88教案网

你的位置: 教案 > 高中教案 > 导航 > 高中数学必修四2.4平面向量的数量积小结导学案

高中向量的教案

发表时间:2020-10-13

高中数学必修四2.4平面向量的数量积小结导学案。

为了促进学生掌握上课知识点,老师需要提前准备教案,大家在仔细规划教案课件。将教案课件的工作计划制定好,未来工作才会更有干劲!你们会写一段优秀的教案课件吗?急您所急,小编为朋友们了收集和编辑了“高中数学必修四2.4平面向量的数量积小结导学案”,仅供参考,欢迎大家阅读。

2.4平面向量的数量积小结
【学习目标】
1.理解数量积的含义掌握数量积的坐标表达式,会进行平面向量数量积的运算.
2.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.
3.会用向量方法解决某些简单的实际问题.
【新知自学】
知识梳理:
1.向量的夹角
已知两个________向量a和b,作OA→=a,OB→=b,则_________称作向量a与向量b的夹角,记作〈a,b〉.
向量夹角〈a,b〉的范围是______,且______=〈b,a〉.
若〈a,b〉=______,则a与b垂直,记作__________.
2.平面向量的数量积
__________叫做向量a和b的数量积(或内积),记作ab=__________.可见,ab是实数,可以等于正数、负数、零.其中|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影.
数量积的记号是ab,不能写成a×b,也不能写成ab.
向量数量积满足下列运算律:
①ab=__________(交换律)
②(a+b)c=__________(分配律)
③(λa)b=__________=a(λb)(数乘结合律).
3.平面向量数量积的性质:已知非零向量a=(a1,a2),b=(b1,b2)
性质几何表示坐标表示
定义ab=|a||b|cos〈a,b〉ab=a1b1+a2b2
模aa=|a|2或|a|=aa
|a|=a21+a22

若A(x1,y1),B(x2,y2),则AB→=(x2-x1,y2-y1)|AB→|=

a⊥bab=0a1b1+a2b2=0
夹角cos〈a,b〉=ab|a||b|(|a||b|≠0)cos〈a,b〉=a1b1+a2b2a21+a22b21+b22

|ab|与|a||b|的关系|ab|≤|a||b||a1b1+a2b2|≤a21+a22b21+b22

对点练习:
1.已知下列各式:
①|a|2=a2;②ab|a|2=ba;③(ab)2=a2b2;
④(a-b)2=a2-2ab+b2,其中正确的有().
A.1个B.2个
C.3个D.4个
2.设向量a=(1,0),b=12,12,则下列结论中正确的是().
A.|a|=|b|B.ab=22
C.a∥bD.a-b与b垂直
3.已知a=(1,-3),b=(4,6),c=(2,3),则(bc)a等于().
A.(26,-78)B.(-28,-42)
C.-52D.-78
4.若向量a,b满足|a|=1,|b|=2且a与b的夹角为π3,则|a+b|=__________.

5.已知|a|=2,|b|=4且a⊥(a-b),则a与b的夹角是__________.

【合作探究】
典例精析:
一、平面向量数量积的运算
例1、(1)在等边△ABC中,D为AB的中点,AB=5,求AB→BC→,|CD→|;
(2)若a=(3,-4),b=(2,1),求(a-2b)(2a+3b)和|a+2b|.

变式练习:
如图,在菱形ABCD中,若AC=4,则CA→AB→=________.

规律总结:
向量数量积的运算与实数运算不同:
(1)若a,b为实数,且ab=0,则有a=0或b=0,但ab=0却不能得出a=0或b=0.
(2)若a,b,c∈R,且a≠0,则由ab=ac可得b=c,但由ab=ac及a≠0却不能推出b=c.
(3)若a,b,c∈R,则a(bc)=(ab)c(结合律)成立,但对于向量a,b,c,而(ab)c与a(bc)一般是不相等的,向量的数量积是不满足结合律的.
(4)若a,b∈R,则|ab|=|a||b|,但对于向量a,b,却有|ab|≤|a||b|,等号当且仅当a∥b时成立.
二、两平面向量的夹角与垂直
例2、已知|a|=4,|b|=3,(2a-3b)(2a+b)=61.
(1)求a与b的夹角θ;
(2)若AB→=a,BC→=b,求△ABC的面积.
规律总结:
1.数量积大于0说明两向量的夹角为锐角或共线同向;数量积等于0说明两向量的夹角为直角;数量积小于0说明两向量的夹角为钝角或反向.
2.当a,b是非坐标形式时,求a与b的夹角,需求得ab及|a|,|b|或得出它们的关系.
变式练习:
已知平面内A,B,C三点在同一条直线上,OA→=(-2,m),OB→=(n,1),OC→=(5,-1),且OA→⊥OB→,求实数m,n的值.

