88教案网

你的位置: 教案 > 高中教案 > 导航 > 牛顿定律在直线运动中的应用

高中牛顿第二定律教案

发表时间:2020-10-21

牛顿定律在直线运动中的应用。

一名优秀的教师就要对每一课堂负责,高中教师在教学前就要准备好教案,做好充分的准备。教案可以让上课时的教学氛围非常活跃,帮助高中教师缓解教学的压力,提高教学质量。怎么才能让高中教案写的更加全面呢?小编收集并整理了“牛顿定律在直线运动中的应用”,相信您能找到对自己有用的内容。

牛顿定律在直线运动中的应用
本专题是用牛顿定律解决动力学问题的重要方面,是高中物理的基石,更是高考的热点,出题频率非常高,既涉及基础知识的考查,又涉及综合应用能力的考查,选择题和计算分析题均可能出现。其高考热点的知能信息主要体现为以下几点:
1、位移、速度、加速度的概念及物理意义。
2、匀变速运动的规律的选择应用及运动图象的分析应用。
3、牛顿三定律,尤其是牛顿第二定律的理解和应用。
4、整体法、隔离法、合成法、分解法及正交分解法的灵活应用。
5、动力学的两类基本问题与实际生活和科技相结合的情况。550
例题1一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为。初始时,传送带与煤块都是静止的。现让传送带以恒定的加速度a0开始运动,当其速度达到v0后,便以此速度做匀速运动,经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。求此黑色痕迹的长度。
解析:根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度a小于传送带的加速度a0。根据牛顿第二定律,可得

设经历时间t,传送带由静止开始加速到速度等于v0,煤块则由静止加速到v,有


由于,故,煤块继续受到滑动摩擦力的作用。再经过时间,煤块的速度由v增加到v0,有

此后,煤块与传送带运动速度相同,相对于传送带不再滑动,不再产生新的痕迹。
设在煤块的速度从0增加到v0的整个过程中,传送带和煤块移动的距离分别为s0和s,有


传送带上留下的黑色痕迹的长度

由以上各式得
反思:本题取材于生活实际,不仅考查力和运动的关系,而且还考查学生的理解能力、推理能力、综合分析能力、建立理想化模型用来解决实际问题能力,解题的关键是挖掘题中隐含了起始段煤块的加速度小于传送带的加速度,弄清题求传送带上留下的黑色痕迹的长度实为煤块相对于传送带的位移。
例题2在光滑的水平轨道上有两个半径都是r的小球A和B,质量分别为m和2m,如图2-6所示,当两球心间的距离大于L(L比2r大的多)时,两球间不存在相互作用力;当两球心间的距离等于或小于L时,两球间存在相互作用的恒定斥力F,现A球从远离B球处以速度V0沿两球心连接向原来静止的B球运动,欲时两球不发生接触,V0必须满足的条件?
本题简介:本题考查的是如何灵活运用牛顿第二定律和运动学公式分析解决问题,同时也考查了能否从图象角度来思考和解决问题。
解析:A球向B球接近至A、B间的距离小于L之后,A球的速度逐步减小,B球从静止开始加速运动,两球间的距离逐步减小.当A、B的速度相等时,两球间的距离最小.若此距离大于2r,则两球就不会接触.所以不接触的条件是
v1=v2?①?L+s2-s12r?②
其中v1、v2为当两球间距离最小时A、B两球的速度;s1、s2为两球间距离从L变至最小的过程中,A、B两球通过的路程.
由牛顿定律得A球在减速运动而B球作加速运动的过程中,A、B两球的加速度大小为
?????③
设v0为A球的初速度,则由匀加速运动公式得

