88教案网

你的位置: 教案 > 高中教案 > 导航 > 高中数学必修一《几类不用增长的函数模型》说课稿

高中必修一函数教案

发表时间:2020-08-07

高中数学必修一《几类不用增长的函数模型》说课稿。

俗话说,磨刀不误砍柴工。高中教师要准备好教案为之后的教学做准备。教案可以让学生更容易听懂所讲的内容,帮助高中教师缓解教学的压力,提高教学质量。您知道高中教案应该要怎么下笔吗?下面是小编为大家整理的“高中数学必修一《几类不用增长的函数模型》说课稿”,欢迎阅读,希望您能够喜欢并分享!

高中数学必修一《几类不用增长的函数模型》说课稿

一、说课标

课程标准中明确指出:高中数学课程应提供基本内容的实际背景,反映数学的应用价值,开展“数学建模”的学习活动.数学建模就是引导学生从实际情境中提出问题,并归结为数学模型,尝试用数学思想和方法去解决问题.在教学中,要特别注意以下两点:(1)数学建模的问题应是多样的,开放的,同时解决问题所涉及的知识、技能、方法、思想应与高中数学课程紧密相关;(2)学生可以根据自己的生活经验发现并提出问题,对同样的问题,可以发挥自己的特长和个性,从不同的角度、层次探索解决的途径.

二、说教材

1.本节课在教材中的地位和作用

本节课选自高中数学人教A版必修1第三章第二节“函数模型及其应用”,教学安排为四课时,在这里主要研究的是第一课时的内容:几类不同增长的函数模型.

在义务教育阶段,学生对数学建模就已经积累了一定的研究经验.到了高中阶段,通过第二章的学习,学生有了利用函数知识解决实际问题的经历,熟悉了几种基本初等函数的概念,掌握了对应函数图象的基本特征,这是本节课的知识基础.而本节课在探求解决实际问题的过程中,体验到几种常见函数模型在描述客观世界变化规律时各自的特点,从不同的方面对实际问题多视点、宽角度地进行了探究,始终贯穿着函数模型的应用这条主线,从而拉开高中阶段数学建模活动的帷幕.

2.教学目标:

知识与技能目标:

①尝试从实际问题中建构出数学问题的技能;

②体验用简单的函数模型解决实际问题的经历;

③结合实例体会直线上升,指数爆炸等不同函数模型的增长差异.

过程与方法目标:

①使学生经历建立和运用函数模型的过程,初步体验数学建模的基本思想;

②通过三种表示方法的恰当运用,认识函数问题的研究方法.

情感、态度与价值观目标:

在认真分析实际背景,抽象概括现实问题,转化整合数学模型的过程中,养成严谨、求真、奋进的科学态度,学会交流、分享、合作,增强团队意识.3.教学目标的重点与难点:

教学重点:

①培养学生用数学知识描述实际问题的数学化能力;

②在比较不同函数模型的过程中,体会直线上升、指数爆炸等不同类型函数的增长差异;

③通过小组内部的合作,使学生学会交流、分享、展示,增强团队意识.

教学难点:

结合实际问题让学生体会不同函数模型的增长差异,增强合作意识.

三、说学情

知识基础:

①熟悉了几种基本函数的概念;

②掌握了这些函数图象的基本特征;

②具有利用函数知识解决实际问题的初步体验.

认知特点:

建模思想对学生的应用、合作、探究、创新意识都有较高要求,在这方面尚需要教师精心的组织引导.

四、说教法

选用合作探究与尝试概括相结合的教学方法.

在教学中,从精心创设的问题情境出发,为学生提供更多的机会和时间,提问质疑、尝试探究、讨论交流、归纳总结等,促使学生的思维空间充分开放;积极营造出一个有利于人际沟通与合作的环境,使学生学会交流和分享自己的成果,并能把每个人的成果进行有效的整合,增强团队意识;丰富学生对数学与日常生活紧密联系的体验,感受数学的实际价值,增强应用意识,发展创新意识,真正做到学有所思、思有所得、得有所悟,悟有所获,获有所用.

五、说设计

1.挖掘背景,提出问题

请同学们根据下面的两个实验,提出数学问题:

模拟实验1、动画演示摞砖游戏,

模拟实验2、师生一起动手做折纸游戏.

设计意图:这两个实验都源于学生熟悉的生活背景,在认真观察、实际操作中,要求学生充分发挥自己的特长与个性,从不同角度、层次挖掘其中所蕴涵的数学问题,最终获得数学建模的初步体验.这样做,不仅要求学生能够自己发现问题,体现了数学建模与解应用题的不同;也激发了学生的学习兴趣,充分体现了“数学是自然的”这一新课程理念.

2.阅读问题,尝试建模

请同学们阅读下面的问题,并建立相关的函数模型:

问题1张女士给今年上大学的儿子花5400元买了一部“苹果”手机.由于电子技术的飞速发展,手机成本不断降低,每隔一年手机的价格降低30﹪,四年后大学毕业时此人这部手机还值多少钱?

设计意图:这个问题选自学生关注的日常生活,其背景对学生来说非常熟悉,在已有知识的基础上,学生通过认真的阅读,能够用指数型函数来解决这个问题,这样的设计可以使学生体验数学在解决实际问题中的作用,发展数学的应用意识,提高实践能力.

问题2某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的

问题3已知A、B两地相距150千米,某人开汽车以60千米/小时的速度从A地到达B地,在B地停留1小时后再以50千米/小时的速度返回A地,把汽车与A地的距离x表示为时间t(小时)的函数,并画出函数的图象.设计意图:这两个问题的处理都交给学生完成,目的在于培养学生收集、分析和加工信息的能力.学生通过数据分析、模型整合、独立思考、合作交流,真正成为学习的践行者,课堂的主人..另外,通过小组内部的合作,还增强了学生的合作意识,这也是现代人所必须具备的基本素质.

3.探究模型,回归说明

数学建模思想:①从一个实际背景中抽象出数学问题;

②用相关的函数知识来描述数学问题;

③对函数模型进行分析

④回归说明实际问题.