三、求平面向量的模
例3、(1)设单位向量m=(x,y),b=(2,-1).若m⊥b,则|x+2y|=__________.
(2)已知向量a=cos3x2,sin3x2,b=cosx2,-sinx2,且x∈-π3,π4.
(1)求ab及|a+b|;
(2)若f(x)=ab-|a+b|,求f(x)的最大值和最小值.

规律总结:
利用数量积求长度问题是数量积的重要应用,要掌握此类问题的处理方法:
(1)|a|2=a2=aa;
(2)|a±b|2=(a±b)2=a2±2ab+b2;
(3)若a=(x,y),则|a|=x2+y2.
变式练习:
已知a与b是两个非零向量,且|a|=|b|=|a-b|,求a与a+b的夹角.

四、平面向量的应用
例4、已知向量OA→=a=(cosα,sinα),OB→=b=(2cosβ,2sinβ),OC→=c=(0,d)(d>0),其中O为坐标原点,且0<α<π2<β<π.
(1)若a⊥(b-a),求β-α的值;
(2)若OB→OC→|OC→|=1,OA→OC→|OC→|=32,求△OAB的面积S.

变式练习:
△ABC的面积是30,内角A,B,C所对边长分别为a,b,c,cosA=1213.
(1)求AB→AC→;
(2)若c-b=1,求a的值.

【课堂小结】

【当堂达标】
1.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是().
A.x=-12B.x=-1
C.x=5D.x=0
2.在△ABC中,∠A=90°,AB=1,AC=2.设点P,Q满足AP→=λAB→,AQ→=(1-λ)AC→,λ∈R.若BQ→CP→=-2,则λ=().
A.13B.23C.43D.2
3.在长江南岸渡口处,江水以12.5km/h的速度向东流,渡船的速度为25km/h.渡船要垂直地渡过长江,则航向为__________.
4.给出以下四个命题:
①对任意两个向量a,b都有|ab|=|a||b|;
②若a,b是两个不共线的向量,且AB→=λ1a+b,AC→=a+λ2b(λ1,λ2∈R),则A,B,C共线λ1λ2=-1;
③若向量a=(cosα,sinα),b=(cosβ,sinβ),则a+b与a-b的夹角为90°;
④若向量a,b满足|a|=3,|b|=4,|a+b|=13,则a,b的夹角为60°.
以上命题中,错误命题的序号是__________.

【课时作业】
1.已知向量a和b的夹角为120°,|a|=1,|b|=3,则|a-b|=()
A.13B.23C.15D.4
2.已知a,b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是()
A.π6B.π3C.2π3D.5π6
3.已知两个非零向量a与b,定义|a×b|=|a||b|sinθ,其中θ为a与b的夹角.若a=(-3,4),b=(0,2),则|a×b|的值为()
A.-8B.-6C.8D.6
4.已知向量a=(2,1),b=(1,m),若a与b的夹角是锐角,则实数m的取值范围是________.
5.已知向量a,b满足|2a+b|=7,且a⊥b,则|2a-b|=________.
6.在△ABC中,∠A=90°,且AB→BC→=-1,则边c的长为________.
7、已知a=(4,2),(1)求与a垂直的单位向量;
(2)与垂直的单位向量;(3)与平行的单位向量

8、已知点A(1,2),B(3,4),C(5,0),求∠BAC的正弦值。
【延伸探究】
已知平面上三点A,B,C,向量BC→=(2-k,3),AC→=(2,4).
(1)若三点A,B,C不能构成三角形,求实数k应满足的条件;
(2)若△ABC为直角三角形,求k的值.