联立解得
??????????????
反思:许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,审题时,一定要抓住这些特定的词语发掘其内含规律,找出临界条件。
有时,有些临界问题中并不显含上述常见的“临界术语”,但审题时发现某个物理量在变化过程中会发生突变,则该物理量突变时物体所处的状态即为临界状态。
临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,抓住临界状态的特征,找到正确的解题方向。
本题的关键是正确找出两球“不接触”的临界状态,为且此时。
例题3质量m=1kg的物体放在倾角为的斜面上,斜面的质量M=2kg,斜面与物体的动摩擦因数μ=0.2,地面光滑,现对斜面体施加一水平推力,如图1所示。要使物体m相对斜面静止,力F应为多大?设物体与斜面的最大静摩擦力等于滑动摩擦力。(m/s2)。
解析:(1)设物体处于相对斜面欲向下滑动的临界状态时推力为,此时物体所受摩擦力沿斜面向上,取加速度方向(水平向左)为x正方向,坚直向上为y轴正方向,根据牛顿第二定律,对m物体有:
x方向:
y方向:
对整体:
代入数值解得:,。
(2)设物体处于相对斜面上滑动的临界状态时推力为,此时物体所受摩擦力沿斜面向下,根据牛顿第二定律,对m物体有:
x方向:
y方向:
对整体:
代入数值解得:,
所以F的取值范围:14.34N≤F≤33.6N
反思:隔离法和整体法是解动力学习题的基本方法,用这一基本技巧解题时,应注意:当用隔离法时,必须按题目的需要进行恰当的选择隔离体,否则将增加运算过程的繁琐程度,然后进行分解,根据牛顿第二定律列方程即可;用整体法解题时,必须满足一个条件,即连结体各部分加速度的值是相同的。如果不是这样,便只能用隔离法求解。
例题4如图所示,沿水平方向放置一条平直光滑槽,它垂直穿过开有小孔的两平行薄板,板相距3.5L。槽内有两个质量均为m的小球A和B,球A带电量为+2q,球B带电量为-3q,两球由长为2L的轻杆相连,组成一带电系统。最初A和B分别静止于左板的两侧,离板的距离均为L。若视小球为质点,不计轻杆的质量,在两板间加上与槽平行向右的匀强电场E后(设槽和轻杆由特殊绝缘材料制成,不影响电场的分布),求:
⑴球B刚进入电场时,带电系统的速度大小;
⑵带电系统从开始运动到速度第一次为零所需的时间及球A相对右板的位置。
解析:解:对带电系统进行分析,假设球A能达到右极板,电场力对系统做功为W1,有:

而且还能穿过小孔,离开右极板。
假设球B能达到右极板,电场力对系统做功为W2,有:
综上所述,带电系统速度第一次为零时,球A、B应分别在右极板两侧。②
(1)带电系统开始运动时,设加速度为a1,由牛顿第二定律:=③
球B刚进入电场时,带电系统的速度为v1,有:④
由③④求得:⑤
(2)设球B从静止到刚进入电场的时间为t1,则:⑥
将③⑤代入⑥得:⑦
球B进入电场后,带电系统的加速度为a2,由牛顿第二定律:⑧
显然,带电系统做匀减速运动。设球A刚达到右极板时的速度为v2,减速所需时间为t2,则有:⑨⑩
求得:⑾
球A离电场后,带电系统继续做减速运动,设加速度为a3,再由牛顿第二定律:

设球A从离开电场到静止所需的时间为t3,运动的位移为x,则有:⒀

求得:⒂
由⑦⑾⒂可知,带电系统从静止到速度第一次为零所需的时间为:

球A相对右板的位置为:⒄
反思:本题考查对牛顿第二定律和运动学基本规律的理解,考查运用分析、假设、探究、推理等方法处理多过程物理问题的能力,分析多过程问题一定要把物体在不同过程的衔接点即中间转折状态搞清楚。

扩展阅读

牛顿运动定律的应用


经验告诉我们,成功是留给有准备的人。高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生能够在课堂积极的参与互动,帮助高中教师更好的完成实现教学目标。你知道怎么写具体的高中教案内容吗?为了让您在使用时更加简单方便,下面是小编整理的“牛顿运动定律的应用”,仅供参考,大家一起来看看吧。

教学目标
1、知识目标:
(1)能结合物体的运动情况进行受力分析.
(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.
2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.
3、情感目标:培养严谨的科学态度,养成良好的思维习惯.

教学建议

教材分析
本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.

教法建议
1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.
2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.
3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.

教学设计示例

教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.

教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.

示例:

一、受力分析方法小结

通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)

1、练习:请对下例四幅图中的A、B物体进行受力分析.

答案:

2、受力分析方法小结

(1)明确研究对象,把它从周围物体中隔离出来;

(2)按重力、弹力、摩擦力、外力顺序进行受力分析;

(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.

不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.

二、动力学的两类基本问题

1、已知物体的受力情况,确定物体的运动情况.

