88教案网

你的位置: 教案 > 高中教案 > 导航 > 第5课时2.3.1平面向量基本定理教案

高中向量教案

发表时间:2020-10-13

第5课时2.3.1平面向量基本定理教案。

每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。是时候对自己教案课件工作做个新的规划了,未来的工作就会做得更好!究竟有没有好的适合教案课件的范文?小编收集并整理了“第5课时2.3.1平面向量基本定理教案”,供大家参考,希望能帮助到有需要的朋友。

第5课时§2.3.1平面向量基本定理
【教学目标】
一、知识与技能
1.理解向量的坐标表示法,掌握平面向量与一对有序实数一一对应关系;
2.正确地用坐标表示向量,对起点不在原点的平面向量能利用向量相等的关系来用坐标表示;
3.掌握两向量的和、差,实数与向量积的坐标表示法。
二、过程与方法
在实际问题中经历和感受平面内任何一个向量都可以由不共线的另外两向量来表示。
三、情感、态度与价值观
通过平面向量基本定理内容的推导让学生不断了解数学,走进数学,增强学生的数学素养。
【教学重点难点】基本定理的得出与证明、基本定理的简单应用、
一、创设情景:
问题1、ABCD的对角线AC和BD交于点M,,
试用向量,表示。

结论:由作图可得
问题2、对于向量,是否是惟一的一组?
二、讲解新课:
平面向量基本定理:如果是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数,使
注:①,均非零向量;
②,不唯一(事先给定);
③,唯一;
④时,与共线;时,与共线;时,
基底:
正交分解:
三、例题分析:
例1、已知向量,(如图),求作向量.

例2、如图,、不共线,,用、表示.

例3、已知梯形中,,,分别是、的中点,若,,用,表示、、.

例4、已知在四边形中,,,,
求证:是梯形。
例5、设是两个不共线的非零向量,记,,那么当实数t为何值时,A,B,C三点共线

五、课时小结:
1.熟练掌握平面向量基本定理;
2.会应用平面向量基本定理.充分利用向量的加法、减法及实数与向量的积的几何表示。

相关推荐

平面向量基本定理


每个老师不可缺少的课件是教案课件,大家在认真写教案课件了。只有写好教案课件计划,可以更好完成工作任务!有哪些好的范文适合教案课件的?以下是小编为大家精心整理的“平面向量基本定理”,希望能为您提供更多的参考。

课时5平面向量基本定理
【学习目标】
1.掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个向量。
2.能应用平面向量基本定理解决一些几何问题。
【知识梳理】
若,是不共线向量,是平面内任一向量
在平面内取一点O,作=,=,=,使=λ1=λ2
==+=λ1+λ2
得平面向量基本定理:

注意:1、必须不共线,且它是这一平面内所有向量的一组基底
2这个定理也叫共面向量定理
3λ1,λ2是被,,唯一确定的实数。
【例题选讲】
1.如图,ABCD是平行四边形,对角线AC,BD交于M,,,试用基底、表示。
2.设、是平面内一组基底,如果=3-2,=4+,=8-9,求证:A,B,D三点共线。

3.设、是平面内一组基底,如果=2+k,=--3,=2-,若A,B,D三点共线,求实数k的值。

4.中,,DE//BC,与边AC相交于点E,中线AM与DE交于点N,如图,,,试用、表示。

【归纳反思】
1.平面向量基本定理是平面向量坐标表示的基础,它说明同一平面内的任一向量都可以表示为其他两个不共线向量的线性组合。
2.在解具体问题时适当地选取基底,使其它向量能够用基底来表示,选择了两个不共线地向量,平面内的任何一个向量都可以用唯一表示,这样几何问题就可以转化为代数问题,转化为只含的代数运算。
【课内练习】
1.下面三种说法,正确的是
(1)一个平面内只有一对不共线的向量可作为表示该平面所有向量的基底;
(2)一个平面内有无数对不共线的向量可作为表示该平面所有向量的基底;
(3)零向量不可为基底中的向量;
2.如果、是平面内一组基底,,那么下列命题中正确的是
(1)若实数m,n,使m+n=,则m=n=0;
(2)空间任一向量可以表示为=m+n,这里m,n是实数;
(3)对实数m,n,向量m+n不一定在平面;
(4)对平面内的任一向量,使=m+n的实数m,n有无数组。
3.若G是的重心,D、E、F分别是AB、BC、CA的中点,则=
4.如图,在中,AM:AB=1:3,AN:AC=1:4,BN与CM交于点P,设,试用,表示。

5.设,,,求证:A、B、D三点共线。

【巩固提高】
1.设是平面内所有向量的一组基底,则下面四组中不能作为基底的是
A+和-B3-2和-6+4
C+2和+2D和+
2.若,,,则=
A+B+C+D+
3.平面直角坐标系中,O为原点,A(3,1),B(-1,3),点C满足,其中,且=1,则点C的轨迹方程为
4.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足
,则P的轨迹一定通过的心
5.若点D在的边BC上,且=,则3m+n的值为
6.设=+5,=-2+8,=3(-),求证:A、B、D三点共线。