延伸阅读

高中数学必修四2.4.1平面向量的数量积的物理背景及其含义导学案


2.4平面向量的数量积
2.4.1平面向量的数量积的物理背景及其含义
编审:周彦魏国庆
【学习目标】
1.掌握平面向量的数量积及其几何意义;
2.掌握平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理垂直的问题;
【自学新知】
知识回顾:(1)两个非零向量夹角的概念:已知非零向量与,作=,=,则
∠AOB=θ(0≤θ≤π)叫与的夹角.
说明:(1)当θ=0时,与同向;
(2)当θ=π时,与反向;
(3)当θ=时,与垂直,记⊥;
新知梳理:
1.平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是θ,则叫与的数量积,记作,即有=,(0≤θ≤π).并规定向量与任何向量的数量积为.

思考感悟:
1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?

2、两个向量的数量积与实数乘向量的积有什么区别?
(1)两个向量的数量积是一个,不是向量,符号由的符号所决定.
(2)向量的数量积写成;符号“”既不能省略,也不能用“×”代替.
(3)在实数中,若,且,则b=0;但是在数量积中,若,且=0,不能推出=.因cos有可能为0.

2.“投影”的概念:
作图:
定义:||cos叫做向量在方向上的投影.

思考感悟:
投影不是向量,是一个数量。当为锐角时投影为值;当为钝角时投影为值,当为直角时投影为;当=0时投影为||;当=180时投影为||

3.向量的数量积的几何意义:
数量积等于与||cos的乘积.

4.两个向量的数量积的性质:设,为两个非零向量,
(1)=
(2)当与同向时,=,
当与反向时,=
特别的:=||2或;
||≤||||;
cos=
5.平面向量数量积的运算律
①交换律:=
②数乘结合律:()=()=()③分配律:(+)=+
说明:
(1)一般地,()≠()
(2)==
对点练习
1.下列叙述不正确的是()
A.向量的数量积满足交换律
B.向量的数量积满足分配律
C.向量的数量积满足结合律
D.是一个实数
2.||=3,||=4,向量+与-的位置关系为()
A.平行B.垂直
C.夹角为D.不平行也不垂直
3.已知|m→|=,n→=(cosθ,sinθ),m→n→=9,则m→,n→的夹角为()
A.150B.120
C.60D.30

4.已知,,,则向量在向量方向上的投影是___________,向量在向量方向上的投影是___________。

【合作探究】
典例精析:
例1.证明:

变式1.已知||=6,||=4,与的夹角为60o,求:
(1)(+2)(-3).
(2)|+|与|-|.

例2.已知||=12,||=9,,求与的夹角。

变式2.已知||=3,||=4,且与不共线,k为何值时,向量+k与-k互相垂直.

【课堂小结】

【当堂达标】
1.下列命题中:①若≠,且=,则=;②若=,则3<4;
③()=(),对任意向量,,都成立;④22=()2;正确命题的个数为____

2.若||=2sin15°,||=4cos375°、,夹角为30°,则为()
A.B.
C.D.

3.若||=||=|-|,则与+的夹角为()
A.30°B.60°
C.150°D.120°

4..已知、均为单位向量,它们的夹角为60°,那么|+3|=()
A.B.
C.D.4

【课时作业】
1.已知||=1,||=,且(-)与垂直,则与的夹角是()
A.60°B.30°
C.135°D.45°2.若向量的夹角为,,则向量的模

3.向量、满足(-)(2+)=-4,且||=2,||=4,则与夹角的余弦值等于
4、在Rt△ABC中,∠C=90°,AB=5,AC=4,求AB→BC→.

5.已知||=8,||=10,|+|=16,求与的夹角.

6*.向量互相垂直,向量互相垂直,求与夹角。

7*.已知||=3,||=3,与夹角为,求使向量的夹角为锐角时,的取值范围。

8.(2012全国卷)已知向量a,b夹角为45°,且|a|=1,|2a-b|=10,则|b|=________.

【延伸探究】
已知平面上三个向量的模都是1,他们互相之间的夹角均是,
(1)求证:
()若,求得取值范围。

高中数学必修四2.3平面向量基本定理及坐标表示小结导学案


2.3平面向量基本定理及坐标表示小结
【学习目标】
1.了解平面向量的基本定理及其意义;掌握平面向量的正交分解及其坐标表示.
2.会用坐标表示平面向量的线性运算;会用坐标表示的平面向量共线的条件.

【知识重温】
1.平面向量基本定理
如果,是同一平面内的两个______向量,那么对于这一平面内的任意向量,有且只有一对实数,,使=__________.向量,叫做表示这一平面内所有向量的一组基底.

2.平面向量的坐标表示
在平面直角坐标系内,分别取与x轴、y轴______的两个单位向量、作为基底,对于平面内的一个向量,有且只有一对实数x,y,使得=__________,则有序数对(x、y)叫做向量的坐标,记作__________,其中x,y分别叫做在x轴、y轴上的坐标,=(x,y)叫做向量的坐标表示。相等的向量其______相同,______相同的向量是相等向量.

3.平面向量的坐标运算
(1)已知点A(x1,y1),B(x2,y2),则
=__________________,

2)已知=(x1,y1),=(x2,y2),则
+=____________,
-=___________,
λ=___________;
∥(≠0)______________.

(3)=(x1,y1),=(x2,y2),=________________.

思考感悟
1.基底的不唯一性
只要两个向量不共线,就可以作为平面的一组基底,故基底的选取是不唯一。
平面内任意向量都可被这个平面的一组基底,线性表示,且在基底确定后,这样的表示是唯一的.

2.向量坐标与点的坐标区别
在平面直角坐标系中,以原点为起点的向量=,此时点A的坐标与的坐标统一为(x,y),但应注意其表示形式的区别,如点A(x,y),向量==(x,y).

当平面向量平行移动到时,向量不变即==(x,y),但的起点O1和终点A1的坐标都发生了变化.

对点练习:
1.已知向量=(1,-2),=(-3,4),则12等于()
A.(-2,3)B.(2,-3)
C.(2,3)D.(-2,-3)

2.已知向量=(1,1),=(2,x),若+与4-2平行,则实数x的值是()
A.-2B.0
C.1D.2

3.已知向量=(1,2),=(1,0),=(3,4).若λ为实数,(+λ)∥,则λ=()
A.14B.12
C.1D.2

4.下列各组向量中,能作为基底的是()
①=(1,2),=(2,4)
②=(1,1),=(-1,-1)
③=(2,-3),=(-3,2)
④=(5,6),=(7,8).
A.①②B.②③
C.③④D.②④

【自学探究】
考点一平面向量基本定理
例1、如图所示,在平行四边形ABCD中,M,N分别为DC,BC的中点,已知=,=,试用,表示,.

规律总结:应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.解题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.

变式1:如图,在△ABC中,=13,P是BN上的一点,若=m+211,则实数m的值为__________.

考点二平面向量的坐标运算
例2、已知A(-2,4),B(3,-1),C(-3,-4),设=,=,=,且=3,=-2.
(1)求3+-3;
(2)求满足=m+n的实数m,n;
(3)求M,N的坐标及向量的坐标.

规律总结:若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及运算法则的正确使用.
变式2在ABCD中,AC为一条对角线,若=(2,4),=(1,3),则=()
A.(-2,-4)B.(-3,-5)
C.(3,5)D.(2,4)

考点三平面向量共线的坐标表示
例3、平面内给定三个向量=(3,2),=(-1,2),=(4,1).回答下列问题:
(1)若(+k)∥(2-),求实数k;
(2)设=(x,y)满足(-)∥(+)且|-|=1,求.
规律总结:用坐标来表示向量平行,实际上是一种解析几何(或数形结合)的思想,其实质是用代数(主要是方程)计算来代替几何证明,这样就把抽象的逻辑思维转化为了计算.
变式3、
(1)(2013陕西卷)已知向量=(1,m),=(m,2),若∥,则实数m等于()
A.-2B.2
C.-2或2D.0

(2)已知梯形ABCD,其中AB∥CD,且DC=2AB,三个顶点A(1,2),B(2,1),C(4,2),则点D的坐标为__________.

【课堂小结】
1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解.
2.向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键,通过坐标运算可将一些几何问题转化为代数问题处理.
3.在向量的运算中要注意待定系数法、方程思想和数形结合思想的运用.
4.要注意区分点的坐标与向量的坐标有可能。
【当堂达标】
1.(2014北京卷)已知向量=(2,4),=(-1,1),则2-=()
A.(5,7)B.(5,9)
C.(3,7)D.(3,9)

2.(2014揭阳二模)已知点A(-1,5)和向量=(2,3),若=3,则点B的坐标为()
A.(7,4)B.(7,14)
C.(5,4)D.(5,14)

3.(2015许昌模拟)在△ABC中,点P在BC上,且=2,点Q是AC的中点,若=(4,3),=(1,5),则等于()
A.(-2,7)B.(-6,21)
C.(2,-7)D.(6,-21)

4.已知两点在直线AB上,求一点P是。

【课时作业】
1、若向量=(x+3,x2-3x-4)与相等,已知A(1,2)和B(3,2),则x的值为()
A、-1B、-1或4
C、4D、1或-4

2、一个平行四边形的三个顶点的坐标分别是(5,7),(-3,5),(3,4),则第四个顶点的坐标不可能是()
A、(-1,8)B,(-5,2)
C、(1l,6)D、(5,2)

3、己知P1(2,-1)、P2(0,5)且点P在P1P2的延长线上,,则P点坐标为()
A、(-2,11)B、(
C、(,3)D、(2,-7)

4、平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足,其中α、β∈R,且α+β=1,则点C的轨迹方程为()
A、3x+2y-11=0
B、(x-1)2+(y-2)2=5
C、2x-y=0
D、x+2y-5=0

5、已知点A(-1,5),若向量与向量=(2,3)同向,且=3,则点B的坐标为_____________

6、平面上三个点,分别为A(2,-5),B(3,4),C(-1,-3),D为线段BC的中点,则向量的坐标为_______________

7、已知点A(-1,2),B(2,8)及,,求点C、D和的坐标。

8、已知平行四边形ABCD的一个顶点坐标为A(-2,1),一组对边AB、CD的中点分别为M(3,0)、N(-1,-2),求平行四边形的各个顶点坐标。
【延伸探究】
如图,中AD是三角形BC边上的中线且AE=2EC,BE交AD于G,求及的值。

高中数学必修四2.3.1平面向量基本定理导学案


2.3平面向量的基本定理及坐标表示
2.3.1平面向量基本定理

【学习目标】
1.了解平面向量基本定理;
2.理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;
3.能够在具体问题中适当选取基底,使其他向量都能够用基底来表达.

【新知自学】
知识回顾:
1、实数与向量的积:实数λ与向量的积是一个,记作;规定:
(1)|λ|=
(2)λ0时,λ与方向;
λ0时,λ与方向;
λ=0时,λ=
2.运算定律:
结合律:λ(μ)=;
分配律:(λ+μ)=,
λ(+)=

3.向量共线定理:向量与非零向量共线,则有且只有一个非零实数λ,使=λ.

新知梳理:
1.给定平面内两个向量,,请你作出向量3+2,-2,

2.由上,同一平面内的任一向量是否都可以用形如λ1+λ2的向量表示?
平面向量基本定理:如果,是同一平面内的两个向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使
不共线的向量,叫做这一平面内表示所有向量的一组基底。
思考感悟:
(1)基底不惟一,关键是;不同基底下,一个向量可有不同形式表示;
(2)基底给定时,分解形式惟一.λ1,λ2是被,,唯一确定的数.

3.向量的夹角:平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?

已知两个非零向量、,作,,则∠AOB=,叫向量、的夹角。

当=,、同向;
当=,、反向;统称为向量平行,记作
如果=,与垂直,记作⊥。

对点练习:
1.设、是同一平面内的两个向量,则有()
A.、一定平行
B.、的模相等
C.同一平面内的任一向量都有=λ+μ(λ、μ∈R)
D.若、不共线,则同一平面内的任一向量都有=λ+u(λ、u∈R)

2.已知向量=-2,=2+,其中、不共线,则+与=6-2的关系()
A.不共线B.共线
C.相等D.无法确定

3.已知λ1>0,λ2>0,、是一组基底,且=λ1+λ2,则与,
与.(填共线或不共线).

【合作探究】
典例精析:
例1:已知向量,求作向量2.5+3

变式1:已知向量、(如图),求作向量:
(1)+2.?(2)-+3

例2:如图,,不共线,且
,用,来表示

变式2:已知G为△ABC的重心,设=,=,试用、表示向量.

【课堂小结】
知识、方法、思想

【当堂达标】
1.设是已知的平面向量且,关于向量的分解,其中所列述命题中的向量,和在同一平面内且两两不共线,有如下四个命题:
①给定向量,总存在向量,使;
②给定向量和,总存在实数和,使;
③给定单位向量和正数,总存在单位向量和实数,使;
④给定正数和,总存在单位向量和单位向量,使;
上述命题中的则真命题的个数是()()
A.1B.2C.3D

2.如图,正六边形ABCDEF中,=
A.B.C.D.

3.在中,,,,为的中点,则____________.(用表示)

【课时作业】
1、若、不共线,且λ+μ=(λ、μ),则()
A.=,=B.=0,=0
C.=0,=D.=,=0
2.在△ABC中,AD→=14AB→,DE∥BC,且DE与AC相交于点E,M是BC的中点,AM与DE相交于点N,若AN→=xAB→+yAC→(x,y∈R),则x+y等于()
A.1B.12C.14D.18

3.在如图所示的平行四边形ABCD中,AB→=a,AD→=b,AN=3NC,M为BC的中点,则MN→=________.(用a,b表示).

4.如图ABCD的两条对角线交于点M,且=,=,用,表示,,和

5.设与是两个不共线向量,=3+4,=-2+5,若实数λ、μ满足λ+μ=5-,求λ、μ的值.

6如图,在△ABC中,AN→=13NC→,P是BN上一点,若AP→=mAB→+211AC→,求实数m的值.

7.如图所示,P是△ABC内一点,且满足条件AP→+2BP→+3CP→=0,设Q为CP延长线与AB的交点,令CP→=p,用p表示CQ→.

【延伸探究】
已知ABCD的两条对角线AC与BD交于E,O是任意一点,求证:+++=4

高中数学必修四第二章平面向量章末小结导学案


第二章平面向量章末小结
【本章知识体系】
【题型归纳】
专题一、平面向量的概念及运算
包含向量的有关概念、加法、减法、数乘。向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算。利用向量证明三点共线时,应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.
1、1.AB→+AC→-BC→+BA→化简后等于()
A.3AB→B.AB→
C.BA→D.CA→
2、在平行四边形ABCD中,OA→=a,OB→=b,OC→=c,OD→=d,则下列运算正确的是()
A.a+b+c+d=0
B.a-b+c-d=0
C.a+b-c-d=0
D.a-b-c+d=0
3、已知圆O的半径为3,直径AB上一点D使AB→=3AD→,E、F为另一直径的两个端点,则DE→DF→=()
A.-3B.-4
C.-8D.-6
4、如图,在正方形ABCD中,设AB→=a,AD→=b,BD→=c,则在以a,b为基底时,AC→可表示为________,在以a,c为基底时,AC→可表示为________.

5、下列说法正确的是()
A.两个单位向量的数量积为1
B.若ab=ac,且a≠0,则b=c
C.AB→=OA→-OB→
D.若b⊥c,则(a+c)b=ab

专题二、平面向量的坐标表示及坐标运算
向量的坐标表示及运算强化了向量的代数意义。若已知有向线段两端点的坐标,则应先求向量的坐标,解题过程中,常利用向量相等,则其坐标相同这一原则。

6、已知向量a=(1,n),b=(-1,n),若2a-b与b垂直,则|a|等于()
A.1B.2
C.2D.4

7、设向量a=(1,-3),b=(-2,4),c=(-1,-2),若表示向量4a,4b-2c,2(a-c),d的有向线段首尾相接能构成四边形,则d=()
A.(2,6)B.(-2,6)
C.(2,-6)D.(-2,-6)

8、已知a=(1,1),b=(1,0),c满足ac=0,且|a|=|c|,bc0,则c=________.

专题三、平面向量的基本定理
平面向量的基本定理解决了所有向量之间的相互关系,为我们研究向量提供了依据。
9、已知AD、BE分别为△ABC的边BC、AC上的中线,设AD→=a,BE→=b,则BC→等于()
A.43a+23b
B.23a+43b
C.23a-43b
D.-23a+43b

10、在平面直角坐标系中,若O为坐标原点,则A,B,C三点在同一直线上的等价条件为存在唯一的实数λ,使得OC→=λOA→+(1-λ)OB→成立,此时称实数λ为“向量OC→关于OA→和OB→的终点共线分解系数”.若已知P1(3,1),P2(-1,3),且向量OP3→与向量a=(1,1)垂直,则“向量OP3→关于OP1→和OP2→的终点共线分解系数”为()
A.-3B.3C.1D.-1

11、已知O,A,B是平面上不共线的三点,直线AB上有一点C,满足2AC→+CB→=0,
(1)用OA→,OB→表示OC→;
(2)若点D是OB的中点,证明四边形OCAD是梯形.
解:

12、如图,平行四边形ABCD中,AB→=a,AD→=b,H、M是AD、DC的中点,BC上点F使BF=13BC.
(1)以a、b为基底表示向量AM→与HF→;
(2)若|a|=3,|b|=4,a与b的夹角为120°,求AM→HF→.

专题四、平面向量的数量积
求平面向量的数量积的方法有两个:一个是根据数量积的定义ab=|a||b|cosθ,其中θ为向量a,b的夹角;另一个是根据坐标法,坐标法是a=(,),b=(,)时,ab=+。利用数量积可以求长度,也可判断直线与直线的关系(相交的夹角以及垂直),还可以通过向量的坐标运算转为代数问题解决.
13、在直角坐标系xOy中,AB→=(2,1),AC→=(3,k),若三角形ABC是直角三角形,则k的可能值个数是()
A.1B.2C.3D.4

14、A,B,C,D为平面上四个互异点,且满足(DB→+DC→-2DA→)(AB→-AC→)=0,则△ABC的形状是()
A.直角三角形B.等腰三角形
C.等腰直角三角形D.等边三角形

15、已知|a|=3,|b|=4,|c|=23,且a+b+c=0,则ab+bc+ca=________.

16.已知|a|=1,|b|=1,a与b的夹角为120°,则向量2a-b在向量a+b方向上的投影为________.

17.如图所示,在正方形ABCD中,已知|AB→|=2,若N为正方形内(含边界)任意一点,则AB→AN→的最大值是________.

18、设平面上向量a=(cosα,sinα)(0≤α2π),b=(-12,32),a与b不共线.
(1)证明向量a+b与a-b垂直;
(2)当两个向量3a+b与a-3b的模相等时,求角α.

19、已知a=(1,2),b=(1,λ),分别确定实数λ的取值范围,使得:(1)a与b的夹角为直角;(2)a与b的夹角为钝角.

专题五、平面向量的应用
用向量的方法研究代数问题与一些几何问题,往往能有一种简易的奇妙效果,关键是建立几何与向量问题的联系,利用向量的运算。
20、如图,在平行四边形ABCD中,E为对角线BD上的一点,且BE:ED=2:3,连接CE并延长交AB与F,求AF:FB的值。

21、在平面直角坐标系中,A(1,1)、B(2,3)、C(s,t)、P(x,y),△ABC是等腰直角三角形,B为直角顶点.
(1)求点C(s,t);
(2)设点C(s,t)是第一象限的点,若AP→=AB→-mAC→,m∈R,则m为何值时,点P在第二象限?