同位角相等
5、例:找出下图中互相平行的直线,并说明理由。
(四)小结:本节课学习了两直线平行的条件是同位角相等,要特别注意数形结合。
2.2探索直线平行的条件(2)
教学目标:1、经历观察、操作、想象、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
2、经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题。
3、会用三角尺过已知直线外一点画这条直线的平行线。
教学重点:弄清内错角和同旁内角的意义,会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。
教学难点:会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。
教学方法:观察讨论、归纳总结。
准备活动:
1、如图,a∥b,数一数图中有几个角(不含平角)
2、写出图中的所有同位角。
教学过程:
一、引入:
小明有一块小画板,他想知道它的上下边缘是否平行,
于是他在两个边缘之间画了一条线段AB(如图所示)。他
只有一个量角器,他通过测量某些角的大小就能知道这个
画板的上下边缘是否平行,你知道他是怎样做的吗?
定义:1、内错角;2、同旁内角。
二、探索练习:
观察三线八角,内错角的变化和同旁内角的变化,讨论:
(1)内错角满足什么关系时,两直线平行?为什么?
(2)同旁内角满足什么关系时,两直线平行?为什么?
★结论:内错角相等,两直线平行。
同旁内角互补,两直线平行。
三、巩固练习:
1、如右图,∵∠1=∠2
∴∥,
∵∠2=
∴∥,同位角相等,两直线平行
∵∠3+∠4=180°
∴∥,
∴AC∥FG,
2、如右图,∵DE∥BC
∴∠2=,
∴∠B+=180°,
∵∠B=∠4
∴∥,
∴+=180°,两直线平行,同旁内角互补
小结:会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。
2.3平行线的性质(1)
教学目的:1.使学生掌握平行线的三个性质,并能运用它们作简单的推理.
2.使学生了解平行线的性质和判定的区别.
重点难点:1.平行的三个性质,是本节的重点,也是本章的重点之一.
2.怎样区分性质和判定,是教学中的一个难点.
教学过程:
一、引入:
问:我们已经学习过平行线的哪些判定公理和定理?
答:1.同位角相等,两直线平行.
2.内错角相等,两直线平行.
3.同旁内角互补,两直线平行.
问:把这三句话颠倒每句话中的前后次序,能得怎样的三句话?新的三句话还正确吗?
答:1.两直线平行,同位角相等.
2.两直线平行,内错角相等.
3.两直线平行,同旁内角互补.
教师指出:把一句原本正确的话,颠倒前后顺序,得到新的一句话,不能保证一定正确.例如,“对顶角相等”是正确的,倒过来说“相等的角是对顶角”就不正确了.因此,上述新的三句话的正确性,需要进一步证明.
二、新课;
平行线的性质一:两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
怎样说明它的正确性呢?
方法一:通过测量实践,作出两条平行线a∥b,再任意作第三条直线c,量量所得的同位角是否相等.
方法二:从理论上给予严格推理论证.
已知:如图2-32,直线AB、CD、被EF所截,AB∥CD.
求证:∠1=∠2.
证明:(反证法)
假定∠1≠∠2,
则过∠1顶点O作直线A′B′使∠EOB′=∠2.
∴A′B′∥CD(同位角相等,两直线平行).
故过O点有两条直线AB、A′B′与已知直线CD平行,这与平行公理矛盾.即假定是不正确的.
∴∠1=∠2.
另证:(同一法)
过∠1顶点O作直线A′B′使∠E0B′=∠2.
∴A′B′∥CD(同位角相等,两直线平行).
∵AB∥CD(已知),且O点在AB上,O点在A′B′上,
∴A′B′与AB重合(平行公理)
∴∠1=∠2.
平行线的性质二:两条平线被第三条直线所截,内错角相等.
简单说成:两直线平行,内错角相等.
启发学生,把这句话“翻译”成已知、求证,并作出相应的图形.
已知:如图2-33,直线AB、CD被EF所截,AB∥CD,
求证:∠3=∠2.
证明:∵AB∥CD(已知)
∴∠1=∠2(两直线平行,同位角相等).
∵∠1=∠3(对顶角相等),
∴∠3=∠2(等量代换).
说明:如果学生仿照性质一,用反证法或同一法去证,应该给以鼓励.并同时指出,既然性质一已证明正确,那么也可以直接利用性质一的结论,这样常常可以使证明过程简单些.然后介绍或引导学生得出上面的证法.
平行线的性质三:两条平行线被第三条直线所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补.
已知:如右图,直线AB、CD被EF所截,AB∥CD.
求证:∠2+∠4=180°.
证法一:∵AB∥CD(已知),
∴∠1=∠2(两直线平行,同位角相等),
∵∠1+∠4=180°(邻补角),
∴∠2+∠4=180°(等量代换).
证法二:∵AB∥CD(已知),
∴∠2=∠3(两直线平行,内错角相等).
∵∠3+∠4=180°(邻补角),
∴∠2+∠4=180°(等量代换).
例已知某零件形如梯形ABCD,现已残破,只能量得∠A=115°,∠D=100°,你能知道下底的两个角∠B、∠C的度数吗?根据是什么?(如图2-35).
解:∠B=180°-∠A=65°,∠C=180°-∠D=80°.(根据平行线的性质三)
小结:平行线的性质与判定的区别:
1.从因果关系上看
性质:因为两条直线平行,所以……;
判定:因为……,所以两条直线平行.
2.从所起作用上看
性质:根据两条直线平行,去证两角相等或互补:
判定:根据两角相等或互补,去证两条直线平行.
三、作业
1.如图,AB∥CD,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?
2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C各是多少度,为什么?
3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.
2.4用尺规作线段和角(1)
教学目标:1、会用尺规作一条线段等于已知线段;并了解它们在尺规作图中的简单应用。
教学重点:1作一条线段等于已知线段。
2、作线段的和、差、倍数等。
教学难点:作线段的和、差。
教学方法:讲授法、讨论、总结。
教学过程:
一、新课:
提出问题:如何作一条线段等于已知线段?你有什么办法?
教师向学生详细的讲授尺规作图法。
作法示范
(1)作射线A′C′;
A′C′
(2)以点A′为圆心,以AB的长为半径画弧,交射线A′C′于点B′。A′B′就是所作的线段。
A′B′C′
教师强调注意事项:
(1)解题前要写“解”;
(2)严格按作图要求操作;
(3)保留作图痕迹;
(4)下结论.
二、巩固练习:(一)用尺规作一条线段等于已知线段.已知:线段AB
AB
求作:线段A′B′,使得A′B′=AB.
(二)用尺规作一条线段等于已知线段的倍数:
已知:线段AB.
AB
求作:线段A′B′,使得A′B′=2AB.
(三)用尺规作一条线段等于已知线段的和:
(1)已知:线段a,bab
求作:线段AD,使得AD=a+b.
(2)已知:线段AB.CD.EF..
ABCDEF
求作:线段A′F′,使得A′F′=AB+CD+EF.
(四)用尺规作一条线段等于已知线段的差:
已知:线段AB.CD
ABCD
求作:线段A′D′,使得A′D′=AB-CD.
小结:(1)如何作一条线段等于已知线段,应该注意什么问题。
(2)如何作线段的和、差以及倍数。
2.4用尺规作角
教学目的:1、经历尺规作角的过程,进一步培养学生的动手操作能力,增强学生的数学应用和研究意识。
2、能按作图语言来完成作图动作,能用尺规作一个角等于已知角。
教学重点:能按作图语言来完成作图动作,能用尺规作一个角等于已知角。
教学难点:作图步骤和作图语言的叙述,及作角的综合应用。
教学方法:猜想、实践法
教学过程:
一问题的提出:
如图,要在长方形木板上截一个平行四边形,
使它的一组对边在长方形木板的边缘上,
另一组对边中的一条边为AB。
(1)请过点C画出与AB平行的另一条边
(2)如果你只有一个圆规和一把没有刻度的直尺,
你能解决这个问题吗?
二.新课:
内容一:(请按作图步骤和要求操作,别忘了留下作图痕迹)
(一)用尺规作一个角等于已知角.