2、已知物体的运动情况,确定物体的受力情况.

3、应用牛顿运动定律解题的一般步骤:

选取研究对象;(注意变换研究对象)

画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)

进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)

根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)

对解的合理性进行讨论.

四、处理连接体问题的基本方法

1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.

2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)

3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.

以上各问题均通过典型例题落实.

探究活动
题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.
题量:4-6道.
要求:给出题目详细解答,并注明选题意图及该题易错之处.
评价:可操作性、针对性,可调动学生积极性.


高考物理牛顿定律的应用知识点总结复习


一位优秀的教师不打无准备之仗,会提前做好准备,作为教师就需要提前准备好适合自己的教案。教案可以让讲的知识能够轻松被学生吸收,帮助教师更好的完成实现教学目标。怎么才能让教案写的更加全面呢?为了让您在使用时更加简单方便,下面是小编整理的“高考物理牛顿定律的应用知识点总结复习”,相信能对大家有所帮助。

牛顿定律的应用
知识要点:
1、牛顿定律的应用
到此为止力学已讲完三章知识。应该知道:第一章力,是讲述了力的基本概念:知道了力是物体间的相互作用,力是矢量有大小、方向,掌握了力的图示法,通过牛顿第二定律的学习了解到力的单位牛顿(N)的来历,认识了力学中的三种力(G、N、f)的学生计算,方向的确定,力的合成分解的运算法则,初步理解到力的作用效果。通过第二章,物体的运动的学习,掌握了直线运动中,匀速直线运动,特别是变速直线中的匀变速直线运动的规律,从中理解并掌握速度、位移、加变速、间间这些描述物体运动规律的物理量。第三章,牛顿运动定律详细阐明了运动和力(即运动状态变化和力)的关系。认识到物体为什么会这样或那样的运动的原因。因此三章知识的关系应是第一章,力学的准备知识认识力,第二章运动学,只讲运动规律,研究物体如何运动,第三章研究运动和力的关系称之力动力学。本专题讲述牛顿运动定律的应用,就是综合以上所学知识进行较全面地分析归纳,简单的逻辑思维推理,建立物理情景,缕出解题思路,运用数学知识列出方程求解,借此培养和提高各种能力,初步掌握解决力学问题的第一条途径即:两种类型三种运动方式。
A两种类型:①知道力求得加速度决定物体的运动状态
要求认真分析研究对象的受力情况画出受力示意图,依据力的作用效果进行正交分解,并求得所受力的合力,通过牛顿第二定律可以求出运动的加速度,如果再知道物体的初始条件,v0初速度初位置,根据运动学或就可以求出物体在任意时刻的位置和速度,这就是已知物体的受力情况,就可以确定物体运动的情况。与此相反②如果已知物体的运动情况根据运动学公式求出物体的加速度,也可以根据牛顿第二定律确定物体所受的外力。

B、三种运动方式及其在运动应该特别注意的问题
(1)水平方向运动,看有无不水平力,此时会影响到压力N从而影响摩擦力f,因为只有水平力作用时Nmg
(2)竖直方向运动,千万不可忘记重力mg,匀速运动F=mg,然后看v0,的方向确定是向上或向下运动。

如果匀加向上F-mg=ma,若匀加向下,mg-F=ma
(3)物体沿斜面方向运动,看有无水平力,此时会影响压力N从而影响摩擦力f的大小:当无水平方向力的作用时,N=mgcos,f=,当有水平方向力的作用时,N=mgcos如图所示。

C、解题步骤
(1)确定研究对象(视为质点)一个物体,一个点或相对静止的多个物体组成的物体系。
(2)研究对象的受力分析。
a、画受力示意图,只画被分析物体受到的实际力(内力不画它对外界物体的力不画,等效力(含力分力)不画)
b、受到的实际力,不能多画,也不能漏画,(可绕行物体一周,找出可能受到的力,按力的性质顺序画出重力、弹力、摩擦力)
c、判断被分析物体运动状态是平衡,还是有加速度(不平衡)
d、作受力分析,即通过矢量分解合成的方法把受到的多个力简化一个等效力(即),若被分析物平衡则=0,若有加速度则方向与a方向相同。
(3)建立物理情景,弄清物理过程确定运动性质
(4)列方程,已知量统一单位制(国际单位)
(5)代入数值求解
(6)对结果必要应加以说明或取舍。

