88教案网

你的位置: 教案 > 初中教案 > 导航 > 相交线

线幼儿园教案

发表时间:2020-10-19

相交线。

学生们有一个生动有趣的课堂,离不开老师辛苦准备的教案,是认真规划好自己教案课件的时候了。认真做好教案课件的工作计划,才能更好的在接下来的工作轻装上阵!你们清楚有哪些教案课件范文呢?以下是小编为大家收集的“相交线”希望能为您提供更多的参考。

5.1.1相交线

教学目标
1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力.
2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.
重点、难点
重点:邻补角、对顶角的概念,对顶角性质与应用.
难点:理解对顶角相等的性质的探索.
教学过程
一、读一读,看一看
教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.学生欣赏图片,阅读其中的文字.
师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线.本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行的判定以及图形的平移问题.
二、观察剪刀剪布的过程,引入两条相交直线所成的角
教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?
学生观察、思想、回答,得出:
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.
教师点评:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.
三、认识邻补角和对顶角,探索对顶角性质
1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流.
当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确地表达,如:
∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.
∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.
2.学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.
3.学生根据观察和度量完成下表:
两直线相交所形成的角分类位置关系数量关系
教师再提问:如果改变∠AOC的大小,会改变它与其它角的位置关系和数量关系吗?
4.概括形成邻补角、对顶角概念.
(1)师生共同定义邻补角、对顶角.
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.
(2)初步应用.
练习1:下列说法,你同意吗?如果错误,如何订正.
①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上.
②邻补角可看成是平角被过它顶点的一条射线分成的两个角.
③邻补角是互补的两个角,互补的两个角也是邻补角?
5.对顶角性质.
(1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由.
(2)教师把说理过程,规范地板书:
在图1中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.
教师板书对顶角性质:对顶角相等.
强调对顶角概念与对顶角性质不能混淆:对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.
(3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象.
四、巩固运用
1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程.
2.练习:
(1)课本P5练习.
(2)补充:判断下列图中是否存在对顶角.
五、作业
1.课本P9.1,2,P10.7,8.
2.选用课时作业设计.
课时作业设计
一、判断题:
1.如果两个角有公共顶点和一条公共边,而且这两角互为补角,那么它们互为邻补角.()
2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补.()
二、填空题:
1.如图1,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.
(1)(2)
2.如图2,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°,则∠EOF=________.
三、解答题:
1.如图,直线AB、CD相交于点O.
(1)若∠AOC+∠BOD=100°,求各角的度数.
(2)若∠BOC比∠AOC的2倍多33°,求各角的度数.

2.两条直线相交,如果它们所成的一对对顶角互补,那么它的所成的各角的度数是多少?

课时作业设计答案:
一、1.×2.∨
二、1.∠AOF,∠EOC与∠DOF,1602.150
三、1.(1)分别是50°,150°,50°,130°(2)分别是49°,131°,49°,131°.

相关知识

相交线导学案


老师会对课本中的主要教学内容整理到教案课件中,是认真规划好自己教案课件的时候了。只有规划好了教案课件新的工作计划,我们的工作会变得更加顺利!那么到底适合教案课件的范文有哪些?下面的内容是小编为大家整理的相交线导学案,仅供参考,希望能为您提供参考!

导学稿:5.1.1相交线
一、探究活动:
1、画一画:(1)在下面的空白处,请你画出直线AB与直线CD相交于点O的图形。
(2)在你所画的图形中,共有几个小于平角的角,请你在图中分别表示出来。

2、分一分:用自己的话分别说说这4个角的位置关系,并分一分类:
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
②对顶角:有公共的顶点,而且一个角的两边分别是另一个角两边的反向延长线。
3、论一论:从图中观察,你觉得所分的两类角有什么样的数量关系?
①互为邻补角的两个角度数和为;
②对顶角。
4、证一证:已知直线AB、CD相交,如图1所示,求证
证明:

5、辨一辨:
(1)、如图所示,∠1和∠2是对顶角的图形有()

A.1个B.2个C.3个D.4个
(2)、如图2,直线AB,CD,EF相交于点O,则∠AOD的对顶角
是_____,∠AOC的邻补角是_______;
若∠AOC=50°,则∠BOD=_____,∠COB=_______.
二、例题评讲:
例1、如图3,直线相交,,求的度数.

练一练:如图4所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.
三、大展身手:
1、如图5,∠AOC的对顶角是,邻补角是。
2、如图5,直线AB、CD相交于O,∠AOC=80°,∠1=30°,求∠2的度数。
解:因为∠DOB=∠,(对顶角相等)
=80°(已知)
所以∠DOB=°(等量代换)
又因为∠1=30°(已知)
所以∠2=∠-∠

5.1.1相交线


作为老师的任务写教案课件是少不了的,大家应该在准备教案课件了。只有规划好新的教案课件工作,这对我们接下来发展有着重要的意义!有没有出色的范文是关于教案课件的?下面是小编为大家整理的“5.1.1相交线”,大家不妨来参考。希望您能喜欢!