7.在图中,对于平行四边形ABCD,点M是AB的中点,点N在BD上,且BN=BD,求证:M,N,C三点共线。

8.已知=5+2,=6+y,,,是一组基底,求y的值。

9.如图,在中,D、E分别是线段AC的两个四等份点,点F是线段BC的中点,设,,试用,为基底表示向量。

问题统计与分析

平面向量的基本定理


一位优秀的教师不打无准备之仗,会提前做好准备,教师要准备好教案,这是教师的任务之一。教案可以让学生们能够在上课时充分理解所教内容,帮助教师有计划有步骤有质量的完成教学任务。你知道怎么写具体的教案内容吗?经过搜索和整理,小编为大家呈现“平面向量的基本定理”,仅供参考,欢迎大家阅读。

2.3.1平面向量基本定理

一、课题:平面向量基本定理
二、教学目标:1.理解向量的坐标表示法,掌握平面向量与一对有序实数一一对应关系;
2.正确地用坐标表示向量,对起点不在原点的平面向量能利用向量相等的
关系来用坐标表示;
3.掌握两向量的和、差,实数与向量积的坐标表示法。
三、教学重、难点:1.平面向量的坐标运算;
2.对平面向量的坐标表示的理解。
四、教学过程:
(一)复习:
1.平面向量的基本定理:;
2.在平面直角坐标系中,每一个点都可用一对实数表示,那么,每一个向量可否也用
一对实数来表示?
(二)新课讲解:
1.向量的坐标表示的定义:
分别选取与轴、轴方向相同的单位向量,作为基底,对于任一向量,,(),实数对叫向量的坐标,记作.
其中叫向量在轴上的坐标,叫向量在轴上的坐标。
说明:(1)对于,有且仅有一对实数与之对应;
(2)相等的向量的坐标也相同;
(3),,;
(4)从原点引出的向量的坐标就是点的坐标。

例1如图,用基底,分别表示向量、、、,并求出它们的坐标。
解:由图知:;

2.平面向量的坐标运算:
问题:已知,,求,.
解:
即.
同理:.
结论:两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。
3.向量的坐标计算公式:
已知向量,且点,,求的坐标.

归纳:(1)一个向量的坐标等于表示它的有向线段的终点坐标减去始点坐标;
(2)两个向量相等的充要条件是这二个向量的坐标相等。

4.实数与向量的积的坐标:
已知和实数,求
结论:实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。
例2已知,,求,,的坐标.
解:=;;

例3已知ABCD的三个顶点的坐标分别为、、,求顶点的坐标。
解:设顶点的坐标为.
∵,,
由,得.
∴∴∴顶点的坐标为.

例4(1)已知的方向与轴的正向所成的角为,且,则的坐标为,

(2)已知,,,且,求,.
解:(2)由题意,,
∴∴.

五、课堂小结:1.正确理解平面向量的坐标意义;
2.掌握平面向量的坐标运算;
3.能用平面向量的坐标及其运算解决一些实际问题。
六、作业:
补充:1.已知向量与相等,其中,,求;
2.已知向量,,,,且,求.

高中数学必修四2.3.1平面向量基本定理导学案


2.3平面向量的基本定理及坐标表示
2.3.1平面向量基本定理

【学习目标】
1.了解平面向量基本定理;
2.理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;
3.能够在具体问题中适当选取基底,使其他向量都能够用基底来表达.

【新知自学】
知识回顾:
1、实数与向量的积:实数λ与向量的积是一个,记作;规定:
(1)|λ|=
(2)λ0时,λ与方向;
λ0时,λ与方向;
λ=0时,λ=
2.运算定律:
结合律:λ(μ)=;
分配律:(λ+μ)=,
λ(+)=

3.向量共线定理:向量与非零向量共线,则有且只有一个非零实数λ,使=λ.

新知梳理:
1.给定平面内两个向量,,请你作出向量3+2,-2,

2.由上,同一平面内的任一向量是否都可以用形如λ1+λ2的向量表示?
平面向量基本定理:如果,是同一平面内的两个向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使
不共线的向量,叫做这一平面内表示所有向量的一组基底。
思考感悟:
(1)基底不惟一,关键是;不同基底下,一个向量可有不同形式表示;
(2)基底给定时,分解形式惟一.λ1,λ2是被,,唯一确定的数.

3.向量的夹角:平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?

已知两个非零向量、,作,,则∠AOB=,叫向量、的夹角。

当=,、同向;
当=,、反向;统称为向量平行,记作
如果=,与垂直,记作⊥。

对点练习:
1.设、是同一平面内的两个向量,则有()
A.、一定平行
B.、的模相等
C.同一平面内的任一向量都有=λ+μ(λ、μ∈R)
D.若、不共线,则同一平面内的任一向量都有=λ+u(λ、u∈R)

2.已知向量=-2,=2+,其中、不共线,则+与=6-2的关系()
A.不共线B.共线
C.相等D.无法确定

3.已知λ1>0,λ2>0,、是一组基底,且=λ1+λ2,则与,
与.(填共线或不共线).