2、超重和失重现象,实质上是视重。因为物体在运动中重力不变,我们知道物体的重力是由于地球对物体的吸引,而使物体受到的力,物体重力的大小可用弹簧秤称出来。物体在静止或上下匀速直线运动中,=0,有F=mg(F为弹簧的示数)。当物体在竖直方向上加速度运动时,仍以弹簧秤吊着物体,此时弹簧的示数就有变化,称为视点,加速上升时Fmg,加速下降Fmg,
分析如下:加速上升,以向上为正方向F-mg=ma
减速下降,以向下为正方向F=mg+ma∴Fmg
mg-F=-ma∴Fmg∵F=mg+ma
∴加速上升等效于减速下降
同理分析,减速上升以向上为正方向F-mg=-ma
加速下降以向下为正方向F=mg-maFmg
mg=F=maF=mg-ma∵Fmg
∴加速下降等效于减上升,当向下加速a=g时,处于完全失重状态。

3、有关连接体问题
高考说明中明确指出:用牛顿定律处理连接体的问题时,只限于各个物体的加速度的大小、方向都相同的情况。
所谓连接体是指:在实际问题中常常碰到的几个物体连结在一起,在外作用下的运动即连接体运动。其特点是:连接体的各部分之间的相互作用力总是大小相等,方向相反的(在将连接体作为一个整体考虑时这相互作用力称之为内力)而连接体各部分的运动情况也是相互关联的。应认识到这类问题综合应用了牛顿运动定律和运动学、力的合成分解等方面的知识难度较大,因此必须掌握解此类问题的一般规律,即整体法求加速度,隔离法求相互作用力。所谓整体法即把连接体看成一个整体考虑,受力分析时的外力是连接体以外的物体对整体连接体的作用力(连接体各部分之间的相互作用称之为内力未能考虑在内)。这些力的合力产生整体加速度。所谓隔离法,就是把连接体中的各个物体从连接体的整体中隔离出来,单独考试它们各自的受力情况和运动情况,此时的相互作用力即是外力,在受力分析不能忽略。
常见的连接体有:
①升降机及机内的物体运动

②汽车拉拖车

③吊车吊物上升

④光滑水平面两接触物体受力后运动情况

⑤两物体置在光滑的水平面受力后运动情况
⑥验证“牛顿第二定律”的实验

⑦如右图装置

匀变速直线运动规律的应用


老师会对课本中的主要教学内容整理到教案课件中,大家开始动笔写自己的教案课件了。是时候对自己教案课件工作做个新的规划了,这样接下来工作才会更上一层楼!你们了解多少教案课件范文呢?下面是小编精心收集整理,为您带来的《匀变速直线运动规律的应用》,欢迎大家与身边的朋友分享吧!

教学目标

知识目标

1、通过例题的讨论学习匀变速直线运动的推论公式及。

2、了解初速度为零的匀加速直线运动的规律。

3、进一步体会匀变速直线运动公式中矢量方向的表示方法。

能力目标

1、培养学生分析运动问题的能力以及应用数学知识处理物理问题的能力

教学建议

教材分析

教材通过例题1自然的引出推论公式,即位移和速度关系,通过思考与讨论对两个基本公式和推论公式做了小结,启发学生总结一般匀变速直线运动问题涉及到五个物理量,由于只有两个独立的方程式,因此只有在已知其中三个量的情况下,才能求解其余两个未知量,引导同学思考和总结初速度为零的匀加速直线运动的特殊规律.教材通过例题2,实际上给出了对于匀变速直线运动的平均速度特点,强调由两个基本公式入手推导出有用的推论的思想,培养学生分析运动问题的能力和应用用数学处理物理问题的能力.

教法建议

通过例题或练习题的讨论,让学生自己分析题目,画出运动过程草图,动手推导公式,教师适时地加以引导和总结,配合适当的课件,加强学生的认识.在推导位移公式时直接给出的,在这里应向学生说明,实质上它也是匀变速直线运动的两个基本公式的推论.

教学设计方案

教学重点:推论公式的得出及应用.

教学难点:初速度为零的匀变速直线运动的比例关系.