5.1.1相交线

[学习目标]

1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力

2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题

[学习重点与难点]

重点:邻补角与对顶角的概念.对顶角性质与应用

难点:理解对顶角相等的性质的探索

[学习设计]

一.创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角

在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

观察剪刀剪布的过程,引入两条相交直线所成的角。

学生观察、思考、回答问题

教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?

教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,

二.认识邻补角和对顶角,探索对顶角性质

1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达

有公共的顶点O,而且的两边分别是两边的反向延长线

2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?

(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)

3学生根据观察和度量完成下表:

两条直线相交

所形成的角

分类

位置关系

数量关系

教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗

4.概括形成邻补角、对顶角概念和对顶角的性质

三.初步应用

练习:

下列说法对不对

(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角

(2)邻补角是互补的两个角,互补的两个角是邻补角

(3)对顶角相等,相等的两个角是对顶角

学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象

四.巩固运用

例题:如图,直线a,b相交,,求的度数。

[巩固练习]

(教科书5页练习)

已知,如图,,求:的度数

[小结]

邻补角、对顶角.

[作业]课本P9-1,2P10-7,8

5.1.2垂线

[学习目标]

1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。

2.掌握点到直线的距离的概念,并会度量点到直线的距离。

3.掌握垂线的性质,并会利用所学知识进行简单的推理。

[学习重点与难点]

1.学习重点:垂线的定义及性质。

2.学习难点:垂线的画法。

[学习过程设计]

一.复习提问:

1、叙述邻补角及对顶角的定义。

2、对顶角有怎样的性质。

二.新课:

引言:

前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。

(一)垂线的定义

当两条直线相交的四个角中,有一个角是直角时,

就说这两条直线是互相垂直的,其中一条直线叫做另一

条直线的垂线,它们的交点叫做垂足。

如图,直线AB、CD互相垂直,记作,

垂足为O。

请同学举出日常生活中,两条直线互相垂直的实例。

注意:

1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。

2、掌握如下的推理过程:(如上图)

反之,

(二)垂线的画法

探究:

1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?

2、经过直线l上一点A画l的垂线,这样的垂线能画出几条?

3、经过直线l外一点B画l的垂线,这样的垂线能画出几条?

画法:

让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。

注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。

(三)垂线的性质

经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:

性质1过一点有且只有一条直线与已知直线垂直。

练习:教材第7页

探究:

如图,连接直线l外一点P与直线l上各点O,

A,B,C,……,其中(我们称PO为点P到直线

l的垂线段)。比较线段PO、PA、PB、PC……的长短,这些线段中,哪一条最短?

性质2连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

(四)点到直线的距离

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

如上图,PO的长度叫做点P到直线l的距离。

例1

(1)AB与AC互相垂直;

(2)AD与AC互相垂直;

(3)点C到AB的垂线段是线段AB;

(4)点A到BC的距离是线段AD;

(5)线段AB的长度是点B到AC的距离;

(6)线段AB是点B到AC的距离。

其中正确的有()

A.1个B.2个

C.3个D.4个

解:A

例2如图,直线AB,CD相交于点O,

解:略

例3如图,一辆汽车在直线形公路AB上由A

向B行驶,M,N分别是位于公路两侧的村庄,

设汽车行驶到点P位置时,距离村庄M最近,

行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。

小结:

1.要掌握好垂线、垂线段、点到直线的距离这几个概念;

2.要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;

3.垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。

作业:教材第9页5、6.

5.2.1平行线

[学习目标]

1.理解平行线的意义,了解同一平面内两条直线的位置关系;

2.理解并掌握平行公理及其推论的内容;

3.会根据几何语句画图,会用直尺和三角板画平行线;

4.了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角;

4.了解平行线在实际生活中的应用,能举例加以说明.

[学习重点与难点]

1.学习重点:平行线的概念与平行公理;

2.学习难点:对平行公理的理解.

[学习过程]

一、复习提问

相交线是如何定义的?

二、新课引入

平面内两条直线的位置关系除平行外,还有哪些呢?

制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念.

三、同一平面内两条直线的位置关系

1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b.(画出图形)

2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行.

3.对平行线概念的理解:

两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.

一个前提:对两条直线而言.

4.平行线的画法

平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).

四、平行公理

1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”.

2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.

提问垂线的性质,并进行比较.

3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.

五、三线八角

由前面的教具演示引出.

如图,直线a,b被直线c所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对.

七、小结

让学生独立总结本节内容,叙述本节的概念和结论.

八、课后作业

1.教材P19第7题;

2.画图说明在同一平面内三条直线的位置关系及交点情况.

[补充内容]

1.试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.

2.在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的,试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)

5.2.2直线平行的条件(一)

3.借助用直尺和三角板画平行线的过程,,得出直线平行的条件.

4.会用直线平行的条件来判定直线平行.

5.激发学生学习数学的兴趣.

[学习重点与难点]

重点:理解直线平行的条件.

难点:直线平行的条件的应用.


[学习设计]

提问

复习题:

1.如图,已知四条直线AB、AC、DE、FG

(1)∠1与∠2是直线_____和直线____被直线________所截而成的________角.

(2)∠3与∠2是直线_____和直线____被直线________所截而成的________角.

(3)∠5与∠6是直线_____和直线____被直线________所截而成的________角.

(4)∠4与∠7是直线_____和直线____被直线________所截而成的________角.

(5)∠8与∠2是直线_____和直线____被直线________所截而成的________角.

2.下面说法中正确的是().

(1)在同一平面内,两条直线的位置关系有相交、平行、垂直三种

(2)在同一平面内,不垂直的两条直线必平行

(3)在同一平面内,不平行的两条直线必垂直

(4)在同一平面内,不相交的两条直线一定不垂直

3.如果a∥b,b∥c,那么_______,理由是_____________________.

导言:

上节课我们学习了平行线的意义,在同一平面内,两条直线的位置关系,以及平行公理,在此基础上,我们再来研究直线平行的条件.

新课:

直线平行的条件

演示用直尺和三角板画平行线的过程,

三种方法可以简单地说成:例题已知:如图,直线AB,CD,EF被MN所截,∠1=∠2,∠3+∠1=180°,试说明CD∥EF.

解:因为∠1=∠2,

所以AB∥CD.

又因为∠3+∠1=180°,

所以AB∥EF.

从而CD∥EF(为什么?).

4.如图所示:

(1)如果已知∠1=∠3,则可判定AB∥______,其理由是__________________;

(2)如果已知∠4+∠5=180°,则可判定___________∥______,其理由是__________________;

(3)如果已知∠1+∠2=180°,则可判定___________∥______,其理由是__________________;

(4)如果已知∠5+∠2=180°那么根据对顶角相等有∠2=__,

因此可知∠4+∠5=____,所以可确定___________∥______,其理由是__________________;

(5)如果已知∠1=∠6,则可判定_____∥______,其理由是__________________.

第4题图第5题图

5.如图,(1)如果∠1=________,那么DE∥AC;

(2)如果∠1=________,那么EF∥BC;

(3)如果∠FED+∠________=180°,那么AC∥ED;

(4)如果∠2+∠________=180°,那么AB∥DF.

相交线(1)-对顶角


学科:数学年级:七年级课型:新授时间:
学习目标:在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题。
学习重点:邻补角与对顶角的概念.对顶角性质与应用
学习难点:对顶角相等的性质的探索
学习过程:
一、学习准备(认识邻补角和对顶角,探索对顶角性质)
1、什么叫做角?角有哪几个要素?
2、直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?根据观察和度量完成下表:
3、概括形成邻补角、对顶角概念和对顶角的性质

4、初步应用例题:如图,直线a,b相交,∠1=40,
求∠2,∠3,∠4的度数
变式1:把∠1=40°变为∠1=50°求∠2,∠3,∠4的度数

变式2:把∠1=40°变为∠2是∠1的3倍求∠2,∠3,∠4的度数

变式3:把∠1=40°变为∠1∶∠2=2∶7求∠2,∠3,∠4的度数

5、练习:已知,如图,∠AOC=35,∠COF=80,求:∠AOD和∠DOF的度数.

二、合作探究
1、直线AB、CD相交于点O,如图:
①写出∠AOD、∠EOC的对顶角;

②写出∠AOC、∠EOB的邻补角;

③已知∠AOC=50,求∠BOD、∠COB的度数;

④若∠EOD+∠COF=240,求∠EOC.
2、如图所示,∠1和∠2是对顶角的图形有()毛

A.1个B.2个C.3个D.4个
3.下列说法正确的有()
①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.
A.1个B.2个C.3个D.4个
三、学习体会:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?

四、自我测试
1、.如图,直线AB、CD、EF相交于点O,则∠AOF的对顶角是()
A.∠BCDB.∠EOBC.∠COED.∠AOC
2、下列说法中正确的是()
A.不相等的角一定不是对顶角B.互补的两个角是邻补角
C.两条直线相交所成的角是对顶角D.互补且有一条公共边的两个角是邻补角
3、如图所示,AB,CD,EF交于点O,∠1=20°,
∠BOC=80°,求∠2的度数

4、如图所示,直线a,b,c两两相交,∠1=2∠3,∠2=65°,求∠4的度数.

5、你能用量角器量出图中∠1的度数吗?画图并说明理由。

思维拓展:
1、如图所示,L1,L2,L3交于点O,∠1=∠2,
∠3:∠1=8:1,求∠4的度数.

2、若4条不同的直线相交于一点,则图中共有几对对顶角?若n条不同的直线相交于一点呢?

3、在一个平面内任意画出6条直线,最多可以把平面分成几个部分?n条直线呢?