例题我们公司有一笔资金用于投资,现有三种投资方案可供选择,这三种方案的回报如下:方案一:每天回报40元;

方案二:第一天回报10元,以后每天比前一天多回报10元;

方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.

如果你作为公司的一员,会选择哪种投资方案呢?

请同学们根据下面的分析,解决这个问题:

(1)选择投资方案的标准是什么?

(2)“翻一番”的含义怎样理解?

(3)研究函数问题的方法有几种,分别是什么?

设计意图:面对精心创设的问题情境,通过恰点恰时而又层层递进的问题串,让学生在不断的观察、思考和探究的过程中,选择恰当的函数模型,借助三种不同的表示方法,弄清几个函数间的增长差异.这种处理方式,一方面可以使学生学会如何选择恰当的表示形式对问题进行分析,另一方面也提高了学生分析问题、解决问题的能力.

4.归纳体会,类比应用

(1)今天你学到了什么?

(2)请同学们针对新课引入中的两个实验,建立相关的函数模型,并分析它的增长特点.

设计意图:本环节以讨论的形式展开,在热烈的讨论过程中,再现本节课的知识体系,梳理整个探究过程中体现的思想方法,优化学生的知识结构,使之系统化、条理化,加强对知识间内在联系的理解和认识.

5.布置作业,课外延伸

巩固性作业:P107习题3.2A组:1、2、3

课外探究:收集身边有关分期付款的信息,建立并分析相关的数学模型课后作业分为两种形式,体现作业的巩固性和发展性原则,巩固性作业用于检测学生的学习效果,而课外探究采用开放性问题,供学生课后研究,有利于扩展学生的数学视野,提高实践能力,它也是新课标里研究性学习内容的一部分.六、说评价

要注意:过程与结果并重;自评与互评并重;建立学生的成长档案.

在评价学生课堂活动中的表现时,不苛求数学建模过程的严密,结果的准确,要重过程,重参与,其内容应关注:创新性、现实性、真实性、合理性、有效性,有一项做得好就要给与充分的肯定.

七、说开发

作为数学建模的起始课,本节课可以开发出丰富的课程资源,要重点关注两个方面:

1.研究性学习课题数列在分期付款中的应用;

线性规划的实际应用;

定积分在经济生活中的应用

2.相关的选修专题3-2信息安全与密码

3-3球面上的几何

3-5欧拉公式与闭曲面分类

4-3数列与差分

4-7优化法与试验设计初步

4-10开关电路与布尔代数

相关推荐

高中数学必修一《几类不用增长的函数模型》名师教案及教学反思


一名优秀的教师就要对每一课堂负责,高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生能够听懂教师所讲的内容,帮助高中教师营造一个良好的教学氛围。优秀有创意的高中教案要怎样写呢?以下是小编为大家收集的“高中数学必修一《几类不用增长的函数模型》名师教案及教学反思”供大家借鉴和使用,希望大家分享!

高中数学必修一《几类不用增长的函数模型》教学设计

一、教学内容与内容解析

几类不同增长的函数模型是必修1第三章“函数的应用”的重要内容.它比较指数函数、对数函数以及幂函数间的增长差异,并结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.

对于函数增长的比较分为三个层次:(1)以实例为载体让学生切实感受不同函数模型的增长差异;(2)采用图、表两种方法比较三个函数(22,2,logxyxyyx===)的增长差异;(3)将结论推广到一般的指数函数、对数函数以及幂函数间的增长差异.

其中(1)为第一课时的内容,(2)、(3)为第二课时的内容.

学生在本节内容学习之前,已经有了指数函数、对数函数以及幂函数的相关知识,在这里进一步研究几类不同增长的函数模型的增长差异有着承上启下的作用.让学生在应用函数模型的过程中,体验到指数函数、对数函数、幂函数等函数模型在描述客观世界变化规律时各自的特点与差异,同时将感受到的这种差异应用在后续的函数模型实例中.

二、教学目标与目标解析

1.教学目标:

(1)借助信息技术,利用函数图像及数据表格,比较指数函数、对数函数以及幂函数间的增长差异.

(2)结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.

(3)恰当运用函数的三种表示法(解析式、图象、表格),并借助信息技术解决一些实际问题.

(4)在实际问题解决过程中,体会数学的作用与价值,形成分析问题、解决问题的能力.

2.教学目标解析:

目标(1)、(2)是教学的重点,落实好目标(1)、(2)是实现教学目标(3)、(4)的前提与保证.

落实目标(1)、(2)的过程中可以创设问题情景,并通过层层递进的问题串,让学生在不断观察、思考和探究的过程中,弄清几个函数间的增长差异,并培养分析问题、解决问题的能力,实现目标

(4).

目标(3)要求“恰当运用”对于学生初学时是不易达到的目标,教学时通过学生自主探究,相互交流,教师适时提问引导,合作完成.另外利用信息技术工具,就可以在不同的范围观察到指数函数、对数函数和幂函数的增长差异.还使学生接触到更多的数学知识和思想方法.

三、教学问题诊断分析

2诊断1:本课中,学生对指数爆炸的认识缺乏一定的基础,本课先让学生利用表格读表,并在分析表格的过程中发现要分析增加量,通过数据对指数爆炸有了一种感性认识,再结合图像分析,从感性认识上升到理性认识,实现自我完善.

诊断2:在公司奖励模型问题的解决过程中,教材中对判断模型二1log7+=xy是否满足约束条件7log10.25xx+≤是采用了“构造函数的思想方法”,我认为就高一年级学生而言,这种处理方法在理解上会有困难,所以宜采用两种方法进行求解:方法一,利用数形结合,学生能很直观地感受xy25.0=在图像1log7+=xy的上方;有此基础后,再讲解方法二,即“构造函数的思想方法”,通过板书详细分析这一过程,帮助学生对“构造函数的思想方法”留下一个美好又深刻的第一印象.

诊断3:本节课教学的内容为教材中的例1、例2,为了激发学生的学习兴趣,并保障课堂的连续性,设计了“大学生自主创业情境”、“公司奖励情境”,可将例题的题意较好地表达出来,并符合学生的认知规律.