(1)已知:∠AOB
求作:∠A′O′B′,使∠A′O′B′=∠AOB
(2)已知:∠
求作:∠AOB,使∠AOB=∠
(二)用尺规作一个角等于已知角的倍数:
(3)已知:∠1
求作:∠MON,使∠MON=2∠1
∠COD,使∠COD=3∠1
(三)用尺规作一个角等于已知角的和:
(4)已知:∠1、∠2、∠3
求作:①∠AOB,使∠AOB=∠1+∠2
②∠POQ,使∠POQ=∠1+∠2+∠3
③∠MON,使∠MON=2∠1+∠2
(四)用尺规作一个角等于已知角的差:
已知:∠、∠、∠
求作:①∠AOB,使∠AOB=∠-∠
②∠POQ,使∠POQ=∠-∠-∠
③求作一个角,使它等于2∠-∠
(五)综合练习:
(1)已知:线段AB、∠、∠
求作:分别过点A、点B作∠CAB=∠、∠CBA=∠
(2)如图,点P为∠ABC的边AB上的一点,过点P作直线EF//BC
(3)已知:直线L和L外一点P,
求作:一条直线,使它经过点P,并与已知直线L平行
(4)已知:△ABC
求作:直线MN,使MN经过点A,且MN//BC
(5)如图,以点B为顶点,射线BA为一边,在∠ABC外再作一个角,
使其等于∠ABC
(六)小结:今天我们学习了用尺规作一个角等于已知角,它是一个基本的作图方法。
相交线与平行线
第五章相交线与平行线
课题:5.1.1相交线课型:新授
学习目标:1、了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
2、理解对顶角性质的推导过程,并会用这个性质进行简单的计算。
3、通过辨别对顶角与邻补角,培养识图的能力。
学习重点:邻补角和对顶角的概念及对顶角相等的性质。
学习难点:在较复杂的图形中准确辨认对顶角和邻补角。
学具准备:剪刀、量角器
学习过程:
一、学前准备
1、预习疑难:。
2、填空:①两个角的和是,这样的两个角叫做互为补角,即其中一个角是另一个角的补角。②同角或的补角。
二、探索与思考
(一)邻补角、对顶角
1、观察思考:剪刀剪开纸张的过程,随着两个把手之间的角逐渐变小,剪刀刃之间的角度也相应。我们把剪刀的构成抽象为两条直线,就是我们要研究的两条相交直线所成的角的问题。
2、探索活动:
①任意画两条相交直线,在形成的四个角(∠1,∠2,∠3,∠4)中,两两相配共能组成对角。分别是。
②分别测量一下各个角的度数,是否发现规律?你能否把他们分类?完成教材中2页表格。
③再画两条相交直线比较。图1
3、归纳:邻补角、对顶角定义
邻补角。
两条直线相交所构成的四个角中,有公共顶点的两个角是
对顶角。
4、总结:①两条直线相交所构成的四个角中,邻补角有对。对顶角有对。
②对顶角形成的前提条件是两条直线相交。
5、对应练习:①下列各图中,哪个图有对顶角?
BBBA
CDCDCD
AA
BBB(A)
CDCACD
AD
(二)邻补角、对顶角的性质
1、邻补角的性质:邻补角。
注意:邻补角是互补的一种特殊的情况,数量上,位置上有一条。
2、对顶角的性质:完成推理过程
如图,∵∠1+∠2=,∠2+∠3=。(邻补角定义)
∴∠1=180°-,∠3=180°-(等式性质)
∴∠1=∠3(等量代换)
或者∵∠1与∠2互补,∠3与∠2互补(邻补角定义),
∴∠l=∠3(同角的补角相等).
由上面推理可知,对顶角的性质:对顶角。
三、应用
(一)例如图,已知直线a、b相交。∠1=40°,求∠2、∠3、∠4的度数
解:∠3=∠1=40°()。
∠2=180°-∠1=180°-40°=140°()。
∠4=∠2=140°()。
你还有别的思路吗?试着写出来
(二)练一练:教材3页练习(在书上完成)
(三)变式训练:把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.
变式1:把∠l=40°变为∠2-∠1=40°
变式2:把∠1=40°变为∠2是∠l的3倍
变式3:把∠1=40°变为∠1:∠2=2:9
四、学习体会:
1、本节课你有哪些收获?你还有哪些疑惑?
2、预习时的疑难解决了吗?
五、自我检测:
(一)选择题:
1.如图所示,∠1和∠2是对顶角的图形有()
A.1个B.2个C.3个D.4个
2.如图1所示,三条直线AB,CD,EF相交于一点O,则∠AOE+∠DOB+∠COF等于()
A.150°B.180°C.210°D.120°
(1)(2)
3.下列说法正确的有()
①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.
A.1个B.2个C.3个D.4个
4.如图2所示,直线AB和CD相交于点O,若∠AOD与∠BOC的和为236°,则∠AOC的度数为()A.62°B.118°C.72°D.59°
(二)填空题:
1.如图3所示,AB与CD相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.
(3)(4)(5)
2.如图3所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.
3.如图4所示,直线AB,CD,EF相交于点O,则∠AOD的对顶角是_____,∠AOC的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.
4.如图5所示,直线AB,CD相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.
5、已知∠1与∠2是对顶角,∠1与∠3互为补角,则∠2+∠3=。
六、拓展延伸
1、如图所示,直线a,b,c两两相交,∠1=2∠3,∠2=65°,求∠4的度数.
三、学习体会:
1、本节课你有哪些收获?你还有哪些疑惑?
2、预习时的疑难解决了吗?
四、自我检测:
(一)选择题:
1.如图1所示,下列说法不正确的是()
A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段AC
C.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段
(1)(2)
2.如图1所示,能表示点到直线(线段)的距离的线段有()
A.2条B.3条C.4条D.5条
3.下列说法正确的有()
①在平面内,过直线上一点有且只有一条直线垂直于已知直线;
②在平面内,过直线外一点有且只有一条直线垂直于已知直线;
③在平面内,过一点可以任意画一条直线垂直于已知直线;
④在平面内,有且只有一条直线垂直于已知直线.
A.1个B.2个C.3个D.4个
4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是()
A.大于acmB.小于bcm
C.大于acm或小于bcmD.大于bcm且小于acm
5.到直线L的距离等于2cm的点有()
A.0个B.1个;C.无数个D.无法确定
6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为()
A.4cmB.2cm;C.小于2cmD.不大于2cm
(二)填空题:
1、如图4所示,直线AB与直线CD的位置关系是_______,记作_______,此时,∠AOD=∠_______=∠_______=∠_______=90°.
2、如图5,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC=6,那么点C到AB的距离是_______,点A到BC的距离是________,点B到CD的距离是_____,A、B两点的距离是_________.
(4)(5)(6)(7)(8)
3、如图6,在线段AB、AC、AD、AE、AF中AD最短.小明说垂线段最短,因此线段AD的长是点A到BF的距离,对小明的说法,你认为_________________.
4、如图7,AO⊥BO,O为垂足,直线CD过点O,且∠BOD=2∠AOC,则∠BOD=________.
5、如图8,直线AB、CD相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE与直线AB的位置关系是_________.
五、拓展延伸
1、已知,如图,∠AOD为钝角,OC⊥OA,OB⊥OD
求证:∠AOB=∠COD
证明:∵OC⊥OA,OB⊥OD()
∴∠AOB+∠1=,
∠COD+∠1=90°(垂直的定义)
∴∠AOB=∠COD()
变式训练:如图OC⊥OA,OB⊥OD,O为垂足,若∠BOC=35°,则∠AOD=________.
2、已知:如图,直线AB,射线OC交于点O,OD平分∠BOC,OE平分∠AOC.试判断OD与OE的位置关系.
3、课本中水渠该怎么挖?在图上画出来.如果图中比例尺为1:100000,水渠大约要挖多长?
3.会根据几何语句画图,会用直尺和三角板画平行线;
4.了解在实践中总结出来的基本事实的作用和意义,并初步感受公理化思想。
学习重点:探索和掌握平行公理及其推论.
学习难点:对平行线本质属性的理解,用几何语言描述图形的性质
学具准备:分别将木条a、b与木条c钉在一起,做成学具,直尺,三角板
学习过程:
一、学前准备
1、预习疑难:。2、①两条直线相交有个交点。
②平面内两条直线的位置关系除相交外,还有哪些呢?