【合作探究】
典例精析:
例1:已知向量,求作向量2.5+3

变式1:已知向量、(如图),求作向量:
(1)+2.?(2)-+3

例2:如图,,不共线,且
,用,来表示

变式2:已知G为△ABC的重心,设=,=,试用、表示向量.

【课堂小结】
知识、方法、思想

【当堂达标】
1.设是已知的平面向量且,关于向量的分解,其中所列述命题中的向量,和在同一平面内且两两不共线,有如下四个命题:
①给定向量,总存在向量,使;
②给定向量和,总存在实数和,使;
③给定单位向量和正数,总存在单位向量和实数,使;
④给定正数和,总存在单位向量和单位向量,使;
上述命题中的则真命题的个数是()()
A.1B.2C.3D

2.如图,正六边形ABCDEF中,=
A.B.C.D.

3.在中,,,,为的中点,则____________.(用表示)

【课时作业】
1、若、不共线,且λ+μ=(λ、μ),则()
A.=,=B.=0,=0
C.=0,=D.=,=0
2.在△ABC中,AD→=14AB→,DE∥BC,且DE与AC相交于点E,M是BC的中点,AM与DE相交于点N,若AN→=xAB→+yAC→(x,y∈R),则x+y等于()
A.1B.12C.14D.18

3.在如图所示的平行四边形ABCD中,AB→=a,AD→=b,AN=3NC,M为BC的中点,则MN→=________.(用a,b表示).

4.如图ABCD的两条对角线交于点M,且=,=,用,表示,,和

5.设与是两个不共线向量,=3+4,=-2+5,若实数λ、μ满足λ+μ=5-,求λ、μ的值.

6如图,在△ABC中,AN→=13NC→,P是BN上一点,若AP→=mAB→+211AC→,求实数m的值.

7.如图所示,P是△ABC内一点,且满足条件AP→+2BP→+3CP→=0,设Q为CP延长线与AB的交点,令CP→=p,用p表示CQ→.

【延伸探究】
已知ABCD的两条对角线AC与BD交于E,O是任意一点,求证:+++=4

平面向量的基本定理及坐标表示


一位优秀的教师不打无准备之仗,会提前做好准备,作为高中教师就要精心准备好合适的教案。教案可以让学生更好地进入课堂环境中来,帮助高中教师提高自己的教学质量。那么,你知道高中教案要怎么写呢?下面是小编精心收集整理,为您带来的《平面向量的基本定理及坐标表示》,希望能对您有所帮助,请收藏。

平面向量的基本定理及坐标表示
第4课时
§2.3.1平面向量基本定理
教学目的:
(1)了解平面向量基本定理;
(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;
(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.
教学重点:平面向量基本定理.
教学难点:平面向量基本定理的理解与应用.
授课类型:新授课
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.实数与向量的积:实数λ与向量的积是一个向量,记作:λ
(1)|λ|=|λ|||;(2)λ0时λ与方向相同;λ0时λ与方向相反;λ=0时λ=
2.运算定律
结合律:λ(μ)=(λμ);分配律:(λ+μ)=λ+μ,λ(+)=λ+λ
3.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ.
二、讲解新课:
平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2.
探究:
(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4)基底给定时,分解形式惟一.λ1,λ2是被,,唯一确定的数量
三、讲解范例:
例1已知向量,求作向量2.5+3.
例2如图ABCD的两条对角线交于点M,且=,=,用,表示,,和
例3已知ABCD的两条对角线AC与BD交于E,O是任意一点,求证:+++=4
例4(1)如图,,不共线,=t(tR)用,表示.
(2)设不共线,点P在O、A、B所在的平面内,且.求证:A、B、P三点共线.
例5已知a=2e1-3e2,b=2e1+3e2,其中e1,e2不共线,向量c=2e1-9e2,问是否存在这样的实数与c共线.
四、课堂练习:
1.设e1、e2是同一平面内的两个向量,则有()
A.e1、e2一定平行
B.e1、e2的模相等
C.同一平面内的任一向量a都有a=λe1+μe2(λ、μ∈R)
D.若e1、e2不共线,则同一平面内的任一向量a都有a=λe1+ue2(λ、u∈R)
2.已知矢量a=e1-2e2,b=2e1+e2,其中e1、e2不共线,则a+b与c=6e1-2e2的关系
A.不共线B.共线C.相等D.无法确定
3.已知向量e1、e2不共线,实数x、y满足(3x-4y)e1+(2x-3y)e2=6e1+3e2,则x-y的值等于()
A.3B.-3C.0D.2
4.已知a、b不共线,且c=λ1a+λ2b(λ1,λ2∈R),若c与b共线,则λ1=.
5.已知λ1>0,λ2>0,e1、e2是一组基底,且a=λ1e1+λ2e2,则a与e1_____,a与e2_________(填共线或不共线).
五、小结(略)
六、课后作业(略):
七、板书设计(略)
八、课后记: