88教案网

你的位置: 教案 > 高中教案 > 导航 > 2018人教A版高中数学必修42.3.4平面向量共线的坐标表示讲义

高中向量的教案

发表时间:2020-10-31

2018人教A版高中数学必修42.3.4平面向量共线的坐标表示讲义。

俗话说,磨刀不误砍柴工。作为高中教师准备好教案是必不可少的一步。教案可以让学生能够听懂教师所讲的内容,让高中教师能够快速的解决各种教学问题。那么,你知道高中教案要怎么写呢?为了让您在使用时更加简单方便,下面是小编整理的“2018人教A版高中数学必修42.3.4平面向量共线的坐标表示讲义”,希望能为您提供更多的参考。

2.3.4平面向量共线的坐标表示
预习课本P98~100,思考并完成以下问题
如何利用向量的坐标运算表示两个向量共线?
[新知初探]
平面向量共线的坐标表示
前提条件a=(x1,y1),b=(x2,y2),其中b≠0
结论当且仅当x1y2-x2y1=0时,向量a、b(b≠0)共线

[点睛](1)平面向量共线的坐标表示还可以写成x1x2=y1y2(x2≠0,y2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例;
(2)当a≠0,b=0时,a∥b,此时x1y2-x2y1=0也成立,即对任意向量a,b都有:x1y2-x2y1=0a∥b.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)已知a=(x1,y1),b=(x2,y2),若a∥b,则必有x1y2=x2y1.()
(2)向量(2,3)与向量(-4,-6)反向.()
答案:(1)√(2)√
2.若向量a=(1,2),b=(2,3),则与a+b共线的向量可以是()
A.(2,1)B.(-1,2)C.(6,10)D.(-6,10)
答案:C
3.已知a=(1,2),b=(x,4),若a∥b,则x等于()
A.-12B.12C.-2D.2
答案:D
4.已知向量a=(-2,3),b∥a,向量b的起点为A(1,2),终点B在x轴上,则点B的坐标为________.
答案:73,0
向量共线的判定

[典例](1)已知向量a=(1,2),b=(λ,1),若(a+2b)∥(2a-2b),则λ的值等于()
A.12B.13C.1D.2
(2)已知A(2,1),B(0,4),C(1,3),D(5,-3).判断与是否共线?如果共线,它们的方向相同还是相反?
[解析](1)法一:a+2b=(1,2)+2(λ,1)=(1+2λ,4),2a-2b=2(1,2)-2(λ,1)=(2-2λ,2),由(a+2b)∥(2a-2b)可得2(1+2λ)-4(2-2λ)=0,解得λ=12.
法二:假设a,b不共线,则由(a+2b)∥(2a-2b)可得a+2b=μ(2a-2b),从而1=2μ,2=-2μ,方程组显然无解,即a+2b与2a-2b不共线,这与(a+2b)∥(2a-2b)矛盾,从而假设不成立,故应有a,b共线,所以1λ=21,即λ=12.
[答案]A
(2)[解]=(0,4)-(2,1)=(-2,3),=(5,-3)-(1,3)=(4,-6),
∵(-2)×(-6)-3×4=0,∴,共线.
又=-2,∴,方向相反.
综上,与共线且方向相反.
向量共线的判定方法
(1)利用向量共线定理,由a=λb(b≠0)推出a∥b.
(2)利用向量共线的坐标表达式x1y2-x2y1=0直接求解.
[活学活用]
已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b平行,平行时它们的方向相同还是相反?
解:ka+b=k(1,2)+(-3,2)=(k-3,2k+2),
a-3b=(1,2)-3(-3,2)=(10,-4),
若ka+b与a-3b平行,则-4(k-3)-10(2k+2)=0,
解得k=-13,此时ka+b=-13a+b=-13(a-3b),故ka+b与a-3b反向.
∴k=-13时,ka+b与a-3b平行且方向相反.
三点共线问题

[典例](1)已知=(3,4),=(7,12),=(9,16),求证:A,B,C三点共线;
(2)设向量=(k,12),=(4,5),=(10,k),当k为何值时,A,B,C三点
共线?
[解](1)证明:∵=-=(4,8),
=-=(6,12),
∴=32,即与共线.
又∵与有公共点A,∴A,B,C三点共线.
(2)若A,B,C三点共线,则,共线,
∵=-=(4-k,-7),
=-=(10-k,k-12),
∴(4-k)(k-12)+7(10-k)=0.
解得k=-2或k=11.

有关三点共线问题的解题策略
(1)要判断A,B,C三点是否共线,一般是看与,或与,或与是否共线,若共线,则A,B,C三点共线;
(2)使用A,B,C三点共线这一条件建立方程求参数时,利用=λ,或=λ,或=λ都是可以的,但原则上要少用含未知数的表达式.
[活学活用]
设点A(x,1),B(2x,2),C(1,2x),D(5,3x),当x为何值时,与共线且方向相同,此时,A,B,C,D能否在同一条直线上?
解:=(2x,2)-(x,1)=(x,1),
=(1,2x)-(2x,2)=(1-2x,2x-2),
=(5,3x)-(1,2x)=(4,x).
由与共线,所以x2=1×4,所以x=±2.
又与方向相同,所以x=2.
此时,=(2,1),=(-3,2),
而2×2≠-3×1,所以与不共线,
所以A,B,C三点不在同一条直线上.
所以A,B,C,D不在同一条直线上.
向量共线在几何中的应用

题点一:两直线平行判断
1.如图所示,已知直角梯形ABCD,AD⊥AB,AB=2AD=2CD,过点C作CE⊥AB于E,用向量的方法证明:DE∥BC;
证明:如图,以E为原点,AB所在直线为x轴,EC所在直线为y轴建立直角坐标系,
设||=1,则||=1,||=2.
∵CE⊥AB,而AD=DC,
∴四边形AECD为正方形,
∴可求得各点坐标分别为E(0,0),B(1,0),C(0,1),D(-1,1).
∵=(-1,1)-(0,0)=(-1,1),
=(0,1)-(1,0)=(-1,1),
∴=,∴∥,即DE∥BC.

题点二:几何形状的判断
2.已知直角坐标平面上四点A(1,0),B(4,3),C(2,4),D(0,2),求证:四边形ABCD是等腰梯形.
证明:由已知得,=(4,3)-(1,0)=(3,3),
=(0,2)-(2,4)=(-2,-2).
∵3×(-2)-3×(-2)=0,∴与共线.
=(-1,2),=(2,4)-(4,3)=(-2,1),
∵(-1)×1-2×(-2)≠0,∴与不共线.
∴四边形ABCD是梯形.
∵=(-2,1),=(-1,2),
∴||=5=||,即BC=AD.
故四边形ABCD是等腰梯形.
题点三:求交点坐标
3.如图所示,已知点A(4,0),B(4,4),C(2,6),求AC和OB交点P的坐标.
解:法一:设=t=t(4,4)
=(4t,4t),
则=-=(4t,4t)-(4,0)=(4t-4,4t),
=-=(2,6)-(4,0)=(-2,6).
由,共线的条件知(4t-4)×6-4t×(-2)=0,
解得t=34.∴=(3,3).
∴P点坐标为(3,3).
法二:设P(x,y),
则=(x,y),=(4,4).
∵,共线,
∴4x-4y=0.①
又=(x-2,y-6),=(2,-6),
且向量,共线,
∴-6(x-2)+2(6-y)=0.②
解①②组成的方程组,得x=3,y=3,
∴点P的坐标为(3,3).

应用向量共线的坐标表示求解几何问题的步骤
层级一学业水平达标
1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是()
A.e1=(0,0),e2=(1,-2)
B.e1=(-1,2),e2=(5,7)
C.e1=(3,5),e2=(6,10)
D.e1=(2,-3),e2=12,-34
解析:选BA中向量e1为零向量,∴e1∥e2;C中e1=12e2,∴e1∥e2;D中e1=4e2,∴e1∥e2,故选B.
2.已知点A(1,1),B(4,2)和向量a=(2,λ),若a∥,则实数λ的值为()
A.-23B.32
C.23D.-32
解析:选C根据A,B两点的坐标,可得=(3,1),
∵a∥,∴2×1-3λ=0,解得λ=23,故选C.
3.已知A(2,-1),B(3,1),则与平行且方向相反的向量a是()
A.(2,1)B.(-6,-3)
C.(-1,2)D.(-4,-8)
解析:选D=(1,2),向量(2,1)、(-6,-3)、(-1,2)与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.
4.已知向量a=(x,2),b=(3,-1),若(a+b)∥(a-2b),则实数x的值为()
A.-3B.2
C.4D.-6

解析:选D因为(a+b)∥(a-2b),a+b=(x+3,1),a-2b=(x-6,4),所以4(x+3)-(x-6)=0,解得x=-6.
5.设a=32,tanα,b=cosα,13,且a∥b,则锐角α为()
A.30°B.60°
C.45°D.75°
解析:选A∵a∥b,
∴32×13-tanαcosα=0,
即sinα=12,α=30°.
6.已知向量a=(3x-1,4)与b=(1,2)共线,则实数x的值为________.
解析:∵向量a=(3x-1,4)与b=(1,2)共线,
∴2(3x-1)-4×1=0,解得x=1.
答案:1
7.已知A(-1,4),B(x,-2),若C(3,3)在直线AB上,则x=________.
解析:=(x+1,-6),=(4,-1),
∵∥,∴-(x+1)+24=0,∴x=23.
答案:23
8.已知向量a=(1,2),b=(-2,3),若λa+μb与a+b共线,则λ与μ的关系是________.
解析:∵a=(1,2),b=(-2,3),
∴a+b=(1,2)+(-2,3)=(-1,5),
λa+μb=λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ),
又∵(λa+μb)∥(a+b),
∴-1×(2λ+3μ)-5(λ-2μ)=0,
∴λ=μ.
答案:λ=μ
9.已知A,B,C三点的坐标为(-1,0),(3,-1),(1,2),并且=13,=13,求证:∥.
证明:设E,F的坐标分别为(x1,y1)、(x2,y2),
依题意有=(2,2),=(-2,3),=(4,-1).
∵=13,∴(x1+1,y1)=13(2,2).
∴点E的坐标为-13,23.
同理点F的坐标为73,0,=83,-23.
又83×(-1)-4×-23=0,∴∥.
10.已知向量a=(2,1),b=(1,1),c=(5,2),m=λb+c(λ为常数).
(1)求a+b;
(2)若a与m平行,求实数λ的值.
解:(1)因为a=(2,1),b=(1,1),
所以a+b=(2,1)+(1,1)=(3,2).
(2)因为b=(1,1),c=(5,2),
所以m=λb+c=λ(1,1)+(5,2)=(λ+5,λ+2).
又因为a=(2,1),且a与m平行,
所以2(λ+2)=λ+5,解得λ=1.
层级二应试能力达标
1.已知平面向量a=(x,1),b=(-x,x2),则向量a+b()
A.平行于x轴
B.平行于第一、三象限的角平分线
C.平行于y轴
D.平行于第二、四象限的角平分线
解析:选C因为a+b=(0,1+x2),所以a+b平行于y轴.
2.若A(3,-6),B(-5,2),C(6,y)三点共线,则y=()
A.13B.-13
C.9D.-9
解析:选DA,B,C三点共线,
∴∥,而=(-8,8),=(3,y+6),
∴-8(y+6)-8×3=0,即y=-9.
3.已知向量a=(1,0),b=(0,1),c=ka+b(k∈R),d=a-b,如果c∥d,那么()
A.k=1且c与d同向
B.k=1且c与d反向
C.k=-1且c与d同向
D.k=-1且c与d反向
解析:选D∵a=(1,0),b=(0,1),若k=1,则c=a+b=(1,1),d=a-b=(1,-1),显然,c与d不平行,排除A、B.若k=-1,则c=-a+b=(-1,1),d=a-b=-(-1,1),即c∥d且c与d反向.

4.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个顶点的坐标是()
A.(1,5)或(5,5)
B.(1,5)或(-3,-5)
C.(5,-5)或(-3,-5)
D.(1,5)或(5,-5)或(-3,-5)
解析:选D设A(-1,0),B(3,0),C(1,-5),第四个顶点为D,
①若这个平行四边形为ABCD,
则=,∴D(-3,-5);
②若这个平行四边形为ACDB,
则=,∴D(5,-5);
③若这个平行四边形为ACBD,
则=,∴D(1,5).
综上所述,D点坐标为(1,5)或(5,-5)或(-3,-5).
5.已知=(6,1),=(x,y),=(-2,-3),∥,则x+2y的值为________.
解析:∵=++=(6,1)+(x,y)+(-2,-3)
=(x+4,y-2),
∴=-=-(x+4,y-2)=(-x-4,-y+2).
∵∥,
∴x(-y+2)-(-x-4)y=0,即x+2y=0.
答案:0
6.已知向量=(3,-4),=(6,-3),=(5-m,-3-m).若点A,B,C能构成三角形,则实数m应满足的条件为________.
解析:若点A,B,C能构成三角形,则这三点不共线,即与不共线.
∵=-=(3,1),=-=(2-m,1-m),
∴3(1-m)≠2-m,即m≠12.
答案:m≠12
7.已知A(1,1),B(3,-1),C(a,b).
(1)若A,B,C三点共线,求a与b之间的数量关系;
(2)若=2,求点C的坐标.
解:(1)若A,B,C三点共线,则与共线.
=(3,-1)-(1,1)=(2,-2),=(a-1,b-1),
∴2(b-1)-(-2)(a-1)=0,∴a+b=2.
(2)若=2,则(a-1,b-1)=(4,-4),
∴a-1=4,b-1=-4,∴a=5,b=-3,
∴点C的坐标为(5,-3).
8.如图所示,在四边形ABCD中,已知A(2,6),B(6,4),C(5,0),D(1,0),求直线AC与BD交点P的坐标.
解:设P(x,y),则=(x-1,y),
=(5,4),=(-3,6),=(4,0).
由B,P,D三点共线可得==(5λ,4λ).
又∵=-=(5λ-4,4λ),
由于与共线得,(5λ-4)×6+12λ=0.
解得λ=47,
∴=47=207,167,
∴P的坐标为277,167.

相关推荐

平面向量共线的坐标表示


平面向量共线的坐标表示
教学目的:
(1)理解平面向量的坐标的概念;
(2)掌握平面向量的坐标运算;
(3)会根据向量的坐标,判断向量是否共线.
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性
授课类型:新授课
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.平面向量的坐标表示
分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得
把叫做向量的(直角)坐标,记作
其中叫做在轴上的坐标,叫做在轴上的坐标,特别地,,,.
2.平面向量的坐标运算
若,,
则,,.
若,,则
二、讲解新课:
∥()的充要条件是x1y2-x2y1=0
设=(x1,y1),=(x2,y2)其中.
由=λ得,(x1,y1)=λ(x2,y2)消去λ,x1y2-x2y1=0
探究:(1)消去λ时不能两式相除,∵y1,y2有可能为0,∵∴x2,y2中至少有一个不为0
(2)充要条件不能写成∵x1,x2有可能为0
(3)从而向量共线的充要条件有两种形式:∥()
三、讲解范例:
例1已知=(4,2),=(6,y),且∥,求y.
例2已知A(-1,-1),B(1,3),C(2,5),试判断A,B,C三点之间的位置关系.
例3设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1),(x2,y2).
(1)当点P是线段P1P2的中点时,求点P的坐标;
(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.
例4若向量=(-1,x)与=(-x,2)共线且方向相同,求x
解:∵=(-1,x)与=(-x,2)共线∴(-1)×2-x(-x)=0
∴x=±∵与方向相同∴x=
例5已知A(-1,-1),B(1,3),C(1,5),D(2,7),向量与平行吗?直线AB与平行于直线CD吗?
解:∵=(1-(-1),3-(-1))=(2,4),=(2-1,7-5)=(1,2)
又∵2×2-4×1=0∴∥
又∵=(1-(-1),5-(-1))=(2,6),=(2,4),2×4-2×60∴与不平行
∴A,B,C不共线∴AB与CD不重合∴AB∥CD
四、课堂练习:
1.若a=(2,3),b=(4,-1+y),且a∥b,则y=()
A.6B.5C.7D.8
2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为()?
A.-3B.-1C.1D.3
3.若=i+2j,=(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量).与共线,则x、y的值可能分别为()
A.1,2B.2,2C.3,2D.2,4
4.已知a=(4,2),b=(6,y),且a∥b,则y=.
5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为.
6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x=.
五、小结(略)
六、课后作业(略)
七、板书设计(略)
八、课后记:

2018人教A版高中数学必修4.1平面向量数量积的物理背景及其含义讲义


2.4.1平面向量数量积的物理背景及其含义
预习课本P103~105,思考并完成以下问题
(1)怎样定义向量的数量积?向量的数量积与向量数乘相同吗?
(2)向量b在a方向上的投影怎么计算?数量积的几何意义是什么?
(3)向量数量积的性质有哪些?
(4)向量数量积的运算律有哪些?
[新知初探]
1.向量的数量积的定义
(1)两个非零向量的数量积:
已知条件向量a,b是非零向量,它们的夹角为θ
定义a与b的数量积(或内积)是数量|a||b|cosθ
记法a·b=|a||b|cosθ
(2)零向量与任一向量的数量积:
规定:零向量与任一向量的数量积均为0.
[点睛](1)两向量的数量积,其结果是数量,而不是向量,它的值等于两向量的模与两向量夹角余弦值的乘积,其符号由夹角的余弦值来决定.
(2)两个向量的数量积记作a·b,千万不能写成a×b的形式.
2.向量的数量积的几何意义
(1)投影的概念:
①向量b在a的方向上的投影为|b|cosθ.
②向量a在b的方向上的投影为|a|cosθ.
(2)数量积的几何意义:
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
[点睛](1)b在a方向上的投影为|b|cosθ(θ是a与b的夹角),也可以写成a·b|a|.
(2)投影是一个数量,不是向量,其值可为正,可为负,也可为零.
3.向量数量积的性质
设a与b都是非零向量,θ为a与b的夹角.
(1)a⊥ba·b=0.
(2)当a与b同向时,a·b=|a||b|,
当a与b反向时,a·b=-|a||b|.
(3)a·a=|a|2或|a|=a·a=a2.
(4)cosθ=a·b|a||b|.
(5)|a·b|≤|a||b|.
[点睛]对于性质(1),可以用来解决有关垂直的问题,即若要证明某两个向量垂直,只需判定它们的数量积为0;若两个非零向量的数量积为0,则它们互相垂直.
4.向量数量积的运算律
(1)a·b=b·a(交换律).
(2)(λa)·b=λ(a·b)=a·(λb)(结合律).
(3)(a+b)·c=a·c+b·c(分配律).
[点睛](1)向量的数量积不满足消去律:若a,b,c均为非零向量,且a·c=b·c,但得不到a=b.
(2)(a·b)·c≠a·(b·c),因为a·b,b·c是数量积,是实数,不是向量,所以(a·b)·c与向量c共线,a·(b·c)与向量a共线,因此,(a·b)·c=a·(b·c)在一般情况下不成立.
[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)两个向量的数量积仍然是向量.()
(2)若a·b=b·c,则一定有a=c.()
(3)若a,b反向,则a·b=-|a||b|.()
(4)若a·b=0,则a⊥b.()
答案:(1)×(2)×(3)√(4)×
2.若|a|=2,|b|=12,a与b的夹角为60°,则a·b=()
A.2B.12
C.1D.14
答案:B
3.已知|a|=10,|b|=12,且(3a)·15b=-36,则a与b的夹角为()
A.60°B.120°
C.135°D.150°
答案:B
4.已知a,b的夹角为θ,|a|=2,|b|=3.
(1)若θ=135°,则a·b=________;
(2)若a∥b,则a·b=________;
(3)若a⊥b,则a·b=________.
答案:(1)-32(2)6或-6(3)0
向量数量积的运算

[典例](1)已知向量a与b的夹角为120°,且|a|=4,|b|=2,求:①a·b;②(a+b)·
(a-2b).

(2)如图,正三角形ABC的边长为2,=c,=a,=b,求a·b+b·c+c·a.
[解](1)①由已知得a·b=|a||b|cosθ=4×2×cos120°=-4.
②(a+b)·(a-2b)=a2-a·b-2b2=16-(-4)-2×4=12.
(2)∵|a|=|b|=|c|=2,且a与b,b与c,c与a的夹角均为120°,
∴a·b+b·c+c·a=2×2×cos120°×3=-3.
向量数量积的求法
(1)求两个向量的数量积,首先确定两个向量的模及向量的夹角,其中准确求出两向量的夹角是求数量积的关键.
(2)根据数量积的运算律,向量的加、减与数量积的混合运算类似于多项式的乘法
运算.

[活学活用]
已知|a|=3,|b|=4,a与b的夹角为120°,求:
(1)a·b;(2)a2-b2;
(3)(2a-b)·(a+3b).

解:(1)a·b=|a||b|cos120°=3×4×-12=-6.
(2)a2-b2=|a|2-|b|2=32-42=-7.
(3)(2a-b)·(a+3b)=2a2+5a·b-3b2
=2|a|2+5|a||b|·cos120°-3|b|2
=2×32+5×3×4×-12-3×42=-60.
与向量的模有关的问题

[典例](1)(浙江高考)已知e1,e2是平面单位向量,且e1·e2=12.若平面向量b满足b·e1=b·e2=1,则|b|=________.
(2)已知向量a,b的夹角为45°,且|a|=1,|2a-b|=10,则|b|=________.
[解析](1)令e1与e2的夹角为θ,
∴e1·e2=|e1|·|e2|cosθ=cosθ=12.
又0°≤θ≤180°,∴θ=60°.
∵b·(e1-e2)=0,
∴b与e1,e2的夹角均为30°,
∴b·e1=|b||e1|cos30°=1,
从而|b|=1cos30°=233.
(2)∵a,b的夹角为45°,|a|=1,
∴a·b=|a||b|cos45°=22|b|,
|2a-b|2=4-4×22|b|+|b|2=10,∴|b|=32.
[答案](1)233(2)32
求向量的模的常见思路及方法
(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.
(2)a·a=a2=|a|2或|a|=a2,可以实现实数运算与向量运算的相互转化.

[活学活用]
已知向量a,b满足|a|=|b|=5,且a与b的夹角为60°,求|a+b|,|a-b|,|2a+b|.
解:∵|a+b|2=(a+b)2=(a+b)(a+b)
=|a|2+|b|2+2a·b=25+25+2|a||b|cos60°
=50+2×5×5×12=75,
∴|a+b|=53.
∵|a-b|2=(a-b)2=(a-b)(a-b)
=|a|2+|b|2-2a·b
=|a|2+|b|2-2|a||b|cos60°=25,
∴|a-b|=5.
∵|2a+b|2=(2a+b)(2a+b)
=4|a|2+|b|2+4a·b
=4|a|2+|b|2+4|a||b|cos60°=175,
∴|2a+b|=57.

两个向量的夹角和垂直
题点一:求两向量的夹角
1.(重庆高考)已知非零向量a,b满足|b|=4|a|,且a⊥(2a+b),则a与b的夹角为()
A.π3B.π2
C.2π3D.5π6
解析:选C∵a⊥(2a+b),∴a·(2a+b)=0,
∴2|a|2+a·b=0,
即2|a|2+|a||b|cos〈a,b〉=0.
∵|b|=4|a|,∴2|a|2+4|a|2cos〈a,b〉=0,
∴cos〈a,b〉=-12,∴〈a,b〉=2π3.
题点二:证明两向量垂直
2.已知向量a,b不共线,且|2a+b|=|a+2b|,求证:(a+b)⊥(a-b).
证明:∵|2a+b|=|a+2b|,
∴(2a+b)2=(a+2b)2.
即4a2+4a·b+b2=a2+4a·b+4b2,
∴a2=b2.
∴(a+b)·(a-b)=a2-b2=0.
又a与b不共线,a+b≠0,a-b≠0,
∴(a+b)⊥(a-b).
题点三:利用夹角和垂直求参数
3.已知a⊥b,|a|=2,|b|=3且向量3a+2b与ka-b互相垂直,则k的值为()
A.-32B.32
C.±32D.1
解析:选B∵3a+2b与ka-b互相垂直,
∴(3a+2b)·(ka-b)=0,
∴3ka2+(2k-3)a·b-2b2=0.
∵a⊥b,∴a·b=0,
又|a|=2,|b|=3,
∴12k-18=0,k=32.

求向量a与b夹角的思路
(1)求向量夹角的关键是计算a·b及|a||b|,在此基础上结合数量积的定义或性质计算cosθ=a·b|a||b|,最后借助θ∈[0,π],求出θ的值.
(2)在个别含有|a|,|b|与a·b的等量关系式中,常利用消元思想计算cosθ的值.

层级一学业水平达标
1.已知向量a,b满足|a|=1,|b|=4,且a·b=2,则a与b的夹角θ为()
A.π6B.π4
C.π3D.π2
解析:选C由题意,知a·b=|a||b|cosθ=4cosθ=2,又0≤θ≤π,所以θ=π3.
2.已知|b|=3,a在b方向上的投影为32,则a·b等于()
A.3B.92
C.2D.12
解析:选B设a与b的夹角为θ.∵|a|cosθ=32,
∴a·b=|a||b|cosθ=3×32=92.
3.已知|a|=|b|=1,a与b的夹角是90°,c=2a+3b,d=ka-4b,c与d垂直,则k的值为()
A.-6B.6
C.3D.-3
解析:选B∵c·d=0,
∴(2a+3b)·(ka-4b)=0,
∴2ka2-8a·b+3ka·b-12b2=0,
∴2k=12,∴k=6.
4.已知a,b满足|a|=4,|b|=3,夹角为60°,则|a+b|=()
A.37B.13
C.37D.13
解析:选C|a+b|=a+b2=a2+2a·b+b2
=42+2×4×3cos60°+32=37.
5.在四边形ABCD中,=,且·=0,则四边形ABCD是()
A.矩形B.菱形
C.直角梯形D.等腰梯形
解析:选B∵=,即一组对边平行且相等,·=0,即对角线互相垂直,∴四边形ABCD为菱形.
6.给出以下命题:
①若a≠0,则对任一非零向量b都有a·b≠0;
②若a·b=0,则a与b中至少有一个为0;
③a与b是两个单位向量,则a2=b2.
其中,正确命题的序号是________.
解析:上述三个命题中只有③正确,因为|a|=|b|=1,所以a2=|a|2=1,b2=|b|2=1,故a2=b2.当非零向量a,b垂直时,有a·b=0,显然①②错误.
答案:③
7.设e1,e2是两个单位向量,它们的夹角为60°,则(2e1-e2)·(-3e1+2e2)=________.
解析:(2e1-e2)·(-3e1+2e2)=-6e21+7e1·e2-2e22=-6+7×cos60°-2=-92.
答案:-92
8.若|a|=1,|b|=2,c=a+b,且c⊥a,则向量a与b的夹角为________.
解析:∵c⊥a,∴c·a=0,
∴(a+b)·a=0,即a2+a·b=0.
∵|a|=1,|b|=2,∴1+2cos〈a,b〉=0,
∴cos〈a,b〉=-12.
又∵0°≤〈a,b〉≤180°,∴〈a,b〉=120°.
答案:120°
9.已知e1与e2是两个夹角为60°的单位向量,a=2e1+e2,b=2e2-3e1,求a与b的
夹角.
解:因为|e1|=|e2|=1,
所以e1·e2=1×1×cos60°=12,
|a|2=(2e1+e2)2=4+1+4e1·e2=7,故|a|=7,
|b|2=(2e2-3e1)2=4+9-12e1·e2=7,故|b|=7,
且a·b=-6e21+2e22+e1·e2=-6+2+12=-72,
所以cos〈a,b〉=a·b|a|·|b|=-727×7=-12,
所以a与b的夹角为120°.
10.已知|a|=2|b|=2,且向量a在向量b方向上的投影为-1.
(1)求a与b的夹角θ;
(2)求(a-2b)·b;
(3)当λ为何值时,向量λa+b与向量a-3b互相垂直?
解:(1)∵|a|=2|b|=2,
∴|a|=2,|b|=1.
又a在b方向上的投影为|a|cosθ=-1,
∴a·b=|a||b|cosθ=-1.
∴cosθ=-12,∴θ=2π3.
(2)(a-2b)·b=a·b-2b2=-1-2=-3.
(3)∵λa+b与a-3b互相垂直,
∴(λa+b)·(a-3b)=λa2-3λa·b+b·a-3b2
=4λ+3λ-1-3=7λ-4=0,∴λ=47.
层级二应试能力达标
1.已知|a|=2,|b|=1,且a与b的夹角为π3,则向量m=a-4b的模为()
A.2B.23
C.6D.12
解析:选B|m|2=|a-4b|2=a2-8a·b+16b2=4-8×2×1×12+16=12,所以|m|=23.
2.在Rt△ABC中,C=90°,AC=4,则·等于()
A.-16B.-8
C.8D.16
解析:选D法一:因为cosA=ACAB,故·=||·||cosA=||2=16,故选D.
法二:在上的投影为||cosA=||,故·=||||cosA=||2=16,故选D.

3.已知向量a,b满足|a|=1,|b|=2,且a在b方向上的投影与b在a方向上的投影相等,则|a-b|=()
A.1B.3
C.5D.3
解析:选C由于投影相等,故有|a|cos〈a,b〉=|b|cos〈a,b〉,因为|a|=1,|b|
=2,所以cos〈a,b〉=0,即a⊥b,则|a-b|=|a|2+|b|2-2a·b=5.
4.如图,在边长为2的菱形ABCD中,∠BAD=60°,E为BC的中点,则·=()
A.-3B.0
C.-1D.1
解析:选C·=AB―→+12AD―→·(-)
=12·-||2+12||2
=12×2×2×cos60°-22+12×22=-1.
5.设向量a,b,c满足a+b+c=0,(a-b)⊥c,a⊥b,若|a|=1,则|a|2+|b|2+|c|2的值是________.
解析:法一:由a+b+c=0得c=-a-b.
又(a-b)·c=0,∴(a-b)·(-a-b)=0,即a2=b2.
则c2=(a+b)2=a2+b2+2a·b=a2+b2=2,
∴|a|2+|b|2+|c|2=4.
法二:如图,作==a,
=b,则=c.
∵a⊥b,∴AB⊥BC,
又∵a-b=-=,
(a-b)⊥c,∴CD⊥CA,
所以△ABC是等腰直角三角形,
∵|a|=1,∴|b|=1,|c|=2,∴|a|2+|b|2+|c|2=4.
答案:4
6.已知向量a,b的夹角为45°,且|a|=4,12a+b·(2a-3b)=12,则|b|=________;b在a方向上的投影等于________.
解析:12a+b·(2a-3b)=a2+12a·b-3b2=12,即3|b|2-2|b|-4=0,解得|b|=2(舍负),b在a方向上的投影是|b|cos45°=2×22=1.
答案:21
7.已知非零向量a,b,满足|a|=1,(a-b)·(a+b)=12,且a·b=12.
(1)求向量a,b的夹角;(2)求|a-b|.
解:(1)∵(a-b)·(a+b)=12,
∴a2-b2=12,
即|a|2-|b|2=12.
又|a|=1,
∴|b|=22.
∵a·b=12,
∴|a|·|b|cosθ=12,
∴cosθ=22,
∴向量a,b的夹角为45°.
(2)∵|a-b|2=(a-b)2
=|a|2-2|a||b|cosθ+|b|2=12,
∴|a-b|=22.
8.设两个向量e1,e2,满足|e1|=2,|e2|=1,e1与e2的夹角为π3,若向量2te1+7e2与e1+te2的夹角为钝角,求实数t的取值范围.
解:由向量2te1+7e2与e1+te2的夹角为钝角,
得2te1+7e2·e1+te2|2te1+7e2|·|e1+te2|0.即
(2te1+7e2)·(e1+te2)0,化简即得
2t2+15t+70,解得-7t-12.
当夹角为π时,也有(2te1+7e2)·(e1+te2)0,
但此时夹角不是钝角,
设2te1+7e2=λ(e1+te2),λ0,可得
2t=λ,7=λt,λ0,λ=-14,t=-142.
∴所求实数t的取值范围是
-7,-142∪-142,-12.

高二数学平面向量共线的坐标表示24


一般给学生们上课之前,老师就早早地准备好了教案课件,大家应该要写教案课件了。用心制定好教案课件的工作计划,才能更好的在接下来的工作轻装上阵!有哪些好的范文适合教案课件的?下面是小编为大家整理的“高二数学平面向量共线的坐标表示24”,欢迎您阅读和收藏,并分享给身边的朋友!

第6课时
§2.3.4平面向量共线的坐标表示
教学目的:
(1)理解平面向量的坐标的概念;
(2)掌握平面向量的坐标运算;
(3)会根据向量的坐标,判断向量是否共线.
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性
授课类型:新授课
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.平面向量的坐标表示
分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得
把叫做向量的(直角)坐标,记作
其中叫做在轴上的坐标,叫做在轴上的坐标,特别地,,,.
2.平面向量的坐标运算
若,,
则,,.
若,,则
二、讲解新课:
∥()的充要条件是x1y2-x2y1=0
设=(x1,y1),=(x2,y2)其中.
由=λ得,(x1,y1)=λ(x2,y2)消去λ,x1y2-x2y1=0
探究:(1)消去λ时不能两式相除,∵y1,y2有可能为0,∵∴x2,y2中至少有一个不为0
(2)充要条件不能写成∵x1,x2有可能为0
(3)从而向量共线的充要条件有两种形式:∥()
三、讲解范例:
例1已知=(4,2),=(6,y),且∥,求y.
例2已知A(-1,-1),B(1,3),C(2,5),试判断A,B,C三点之间的位置关系.
例3设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1),(x2,y2).
(1)当点P是线段P1P2的中点时,求点P的坐标;
(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.
例4若向量=(-1,x)与=(-x,2)共线且方向相同,求x
解:∵=(-1,x)与=(-x,2)共线∴(-1)×2-x(-x)=0
∴x=±∵与方向相同∴x=
例5已知A(-1,-1),B(1,3),C(1,5),D(2,7),向量与平行吗?直线AB与平行于直线CD吗?
解:∵=(1-(-1),3-(-1))=(2,4),=(2-1,7-5)=(1,2)
又∵2×2-4×1=0∴∥
又∵=(1-(-1),5-(-1))=(2,6),=(2,4),2×4-2×60∴与不平行
∴A,B,C不共线∴AB与CD不重合∴AB∥CD
四、课堂练习:
1.若a=(2,3),b=(4,-1+y),且a∥b,则y=()
A.6B.5C.7D.8
2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为()?
A.-3B.-1C.1D.3
3.若=i+2j,=(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量).与共线,则x、y的值可能分别为()
A.1,2B.2,2C.3,2D.2,4
4.已知a=(4,2),b=(6,y),且a∥b,则y=.
5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为.
6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x=.
五、小结(略)
六、课后作业(略)
七、板书设计(略)
八、课后记:

高中数学必修四2.3.2平面向量的正交分解和坐标表示导学案


一名爱岗敬业的教师要充分考虑学生的理解性,作为高中教师就要根据教学内容制定合适的教案。教案可以让学生更好地进入课堂环境中来,减轻高中教师们在教学时的教学压力。那么一篇好的高中教案要怎么才能写好呢?下面是小编为大家整理的“高中数学必修四2.3.2平面向量的正交分解和坐标表示导学案”,供大家借鉴和使用,希望大家分享!

2.3.2平面向量的正交分解和坐标表示
【学习目标】
1.了解平面向量基本定理;理解平面向量的坐标的概念;
2.理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;
3.能够在具体问题中适当选取基底,使其他向量都能够用基底来表达.
【新知自学】
知识回顾:1.平面向量基本定理:如果,是同一平面内的两个向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2;
使得
给定基底,分解形式惟一.λ1,λ2由,,唯一确定.
2.向量的夹角:已知两个非零向量、,作,,则∠AOB=,叫向量、的夹角,
当=,、同向;当=,、反向(同向、反向通称平行);
当=°,称与垂直,记作。
新知梳理:
由前面知识知道,平面中的任意一个向量都可以用给定的一组基底来表示;当然也可以用两个互相垂直的向量来表示,这样能给我们研究向量带来许多方便。
1.平面向量的正交分解:把向量分解为两个的向量。
思考:在平面直角坐标系中,每一个点都可以用一对有序实数表示,平面内的每一个向量,如何表示呢?
2.平面向量的坐标表示
如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得=x+y………○1
我们把叫做向量的(直角)坐标,记作=(x,y)………○2
其中叫做在轴上的坐标,叫做在轴上的坐标,○2式叫做向量的坐标表示.与相等的向量的坐标也为.
特别地,=(1,0)=(0,1),=(0,0).
3.在平面直角坐标系中,一个平面向量和其坐标是一一对应的。
如图,在直角坐标平面内,以原点为起点作=,则点的位置由唯一确定.
设=x+y,则向量的坐标就是点的坐标;反过来,点的坐标也就是向量的坐标.
对点练习:
1.如图,向量、是两个互相垂直的单位向量,向量与的夹角是30°,且||=4,以向量、为基底,向量=_________

2.在平面直角坐标系下,起点是坐标原点,终点A落在直线上,且模长为1的向量的坐标是___________

【合作探究】
典例精析:
例1:请写出图中向量,,的坐标

变式1:请在平面直角坐标系中作出向量、,其中=(1,-3)、=(-3,-1).

例2:如图所示,用基底、分别表示向量、、、并求出它们的坐标。

变式2:已知O为坐标原点,点A在第一象限,,,求向量的坐标

【课堂小结】
向量的坐标表示是一种向量与坐标的对应关系,它使得向量具有代数意义。
将向量的起点平移到坐标原点,则平移后向量的终点坐标就是向量的坐标。
【当堂达标】
1、已知力在水平方向与竖直方向的分力分别是4和3,则力的实际大小是__________,若水平方向为x轴的正方向,竖直方向为y轴的正方向,则力的坐标表示是______________

2、若,(,为单位向量),则的坐标(x,y)就是____的坐标,即若=(x,y),则点A的坐标就是_______________。

3、如右图:|OA|=4,B(1,2),求向量的坐标。

【课时作业】
1.设、是平面直角坐标系内分别与x轴、y轴方向相同的两个单位向量,且,,则△OAB的面积等于()
A、15B、10C、7.5D、5
2、在平面直角坐标系中,A(2,3),B(-3,4),如图所示,x轴,y轴上的两个单位向量分别是和,则下列说法正确的是__________
①2+3;②3+4;
③-5+;④5-.

3、如图所示的直角坐标系中,四边形OABC为等腰梯形,BC‖OA,OC=6,,则用坐标表示下列向量:_______________;
______________;______________;
______________;

4.在直角坐标系xoy中,向量的方向如图所示,且,分别写出他们的坐标。

5.如图,已知O为坐标原点,点A在第一象限,,,求向量的坐标。

【延伸探究】
在平面直角坐标系中,A(1,1),B(-2,4),则向量的坐标是_________