主要设计:

一、例题1的处理:

1、让学生阅读题目后,画运动过程草图,标出已知条件,,as,待求量.

2、请同学分析解题思路,可以鼓励学生以不同方法求解,如“先由位移公式求出时间,再利用速度公式求”等.

3、教师启发:上面的解法,用到两个基本公式,有两个未知量t和,而本题不要求求出时间t,能否有更简单的方法呢?可以启发学生两个基本公式的消去,能得到什么结论呢?

4、让学生自己推导,得到,即位移和速度的关系,并且思考:什么条件下用这个公式更方便?

5、用得到的推论解例题

二、思考与讨论的处理

1、(1)(2)(3)三个公式中共包括几个物理量?各个公式在什么条件下使用更方便?

2、用三个公式解题时,至少已知几个物理量?为什么?[(知三求二)因为三个公式中只有(1)(2)两个是基本公式,是独立的方程,(3)为推论公式,所以最多只能求解两个未知量]

3、如果物体的初速度等于零,以上三个公式是怎样的?请同学自己写出:

三、例题2的处理

1、让学生阅读题目后,画运动过程草题,标出已知量、、,待求量为.

2、放手让同学去解:可能有的同学用公式(3)和(1)联立先解出a再求出t;也可能有的同学利用前面学过的,利用求得结果;都应给予肯定,也可能有的同学受例1的启发,发现本题没让求加速度a,想到用基本公式(1)(2)联立消去a,得到.

3、得到后,告诉学生,把它与对比知,对于匀变速直线运动,也可以当作一个推论公式应用,此公式也可由,将位移公式代入.利用求得.(请同学自己推证一下)

4、用或解例2.

四、讨论典型例题(见后)

五、讨论教材练习七第(5)题.

1、请同学根据提示,自己证明.

2、展示课件,下载:初速度为零的匀加速直线运动(见媒体资料)

3、根据课件,展开讨论:

(1)1秒末,2秒末,3秒末……速度比等于什么?

(2)1秒内,2秒内,3秒内……位移之比等于什么?

(3)第1秒内,第2秒内,第3秒内……位移之比等于什么?

(4)第1秒内,第2秒内,第3秒内……平均速度之比等于什么?

(5)第1个1米,第2个1米,第3个1米内……所用时间之比等于什么?

探究活动

根据本节所学知识,请你想办法测出自行车刹车时的初速度及加速度,需要什么测量仪器?如何测量?如何计算?实际做一做.


匀变速直线运动规律及应用


作为杰出的教学工作者,能够保证教课的顺利开展,高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生更好的消化课堂内容,让高中教师能够快速的解决各种教学问题。我们要如何写好一份值得称赞的高中教案呢?为此,小编从网络上为大家精心整理了《匀变速直线运动规律及应用》,仅供参考,希望能为您提供参考!

第2课时匀变速直线运动规律及应用

1.一个小石块从空中a点自由落下,先后经过b点和c点,不计空气阻力.已知它经过b点时的速度为v,经过c点时的速度为3v,则ab段与ac段位移之比为()

A.1∶3B.1∶5C.1∶8D.1∶9

解析:经过b点时的位移为hab=v22g,经过c点时的位移为hac=(3v)22g,所以hab∶hac=1∶9,故选D.

答案:D

2.静止置于水平地面的一物体质量为m=57kg,与水平地面间的动摩擦因数为0.43,在F=287N的水平拉力作用下做匀变速直线运动,则由此可知物体在运动过程中第5个7秒内的位移与第11个3秒内的位移比为()

A.2∶1B.1∶2C.7∶3D.3∶7

解析:第5个7秒内的位移为x1=12a×352-12a×282,第11个3秒内的位移为x2=12a×332-12a×302,所以x1x2=352-282332-302=73.

答案:C

3.

图1-2-5

(2009江苏,7)如图1-2-5所示,以8m/s匀速行驶的汽车即将通过路口,绿灯还有2s将熄灭,此时汽车距离停车线18m.该车加速时最大加速度大小为2m/s2,减速时最大加速度大小为5m/s2.此路段允许行驶的最大速度为12.5m/s.下列说法中正确的有

()

A.如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线

B.如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速

C.如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线

D.如果距停车线5m处减速,汽车能停在停车线处

解析:在加速阶段若一直加速则2s末的速度为12m/s,2s内的位移为x=8+122×2m=20m,则在绿灯熄灭前汽车可能通过停车线,A正确.汽车一直减速在绿灯熄灭前通过的距离小于16m,则不能通过停车线,如距离停车线5m处减速,汽车运动的最小距离为6.4m,不能停在停车线处.A、C正确.

答案:AC

4.在四川汶川抗震救灾中,一名质量为60kg、训练有素的武警战士从直升机上通过一根竖直的质量为20kg的长绳由静止开始滑下,速度很小可认为等于零.在离地面18m高处,武警战士感到时间紧迫,想以最短的时间滑到地面,开始加速.已知该武警战士落地的速度不能大于6m/s,以最大压力作用于长绳可产生的最大加速度为5m/s2;长绳的下端恰好着地,当地的重力加速度为g=10m/s2.求武警战士下滑的最短时间和加速下滑的距离.

解析:设武警战士加速下滑的距离为h1,减速下滑的距离为(H-h1),加速阶段的末速度等于减速阶段的初速度为vmax,由题意和匀变速运动的规律有:v2max=2gh1v2max=2a(H-h1)+v2

由上式解得h1=2aH+v22(g+a)=2×5×18+622×(10+5)m=7.2m

武警战士的最大速度为vmax=2gh1=2×10×7.2m/s=12m/s

加速时间:t1=vmaxg=1210s=1.2s

减速时间:t2=vmax-va=12-65s=1.2s

下滑的最短时间t=t1+t2=1.2s+1.2s=2.4s

答案:2.4s7.2m

5.

图1-2-6

(20xx湖南十校联考)如图1-2-6所示,离地面足够高处有一竖直的空管,质量为2kg,管长为24m,M、N为空管的上、下两端,空管受到F=16N竖直向上的拉力作用,由静止开始竖直向下做加速运动,同时在M处一个大小不计的小球沿管的轴线竖直上抛,小球只受重力,取g=10m/s2.求:

(1)若小球上抛的初速度为10m/s,则其经过多长时间从管的N端穿出;

(2)若此空管的N端距离地面64m高,欲使在空管到达地面时小球必须落到管内,在其他条件不变的前提下,求小球的初速度大小的范围.

解析:(1)对管由牛顿第二定律得mg-F=ma①

代入数据得a=2m/s2

设经过t时间从N端穿出

对管:h=12at2②

对球:-(24+h)=v0t-12gt2③

由②③得:2t2-5t-12=0,解得:t=4s,t′=-1.5s(舍去).

(2)-64=v0t1-12gt21④

64=12at21⑤

-88=v′0t1-12gt21⑥

由④⑤得:v0=32m/s,由⑤⑥得:v0′=29m/s,所以29m/sv032m/s.

答案:(1)4s(2)29m/sv032m/s

1.从足够高处释放一石子甲,经0.5s,从同一位置再释放另一石子乙,不计空气阻力,则在两石子落地前,下列说法中正确的是()

A.它们间的距离与乙石子运动的时间成正比

B.甲石子落地后,经0.5s乙石子还在空中运动

C.它们在空中运动的时间相同

D.它们在空中运动的时间与其质量无关

解析:两石子做自由落体运动,设t时刻甲下落的高度为h1=12gt2,则乙下落的高度为h1=12g(t-0.5)2,它们之间的距离h1-h2=12g(t-0.25)=12g[(t-0.5)+0.25]与乙石子运动的时间(t-0.5)不成正比,A错误;由于两石子下落的高度相同,因此下落的时间相同,甲石子落地后,经0.5s乙石子刚好落地,B错误,C正确;由于不计空气阻力,由t=2hg可知,两石子在空中运动的时间与质量无关,D正确.

答案:CD

2.在水平面上有a、b两点,相距20cm,一质点在一恒定的合外力作用下沿a向b做直线运动,经过0.2s的时间先后通过a、b两点,则该质点通过a、b中点时的速度大小为()

A.若力的方向由a向b,则大于1m/s,若力的方向由b向a,则小于1m/s

B.若力的方向由a向b,则小于1m/s;若力的方向由b向a,则大于1m/s

C.无论力的方向如何,均大于1m/s

D.无论力的方向如何,均小于1m/s

解析:无论力的方向如何,0.2s中间时刻的瞬时速度均为vt2=0.20.2m/s=1m/s,经分析可知,质点无论是匀加速还是匀减速,a、b中间时刻的瞬时速度均小于a、b中点时的速度,所以选项C正确.

答案:C

3.

图1-2-7

2009年3月29日,中国女子冰壶队首次夺得世界冠军,如图1-2-7所示,一冰壶以速度v垂直进入三个矩形区域做匀减速运动,且刚要离开第三个矩形区域时速度恰好为零,则冰壶依次进入每个矩形区域时的速度之比和穿过每个矩形区域所用的时间之比分别是()

A.v1∶v2∶v3=3∶2∶1B.v1∶v2∶v3=3∶2∶1

C.t1∶t2∶t3=1∶2∶3D.t1∶t2∶t3=(3-2)∶(2-1)∶1

解析:因为冰壶做匀减速运动,且末速度为零,故可以看做反向匀加速直线运动来研究.初速度为零的匀加速直线运动中连续三段相等位移的时间之比为1∶(2-1)∶(3-2),故所求时间之比为(3-2)∶(2-1)∶1,所以选项C错,D正确;由v=at可得初速度为零的匀加速直线运动中的速度之比为1∶2∶3,则所求的速度之比为3∶2∶1,故选项A错,B正确,所以正确选项为BD.

答案:BD

4.两物体分别从不同高度自由下落,同时落地,第一个物体下落时间为t,第二个物体下落时间为t/2,当第二个物体开始下落时,两物体相距()

A.gt2B.3gt2/8C.3gt2/4D.gt2/4

解析:当第二个物体开始下落时,第一个物体已下落t2时间,此时离地高度h1=12gt2-12gt22,第二个物体下落时的高度h2=12gt22,则待求距离Δh=h1-h2=gt24.

答案:D

5.四个小球在离地面不同高度处,同时从静止释放,不计空气阻力,从某一时刻起每隔相等的时间间隔,小球依次碰到地面.则刚刚开始运动时各小球相对地面的位置可能是下图中的()

答案:C

6.一个质点正在做匀加速直线运动,用固定的照相机对该质点进行闪光照相,闪光时间间隔为1s.分析照片得到的数据,发现质点在第1次、第2次闪光的时间间隔内移动了2m;在第3次、第4次闪光的时间间隔内移动了8m,由此不可求得()

A.第1次闪光时质点的速度

B.质点运动的加速度

C.从第2次闪光到第3次闪光这段时间内质点的位移

D.质点运动的初速度

解析:如上图所示,x3-x1=2aT2,可求得a,而v1=x1T-aT2可求.

x2=x1+aT2=x1+x3-x12=x1+x32也可求,

因不知第一次闪光时已运动的时间和位移,故初速度v0不可求.

答案:D

7.一滑块以某一速度从斜面底端滑到顶端时,其速度恰好减为零.若设斜面全长L,滑块通过最初34L所需时间为t,则滑块从斜面底端到顶端所用时间为()

A.43tB.53tC.32tD.2t

解析:假设存在逆过程,即为初速度是零的匀加速直线运动,将全过程分为位移均为L/4的四个阶段,根据匀变速直线运动规律,其时间之比为1∶(2-1)∶(3-2)∶(2-3),根据题意可列方程:(2-1)+(3-2)+(2-3)1+(2-1)+(3-2)+(2-3)=tt′,t′=2t.

答案:D

8.将一小物体以初速度v0竖直上抛,若物体所受的空气阻力的大小不变,则小物体到达最高点的最后一秒和离开最高点的第一秒时间内通过的路程为x1和x2,速度的变化量为Δv1和Δv2的大小关系为()

A.x1x2B.x1x2C.Δv1Δv2D.Δv1Δv2

解析:上升的加速度a1大于下落的加速度a2,根据逆向转换的方法,上升的最后一秒可以看成以加速度a1从零下降的第一秒,故有:Δv1=a1t,x1=12a1t2;而以加速度a2下降的第一秒内有:Δv2=a2t,x2=12a2t2,因a1a2,所以x1x2,Δv1Δv2,即A、C正确.

答案:AC

9.

图1-2-8

如图1-2-8所示,在光滑的斜面上放置3个相同的小球(可视为质点),小球1、2、3距斜面底端A点的距离分别为x1、x2、x3,现将它们分别从静止释放,到达A点的时间分别为t1、t2、t3,斜面的倾角为θ.则下列说法正确的是()

A.x1t1=x2t2=x3t3B.x1t1>x2t2>x3t3

C.x1t21=x2t22=x3t23D.若θ增大,则s1t21的值减小

解析:三个小球在光滑斜面上下滑时的加速度均为a=gsinθ,由x=12at2知xt2=12a,因此x1t21=x2t22=x3t23.当θ增大,a增大,xt2的值增大,C对,D错.v=xt,且v=v2,由物体到达底端的速度v2=2ax知v1>v2>v3,因此v1>v2>v3,即x1t1>x2t2>x3t3,A错,B对.

答案:BC

10.

图1-2-9

(20xx湖北部分重点中学月考)如图1-2-9所示水平传送带A、B两端点相距x=7m,起初以v0=2m/s的速度顺时针运转.今将一小物块(可视为质点)无初速度地轻放至A点处,同时传送带以a0=2m/s2的加速度加速运转,已知小物块与传送带间的动摩擦因数为0.4,求:小物块由A端运动至B端所经历的时间.

解析:小物块刚放上传送带时,由牛顿第二定律:μmg=ma,得:a=4m/s2

小物块历时t1后与传送带速度相同,则:at1=v0+a0t1,得:t1=1s

此过程中小物块的位移为:x1=at21/2,得:x1=2mx=7m

故小物块此时尚未到达B点,且此后的过程中由于a0μg,所以小物块将和传送带以共同的加速度运动,设又历时t2到达B点,则:x-x1=at1t2+a0t22/2得:t2=1s

小物块从A到B历时:t=t1+t2=2s.

答案:2s

11.

图1-2-10

“10米折返跑”的成绩反应了人体的灵敏素质,如图1-2-10所示.测定时,在平直跑道上,受试者以站立式起跑姿势站在起点终点线前,当听到“跑”的口令后,全力跑向正前方10米处的折返线,测试员同时开始计时,受试者到达折返线处时,用手触摸折返线处的物体(如木箱),再转身跑向起点终点线,当胸部到达起点终点线的垂直面时,测试员停表,所用时间即为“10米折返跑”的成绩.设受试者起跑的加速度为4m/s2,运动过程中的最大速度为4m/s,快到达折返线处时需减速到零,减速的加速度为8m/s2,返回时达到最大速度后不需减速,保持最大速度冲线.求该受试者“10米折返跑”的成绩为多少秒?

解析:对受试者,由起点终点线向折返线运动的过程中

加速阶段:t1=vma1=1s,x1=12vmt1=2m

减速阶段:t3=vma2=0.5s;x3=12vmt3=1m

匀速阶段:t2=l-(x1+x3)vm=1.75s

由折返线向起点终点线运动的过程中

加速阶段:t4=vma1=1s,x4=12vmt4=2m

匀速阶段:t5=l-x4vm=2s

受试者“10米折返跑”的成绩为:t=t1+t2+…+t5=6.25s.

答案:6.25s

12.

图1-2-11

如图1-2-11所示,一辆上表面光滑的平板小车长L=2m,车上左侧有一挡板,紧靠挡板处有一可看成质点的小球.开始时,小车与小球一起在水平面上向右做匀速运动,速度大小为v0=5m/s.某时刻小车开始刹车,加速度a=4m/s2.经过一段时间,小球从小车右端滑出并落到地面上.求:

(1)从刹车开始到小球离开小车所用的时间;

(2)小球离开小车后,又运动了t1=0.5s落地.小球落地时落点离小车右端多远?

解析:(1)刹车后小车做匀减速运动,小球继续做匀速运动,设经过时间t,小球离开小车,经判断知此时小车没有停止运动,则x球=v0t①

x车=v0t-12at2②

x球-x车=L③

代入数据可解得:t=1s④

(2)经判断小球离开小车又经t1=0.5s落地时,小车已经停止运动.设从刹车到小球落地,小车和小球总位移分别为x1、x2,则:x1=v202a⑤

x2=v0(t+t1)⑥

设小球落地时,落点离小车右端的距离为Δx,则:Δx=x2-(L+x1)⑦

解得:Δx=2.375m.⑧

答案:(1)1s(2)2.375m