诊断4:学生在学习时,可能会因更多地关注解决数学计算问题而忽略数学思想的提炼,这个教学问题的解决,需要教师有目的地进行引导.

四、教学支持条件

1.在进行几类不同增长的函数模型的教学时,学生已经学习了函数概念、表示法及性质,指数函数、对数函数以及幂函数的相关知识,这些内容是学生分析不同函数增长差异的重要条件,因此教学时应予以充分注意,引导学生多进行归纳与概括.

2.为了能很好地帮助学生理解、反思学习内容,体会新学知识的要点,教学中需要用函数表格、图象来帮助学生理解分析问题,所以ppt和几何画板是重要的支持条件.教学时充分注意这一条件,不仅可以加强几何直观,节省大量时间用于学生思考,而且可以对实际问题中的数据不加“修饰”地进行分析.

五、教学设计过程:

1.创设情景引入课题

[问题1]在日常生活中,增长的话题比比皆是,而我们学过的函数中有没有呈增长态势发展的呢?如果都是增长型函数,那么它们增长的态势是否都一样呢?

设计意图:通过提问比较自然地引导学生给出一次函数、指数函数、对数函数、幂函数,同时开门见山,直击主题“增长”,自然引出课题.

师生活动:教师提问,学生回答,相互补充,教师点评并板书课题:几类不同增长的函数模型.

2.组织引导合作探究

同学们,现在越来越多的大学生毕业以后选择了自主创业,将来你们中的一些也可能会办公司,做老板.现在给大家一个模拟的投资情境.

案例假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;

方案二:第一天回报10元,以后每天比前一天多回报10元;

方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.

请问,你会选择哪种投资方案?

[问题2]你会选择哪种投资方案?选择投资方案的依据是什么?请用数学语言呈现你的理由.

设计意图:提此问题让学生先选择好解题的依据,是每天回报量还是累计回报量?还让学生找出问题中的数量关系,也就是函数关系.

师生活动:

(1)教师提问,通过学生讨论,具体计算后让学生说说自己会选择哪种投资方案?选择投资方案的依据是什么?用怎样的方式表达数量关系?

学生1:选择累计回报量,用函数解析式表达数量关系;

学生2:选择累计回报量,直接用函数图像表达数量关系;

学生3:选择每天回报量,先写出函数解析式再用列表的方式表达.

(2)教师针对学生的回答,点评指出:选择投资方案的依据是累计回报量,但为了看累计回报量,可以先看每天回报量;另外,用解析式、表格及图像三种方式表达数量关系均可,但表达的同时有所区别:解析式较抽象,图表较直观.

(3)教师引导,学生参与并利用计算器得出:1.函数解析式;2.每天回报表;3.结论

表1

[问题3]每天回报表(表1)中“…”部分仍是方案三最大吗?

设计意图:开始切入主题,通过引导使学生体会到表格中每一列数据增长的速度是不同的,从而使学生关注增加量,列出增加量,引出表2,同时也为累计回报量与每天回报量之间的关系埋下伏笔,进而培养学生分析解决数学问题的能力.

师生活动:

4(1)学生思考并回答:我发现到第9天的时候,方案三最多,那么只要方案三数据的增长最快或者说增加量最多,即可解决这一问题.

(2)教师适时给出表2,师生共同补充完整表格,让学生初步体会各种函数增长的差异.

表2

[问题4]你能根据表2中增加量的数据,概括出这几种常见函数的增长特点吗?

设计意图:进一步引导学生关注增加量,感受增长差异,尤其是对“指数爆炸”含义的理解;在与学生交流和解决问题的过程中,使学生体会函数列表法的优点.

师生活动:学生回答,教师加以完善.

几种常见函数的增长特点:常数函数没有增长,一次函数匀速增长,指数函数爆炸增长.

[问题5]通过表格比较了每天回报量的大小,得出相应结论,但这一案例解决完整了吗?

设计意图:虽然本节课的主题是研究“增长”,但必须要回归问题本身,选择一个最佳的投资方案.师生活动:教师利用幻灯片快速给出累计回报表(表3),学生根据表3得出相应结论.

表3

[问题6]通过列表法己经得出案例的结论及对常见函数增长特点的初步体会,能否通过图像法来进一步认识?请大家画出这三个函数的图像?并根据图像说明结论与增长特点?

设计意图:本节课的主要教学任务就是要体会几类不同函数的增长差异.让学生自己去概括总结出从图像上直观体会到的增长特点是本节课的一个重要环节,也作为一种完整的小结.与此同时,

培养

5学生良好的画图习惯,遵循列表、描点、连线画图三步骤,以及对函数定义域的关注,从中还能体会到数形结合思想是数学解题的一个重要的思想方法.

师生活动:

(1)学生画图,教师纠错得出(图1):1.函数图像为什么是孤立点?(定义域为N*)

2.为什么用光滑的虚线连接?(方便看增长趋势)

(2)教师用多媒体动画演示连接孤立的点.

学生1通过图像得出案例结论:

学生2通过图像用不同的语言概

括增长特点:常数函数保持不变,一次函数直

线上升,指数函数指数爆炸.

过渡语:现在你已经建好了公司,公司寻求

回报,你的员工也要寻求回报.为了激励员工,

你需要对他们实行奖励,你制定了这样一个公

司奖励模型.

公司奖励模型问题:图1

你的公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:xy25.0=1log7+=xyxy002.1=.其中哪个模型能符合公司的要求?

[问题7]大家认真审题,能否用数学符号语言将公司的要求(或条件)描述出来?

设计意图:解决实际问题的第一步就是审题,并将之数学化.在此更进一步培养学生解决实际问题的能力.

师生活动:个别学生回答,教师在黑板上列出:条件1:[10,1000]x∈;条件2:5y≤;条件3:0.25yx

≤;条件4:增函数.[问题8]我们可以如何验证5y≤?

设计意图:引导学生如何利用题目条件,从数和形两方面解决数学问题,既巩固应用前面学到的数学方法,又为下面问题的解决提供方向.

师生活动:学生思考并个别回答:

学生1:根据条件4:增函数,只需验证当1000x=时,5y≤即可,通过计算发现:xy25.0=、xy002.1=都不符,1log7+=xy符合.

学生2:通过图像直观观察得出.

[问题9]如何验证7log10.25xx+≤?

设计意图:在7log10.25xx+≤的验证过程中,始终不脱离本课主题,回归到函数的“增长特征”上去,并充分体现数形结合、构造函数的思想方法.

6师生活动:学生思考并个别回答,教师适时提问:

(1)学生1:将图像放大后观察函数1log7+=xy与xy25.0=的图像,发现在[10,1000]x∈都

满足.

(2)在教师的引导下,学生2加以补充.

学生2:只需将10x=代入计算,是符合条件的;再结合图像发现直线的增长比对数函数快,对

数函数增长较为平缓.所以[10,1000]x∈都满足.

(3)教师根据以上学生回答板书方法一:数形结合法

令10.25yx=,27log1yx=+

当10x=时10.25102.5,y=⨯=27log1010y=+,

127771.5log10loglog0yy-=-=>

12yy∴>给合图(2)得7log10.25xx+≤对

[10,1000]x∈恒成立图2

并通过几何画板动画演示BC=12yy-的变化情况,

引导学生构造函数.

(4)学生三回答,教师继续板书方法二:构造函数法

令7()0.25log1,[10,1000]Fxxxx=--∈

由图(3)得7()0.25log1Fxxx=--在[10,1000]x∈上

单调递增.

所以()(10)FxF≤,即7log10.25xx+≤对

[10,1000]x∈恒成立图3

3.总结反思归纳提升

[问题10]通过本节课的学习,你有哪些收获?请你对本节课作一总结.

设计意图:归纳总结本节内容.

师生活动:学生思考交流,教师帮助总结以下内容:

(1)知识:对函数的性质有了解:我们体会到同是增长型函数,但其增长差异却很大::常数函

数没有增长,一次函数直线上升,指数函数爆炸增长,对数函数平缓增长.

(2)方法:建模的思想,数形结合思想,构造函数思想等等.

六、目标检测设计

1.教科书P98,练习1、2

7设计意图:让学生巩固函数增长特征这一知识点.

2.探究题:请利用计算器或计算机从图、表两方面对函数222,,logxyyxyx===的增长差异进行比较.

设计意图::引出下一课时内容,为下面研究一般指数、对数、幂函数的增长差异奠定了探究的方向.

七、教学体会与反思

(1)数学问题解决教学应该从创设问题情景开始,本设计的情境创设比较成功.“日常生活中,增长的话题比比皆是,而我们学过的函数中有没有呈增长态势发展的呢?如果都是增长型函数,那么它们增长的态势是否都一样呢?”短短几句话,不但交代了本课的研究主题,而且比较自然地引导学生引出一次函数、指数函数、对数函数、幂函数,开门见山,直击“增长”.实际教学中大多以真实的或虚拟的“生活化”材料为载体创设教学情境,如用教材章头图中的兔子问题或其它情景作为素材,以迎合“能让学生体会到数学源于生活,增长学生的应用意识”,注重“数学教育应该与现实生活密切联系”这一现代教学理念.本课的教学内容是通过两个实际问题解决,让学生体会几类不同类型的函数增长的差异,执教教师就地取材,将书本中的例1为素材得到了一个虚拟的“生活化”材料,教学过程中不但自然地出示了例1,而且激发学生的学习和解决问题的兴趣,为学生的观察、归纳、猜想和证明提供了基础.

(2)问题的解决围绕着“弄清问题—拟定计划—实现计划—回顾”进行教学,教学中充分发挥了学生的主体作用.在例题教学中既有动手操作的实践活动,又有动脑思考和数学思维活动.例1的教学过程中,抓隹关键词“回报”,从不同的角度看待回报,让学生辨别“每天回报量”、“累计回报量”;从函数表达的三种不同形式入手,建立函数模型,让学生经历从解析式到表格、图象的全过程.在这个过程中,让学生感受到图表的直观,解析式的抽象.在求累计回报量时,由于学生不会求等比数列的和,选取对函数模型列表计算作出判断和选择,处理有详有略,让学生体会到了常数函数、一次函数与指数型函数的增长差异.例2中在判断是否满足“约束条件7log10.25xx+≤”时,考虑到教课书上介绍的构造函数法学生理解比较困难,教师先用利用数形结合,学生能很直观地感受xy25.0=在图像1log7+=xy的上方,有此基础后,再讲解方法二,即“构造函数法”,通过板书详细分析求解过程,帮助学生对“构造函数法”的理解,给学生留下一个深刻的印象.整个例2教学让学生经历了观察、归纳、猜想、证明的完整过程,使学生的学习过程成为在教师引导下的“再创造”过程.

商讨之处:

(1)教学内容不能只局限于课本中两个例题,要适当进行拓展延伸,不仅巩固新知,而且让学生感觉数学是有用的,数学就在我们身边.如果对例2进行拓展延伸,效果更佳.

如:为了实现1000万元利润的目标,在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随着销售利润x(单位:万元)的增加而增加,要求如下:

10万~50万,奖金不超过2万;50万~200万,奖金不超过4万;200万~1000万,奖金不超过20万.请选择适当的函数模型,用图象表达你的设计方案.(四人团队合作完成)

(2)更加重视与学生合作交流,让学生自己动手操作.例如,原设计中[案例]的列表画图过程,教师可事前设计好两张表格(日回报表和累计回报表)及坐标系,在课堂上由学生两人小组合作完成,再

让学生分析表格和图像有哪些区别,既培养学生分析问题、解决问题的能力,又提高了整个课堂的教

学效率.

(3)更加重视信息技术对课堂教学的作用.例如,原设计中[案例]的图像分析过程,可利用几何画

y的变化情况,使教学过程更加生动,从而调动学生的学习积极板动点演示三条曲线的增长快慢和

性,更直观地体会到三个函数模型的增长差异.

几类不同增长的函数模型


§3.2.1几类不同增长的函数模型(1)
学习目标
1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;
2.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;
3.恰当运用函数的三种表示法(解析式、图象、列表)并借助信息技术解决一些实际问题.
课前准备(预习教材P95~P98,找出疑惑之处)
阅读:澳大利亚兔子数“爆炸”
有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.
典型例题
例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报40元;
方案二:第一天回报10元,以后每天比前一天多回报10元;
方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.
请问,你会选择哪种投资方案?

反思:①在本例中涉及哪些数量关系?如何用函数描述这些数量关系?

②根据此例的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点.
例2某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增加而增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:
;;.
问:其中哪个模型能符合公司的要求?

反思:
①此例涉及了哪几类函数模型?本例实质如何?

②根据问题中的数据,如何判定所给的奖励模型是否符合公司要求?

练1.如图,是某受污染的湖泊在自然净化过程中,某种有害物质的剩留量y与净化时间t(月)的近似函数关系:(t≥0,a0且a≠1).有以下叙述
①第4个月时,剩留量就会低于;
②每月减少的有害物质量都相等;
③若剩留量为所经过的时间分别是,则.
其中所有正确的叙述是.
练2.经市场调查分析知,某地明年从年初开始的前个月,对某种商品需求总量(万件)近似地满足关系.
写出明年第个月这种商品需求量(万件)与月份的函数关系式.

课堂小结
1.两类实际问题:投资回报、设计奖励方案;2.几种函数模型:一次函数、对数函数、指数函数;3.应用建模(函数模型);
知识拓展
解决应用题的一般程序:
①审题:弄清题意,分清条件和结论,理顺数量关系;
②建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;
③解模:求解数学模型,得出数学结论;
④还原:将用数学知识和方法得出的结论,还原为实际问题的意义.
学习评价
1.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……,现有2个这样的细胞,分裂x次后得到的细胞个数y为().
A.B.y=2C.y=2D.y=2x
2.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用().
A.一次函数B.二次函数
C.指数型函数D.对数型函数
3.一等腰三角形的周长是20,底边长y是关于腰长x的函数,它的解析式为().
A.y=20-2x(x≤10)B.y=20-2x(x10)C.y=20-2x(5≤x≤10)D.y=20-2x(5x10)
4.某新品电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则销量y与投放市场的月数x之间的关系可写成.
5.某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么每轮病毒发作时,这台计算机都可能感染没被感染的20台计算机.现在10台计算机在第1轮病毒发作时被感染,问在第5轮病毒发作时可能有台计算机被感染.(用式子表示)
课后作业
1.某服装个体户在进一批服装时,进价已按原价打了七五折,他打算对该服装定一新价标在价目卡上,并注明按该价20%销售.这样,仍可获得25%的纯利.求此个体户给这批服装定的新标价与原标价之间的函数关系.

2.某书店对学生实行促销优惠购书活动,规定一次所购书的定价总额:①如不超过20元,则不予优惠;②如超过20元但不超过50元,则按实价给予9折优惠;③如超过50元,其中少于50元包括50元的部分按②给予优惠,超过50元的部分给予8折优惠.
(1)试求一次购书的实际付款y元与所购书的定价总额x元的函数关系;
(2)现在一学生两次去购书,分别付款16.8元和42.3元,若他一次购买同样的书,则应付款多少?比原来分两次购书优惠多少?
§3.2.1几类不同增长的函数模型(2)
学习目标
1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;
2.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;
3.恰当运用函数的三种表示法(解析式、图象、列表)并借助信息技术解决一些实际问题.
旧知提示(预习教材P98~P101,找出疑惑之处)
复习1:用石板围一个面积为200平方米的矩形场地,一边利用旧墙,则靠旧墙的一边长为___________米时,才能使所有石料的最省.
复习2:三个变量随自变量的变化情况如下表:
1357911
y15135625171536456633
y2529245218919685177149
y356.16.616.957.207.40
其中呈对数型函数变化的变量是________,呈指数型函数变化的变量是________,呈幂函数型变化的变量是________.
合作探究
探究:幂、指、对函数的增长差异
问题:幂函数、指数函数、对数函数在区间上的单调性如何?增长有差异吗?

实验:函数,,,试计算:
12345678
y1
y2
y3011.5822.322.582.813
由表中的数据,你能得到什么结论?

思考:大小关系是如何的?增长差异?
结论:在区间上,尽管,和都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,随着x的增大,的增长速度越来越快,会超过并远远大于的增长速度.而的增长速度则越来越慢.因此,总会存在一个,当时,就有.
典型例题
例1某工厂今年1月、2月、3月生产某种产品的数量分别为1万件,1.2万件,1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据用一个函数模拟该产品的月产量与月份的关系,模拟函数可以选用二次函数或函数.已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.
小结:待定系数法求解函数模型;优选模型.
练1.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题:
(1)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为.
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室.
练2.某商场购进一批单价为6元的日用品,销售一段时间后,为了获得更多利润,商场决定提高销售价格.经试验发现,若按每件20元的价格销售时,每月能卖360件,若按25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.
(1)试求y与x之间的关系式;
(2)在商品不积压,且不考虑其它因素的条件下,问销售价格定为多少时,才能时每月获得最大利润?每月的最大利润是多少?

课堂小结
直线上升、指数爆炸、对数增长等不同函数模型的增长的含义.
知识拓展
在科学试验、工程设计、生产工艺和各类规划、决策与管理等许多工作中,常常要制订最优化方案,优选学是研究如何迅速地、合理地寻求这些方案的科学理论、模型与方法.它被广泛应用于管理、生产、科技和经济领域中,几乎可以用于凡是有数值加工的每个领域.中国数学家华罗庚在推广优选方法的理论研究和开发研究工作中付出巨大贡献.
学习评价
1.某工厂签订了供货合同后组织工人生产某货物,生产了一段时间后,由于订货商想再多订一些,但供货时间不变,该工厂便组织工人加班生产,能反映该工厂生产的货物数量y与时间x的函数图象大致是().
2.下列函数中随增大而增大速度最快的是().
A.B.C.D.
3.根据三个函数给出以下命题:
(1)在其定义域上都是增函数;
(2)的增长速度始终不变;(3)的增长速度越来越快;
(4)的增长速度越来越快;(5)的增长速度越来越慢。
其中正确的命题个数为().
A.2B.3C.4D.5
4.当的大小关系是.

5.某厂生产中所需一些配件可以外购,也可以自己生产,如外购,每个价格是1.10元;如果自己生产,则每月的固定成本将增加800元,并且生产每个配件的材料和劳力需0.60元,则决定此配件外购或自产的转折点是____件(即生产多少件以上自产合算)

课外作业
1.下列函数关系中,可以看着是指数型函数(模型的是().
A.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)
B.我国人口年自然增长率为1﹪,这样我国人口总数随年份的变化关系
C.如果某人ts内骑车行进了1km,那么此人骑车的平均速度v与时间t的函数关系
D.信件的邮资与其重量间的函数关系
2.用长度为24的材料围一个矩形场地,中间且有两道隔墙,要使矩形的面积最大,则隔墙的长度为().
A.3B.4C.6D.12
3.已知某工厂生产某种产品的月产量y与月份x满足关系y=a(0.5)x+b,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件.则此厂3月份该产品的产量为_________.
4.某商店出售茶壶和茶杯,茶壶每个定价20元,茶杯每个定价为5元,该店推出两种优惠办法:
(1)买一个茶壶赠送一个茶杯;
(2)按总价的92%付款.
某顾客需购茶壶4个,茶杯若干(不少于4个),若需茶杯个,付款数为y(元),试分别建立两种优惠办法中y与的函数关系,并讨论顾客选择哪种优惠方法更合算.

几类不同增长的函数模型教学设计


教学设计
3.2.1几类不同增长的函数模型
整体设计
教学分析
函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述.本节的教学目标是认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同,应用函数模型解决简单问题.课本对几种不同增长的函数模型的认识及应用,都是通过实例来实现的.通过教学让学生认识到数学来自现实生活,数学在现实生活中是有用的.
三维目标
1.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异.
2.恰当运用函数的三种表示方法(解析式、表格、图象)并借助信息技术解决一些实际问题.
3.让学生体会数学在实际问题中的应用价值,培养学生的学习兴趣.
重点难点
教学重点:认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同.
教学难点:应用函数模型解决简单问题.
课时安排
2课时
教学过程
第1课时
作者:林大华
导入新课
思路1.(事例导入)
一张纸的厚度大约为0.01cm,一块砖的厚度大约为10cm,请同学们计算将一张纸对折n次的厚度和n块砖的厚度,列出函数关系式,并计算n=20时它们的厚度.你的直觉与结果一致吗?
解:纸对折n次的厚度:f(n)=0.012n(cm),n块砖的厚度:g(n)=10n(cm),f(20)≈105m,g(20)=2m.
也许同学们感到意外,通过对本节课的学习大家对这些问题会有更深的了解.
思路2.(直接导入)
请同学们回忆指数函数、对数函数以及幂函数的图象和性质,本节我们将通过实例比较它们的增长差异.
推进新课
新知探究
提出问题
(1)如果张红购买了每千克1元的蔬菜x千克,需要支付y元,把y表示为x的函数.
(2)正方形的边长为x,面积为y,把y表示为x的函数.
(3)某保护区有1单位面积的湿地,由于保护区的努力,使湿地面积每年以5%的增长率增长,经过x年后湿地的面积为y,把y表示为x的函数.
(4)分别用表格、图象表示上述函数.
(5)指出它们属于哪种函数模型.
(6)讨论它们的单调性.
(7)比较它们的增长差异.
(8)另外还有哪种函数模型与对数函数相关.
活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.
(1)总价等于单价与数量的积.
(2)面积等于边长的平方.
(3)由特殊到一般,先求出经过1年、2年…
(4)列表画出函数图象.
(5)引导学生回忆学过的函数模型.
(6)结合函数表格与图象讨论它们的单调性.
(7)让学生自己比较并体会.
(8)其他与对数函数有关的函数模型.
讨论结果:(1)y=x.
(2)y=x2.
(3)y=(1+5%)x.
(4)如下表
x123456
y=x123456
y=x2149162536
y=(1+5%)x1.051.101.161.221.281.34
它们的图象分别为图1,图2,图3.
图1图2图3
(5)它们分别属于:y=kx+b(直线型),y=ax2+bx+c(a≠0,抛物线型),y=kax+b(指数型).
(6)从表格和图象得出它们都为增函数.
(7)在不同区间增长速度不同,随着x的增大y=(1+5%)x的增长速度越来越快,会远远大于另外两个函数.
(8)另外还有与对数函数有关的函数模型,形如y=logax+b,我们把它叫做对数型函数.
应用示例
例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报40元;
方案二:第一天回报10元,以后每天比前一天多回报10元;
方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.
请问,你会选择哪种投资方案?
活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:我们可以先建立三种投资方案所对应的函数模型,再通过比较它们的增长情况,为选择投资方案提供依据.
解:设第x天所得回报是y元,则方案一可以用函数y=40(x∈N*)进行描述;方案二可以用函数y=10x(x∈N*)进行描述;方案三可以用函数y=0.4×2x-1(x∈N*)进行描述.三个模型中,第一个是常数函数,后两个都是递增函数模型.要对三个方案做出选择,就要对它的增长情况进行分析.我们先用计算机计算一下三种所得回报的增长情况.
x/天方案一方案二方案三
y/元增加量/元y/元增加量/元y/元增加量/元
140100.4
240020100.80.4
340030101.60.8
440040103.21.6
540050106.43.2
6400601012.86.4
7400701025.612.8
8400801051.225.6
94009010102.451.2
1040010010204.8102.4
…………………
3040030010214748364.8107374182.4
再作出三个函数的图象(图4).
图4
由表和图4可知,方案一的函数是常数函数,方案二、方案三的函数都是增函数,但方案二与方案三的函数的增长情况很不相同.可以看到,尽管方案一、方案二在第1天所得回报分别是方案三的100倍和25倍,但它们的增长量固定不变,而方案三是“指数增长”,其“增长量”是成倍增加的,从第7天开始,方案三比其他两方案增长得快得多,这种增长速度是方案一、方案二无法企及的.从每天所得回报看,在第1~3天,方案一最多;在第4天,方案一和方案二一样多,方案三最少;在第5~8天,方案二最多;第9天开始,方案三比其他两个方案所得回报多得多,到第30天,所得回报已超过2亿元.
下面再看累积的回报数.通过计算机或计算器列表如下:
因此,投资1~6天,应选择方案一;投资7天,应选择方案一或方案二;投资8~10天,应选择方案二;投资11天(含11天)以上,则应选择方案三.
针对上例可以思考下面问题:
①选择哪种方案是依据一天的回报数还是累积回报数.
②课本把两种回报数都列表给出的意义何在?
③由此得出怎样的结论.
答案:①选择哪种方案依据的是累积回报数.
②让我们体会每天回报数的增长变化.
③上述例子只是一种假想情况,但从中我们可以体会到,不同的函数增长模型,其增长变化存在很大差异.
变式训练
某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟付话费0.4元;“神州行”不缴月基础费,每通话1分钟付话费0.6元,若设一个月内通话x分钟,两种通讯业务的费用分别为y1元和y2元,那么
(1)写出y1、y2与x之间的函数关系式;
(2)在同一直角坐标系中画出两函数的图象;
(3)求出一个月内通话多少分钟,两种通讯业务费用相同;
(4)若某人预计一个月内使用话费200元,应选择哪种通讯业务较合算.
思路分析:我们可以先建立两种通讯业务所对应的函数模型,再通过比较它们的变化情况,为选择哪种通讯提供依据.(1)全球通的费用应为两种费用的和,即月基础费和通话费,神州行的费用应为通话费用;(2)运用描点法画图,但应注意自变量的取值范围;(3)可利用方程组求解,也可以根据图象回答;(4)求出当函数值为200元时,哪个函数所对应的自变量的值较大.
解:(1)y1=50+0.4x(x≥0),y2=0.6x(x≥0).
(2)图象如图5所示.
图5
(3)根据图中两函数图象的交点所对应的横坐标为250,所以在一个月内通话250分钟时,两种通讯业务的收费相同.
(4)当通话费为200元时,由图象可知,y1所对应的自变量的值大于y2所对应的自变量的值,即选取全球通更合算.
另解:当y1=200时有0.4x+50=200,∴x1=375;
当y2=200时有0.6x=200,x2=10003.显然375>10003,
∴选用“全球通”更合算.
点评:在解决实际问题过程中,函数图象能够发挥很好的作用,因此,我们应当注意提高读图的能力.另外,本例题用到了分段函数,分段函数是刻画现实问题的重要模型.
例2某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随着利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司的要求?
活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:某个奖励模型符合公司要求,就是依据这个模型进行奖励时,奖金总数不超过5万元,同时奖金不超过利润的25%,由于公司总的利润目标为1000万元,所以人员销售利润一般不会超过公司总的利润.于是只需在区间[10,1000]上,检验三个模型是否符合公司要求即可.不妨先作出函数图象,通过观察函数的图象,得到初步结论,再通过具体计算,确认结果.
解:借助计算器或计算机作出函数y=0.25x,y=log7x+1,y=1.002x的图象(图6).
图6
观察函数的图象,在区间[10,1000]上,模型y=0.25x,y=1.002x的图象都有一部分在直线y=5的上方,只有模型y=log7x+1的图象始终在y=5的下方,这说明只有按模型y=log7x+1进行奖励时才符合公司的要求.
下面通过计算确认上述判断.
首先计算哪个模型的奖金总数不超过5万.
对于模型y=0.25x,它在区间[10,1000]上递增,而且当x=20时,y=5,因此,当x>20时,y>5,所以该模型不符合要求;
对于模型y=1.002x,由函数图象,并利用计算器,可知在区间(805,806)内有一个点x0满足1.002x0=5,由于它在区间[10,1000]上递增,因此当x>x0时,y>5,所以该模型也不符合要求;
对于模型y=log7x+1,它在区间[10,1000]上递增,而且当x=1000时,y=log71000+1≈4.55<5,所以它符合奖金总数不超过5万元的要求.
再计算按模型y=log7x+1奖励时,奖金是否不超过利润的25%,即当x∈[10,1000]时,是否有yx=log7x+1x≤0.25成立.
图7
令f(x)=log7x+1-0.25x,x∈[10,1000].利用计算器或计算机作出函数f(x)的图象(图7),由函数图象可知它是递减的,因此
f(x)<f(10)≈-0.3167<0,即log7x+1<0.25x.
所以当x∈[10,1000]时,log7x+1x<0.25.
说明按模型y=log7x+1奖励,奖金不超过利润的25%.
综上所述,模型y=log7x+1确实能符合公司的要求.
变式训练
市场营销人员对过去几年某商品的价格及销售数量的关系做数据分析发现有如下规律:该商品的价格每上涨x%(x>0),销售数量就减少kx%(其中k为正实数).目前,该商品定价为a元,统计其销售数量为b个.
(1)当k=12时,该商品的价格上涨多少,就能使销售的总金额达到最大?
(2)在适当的涨价过程中,求使销售总金额不断增加时k的取值范围.
解:依题意,价格上涨x%后,销售总金额为
y=a(1+x%)b(1-kx%)=ab10000[-kx2+100(1-k)x+10000].
(1)取k=12,y=ab10000-12x2+50x+10000,
所以x=50,
即商品价格上涨50%,y最大为98ab.
(2)因为y=ab10000[-kx2+100(1-k)x+10000],
此二次函数的开口向下,对称轴为x=50(1-k)k,在适当涨价过程后,销售总金额不断增加,即要求此函数当自变量x在{x|x>0}的一个子集内增大时,y也增大.
所以50(1-k)k>0,解得0<k<1.
点评:这类问题的关键在于列函数解析式建立函数模型,然后借助不等式进行讨论.
知能训练
光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为k,通过x块玻璃以后强度为y.
(1)写出y关于x的函数关系式;
(2)通过多少块玻璃以后,光线强度减弱到原来的13以下.(lg3≈0.4771)
解:(1)光线经过1块玻璃后强度为(1-10%)k=0.9k;
光线经过2块玻璃后强度为(1-10%)0.9k=0.92k;
光线经过3块玻璃后强度为(1-10%)0.92k=0.93k;
光线经过x块玻璃后强度为0.9xk.
∴y=0.9xk(x∈N*).
(2)由题意:0.9xk<k3.∴0.9x<13.
两边取以10为底的对数,xlg0.9<lg13.
∵lg0.9<0,∴x>lg13lg0.9.
∵lg13lg0.9=lg31-2lg3≈10.4,∴xmin=11.
∴通过11块玻璃以后,光线强度减弱到原来的13以下.
拓展提升
某池塘中野生水葫芦的面积与时间的函数关系的图象(如图8所示).假设其关系为指数函数,并给出下列说法:
①此指数函数的底数为2;
②在第5个月时,野生水葫芦的面积就会超过30m2;
③野生水葫芦从4m2蔓延到12m2只需1.5个月;
④设野生水葫芦蔓延到2m2、3m2、6m2所需的时间分别为t1、t2、t3,则有t1+t2=t3;
⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.
哪些说法是正确的?
图8
解:①说法正确.
∵关系为指数函数,
∴可设y=ax(a>0且a≠1).∴由图知2=a1.
∴a=2,即底数为2.
②∵25=32>30,∴说法正确.
③∵指数函数增长速度越来越快,
∴说法不正确.
④t1=1,t2=log23,t3=log26,∴说法正确.
⑤∵指数函数增长速度越来越快,∴说法不正确.
课堂小结
活动:学生先思考或讨论,再回答.教师提示、点拨,及时评价.
引导方法:从基本知识和基本技能两方面来总结.
答案:(1)建立函数模型;(2)利用函数图象性质分析问题、解决问题.
作业
课本习题3.2A组1,2.
设计感想
本节设计由学生熟悉的素材入手,结果却出乎学生的意料,由此使学生产生浓厚的学习兴趣.课本中两个例题不仅让学生学会了函数模型的应用,而且体会到它们之间的差异;我们补充的例题与之相映生辉,其难度适中,是各地高考模拟经常选用的素材.其中拓展提升中的问题紧贴本节主题,很好地体现了指数函数的性质特点,是不可多得的素材.
第2课时
作者:张建国
导入新课
思路1.(情境导入)
国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他要什么.发明者说:“请在棋盘的第一个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,……,依次类推,每个格子里的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40g,据查,目前世界年度小麦产量为6亿吨,但这仍不能满足发明者要求,这就是指数增长.本节我们讨论指数函数、对数函数、二次函数的增长差异.
思路2.(直接导入)
我们知道,对数函数y=logax(a>1),指数函数y=ax(a>1)与幂函数y=xn(n>0)在区间(0,+∞)上都是增函数.但这三类函数的增长是有差异的.本节我们讨论指数函数、对数函数、二次函数的增长差异.
推进新课
新知探究
提出问题
(1)在区间(0,+∞)上判断y=log2x,y=2x,y=x2的单调性.
(2)列表并在同一坐标系中画出三个函数的图象.
(3)结合函数的图象找出其交点坐标.
(4)请在图象上分别标出使不等式log2x<2x<x2和log2x<x2<2x成立的自变量x的取值范围.
(5)由以上问题你能得出怎样的结论?
讨论结果:
(1)在区间(0,+∞)上函数y=log2x,y=2x,y=x2均为增函数.
(2)见下表与图9.
x0.20.61.01.41.82.22.63.03.4…
y=2x1.1491.51622.6393.4824.5956.063810.556…
y=x20.040.3611.963.244.846.76911.56…
y=log2x-2.322-0.73700.4850.8481.1381.3791.5851.766…
图9
(3)从图象看出y=log2x的图象与另外两函数的图象没有交点,且总在另外两函数的图象的下方,y=2x的图象与y=x2的图象有交点.
(4)不等式log2x<2x<x2和log2x<x2<2x成立的自变量x的取值范围分别是(2,4)和(0,2)∪(4,+∞).
(5)我们在更大的范围内列表作函数图象(图10),
x012345678…
y=2x1248163264128256…
y=x201491625364964…
图10
容易看出:y=2x的图象与y=x2的图象有两个交点(2,4)和(4,16),这表明2x与x2在自变量不同的区间内有不同的大小关系,有时2x<x2,有时x2<2x.
但是,当自变量x越来越大时,可以看到,y=2x的图象就像与x轴垂直一样,2x的值快速增长,x2比起2x来,几乎有些微不足道,如图11和下表所示.
x01020304050607080…
y=2x110241.05E+061.07E+091.10E+121.13E+151.15E+181.18E+211.21E+24…
y=x2010040090016002500360049006400…
图11
一般地,对于指数函数y=ax(a>1)和幂函数y=xn(n>0),通过探索可以发现,在区间(0,+∞)上,无论n比a大多少,尽管在x的一定变化范围内,ax会小于xn,但由于ax的增长快于xn的增长,因此总存在一个x0,当x>x0时,就会有ax>xn.
同样地,对于对数函数y=logax(a>1)和幂函数y=xn(n>0),在区间(0,+∞)上,随着x的增大,logax增长得越来越慢,图象就像是渐渐地与x轴平行一样.尽管在x的一定变化范围内,logax可能会大于xn,但由于logax的增长慢于xn的增长,因此总存在一个x0,当x>x0时,就会有logax<xn.
综上所述,尽管对数函数y=logax(a>1),指数函数y=ax(a>1)与幂函数y=xn(n>0)在区间(0,+∞)上都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=ax(a>1)的增长速度越来越快,会超过并远远大于y=xn(n>0)的增长速度,而y=logax(a>1)的增长速度则会越来越慢.因此,总会存在一个x0,当x>x0时,就会有logax<xn<ax.虽然幂函数y=xn(n>0)增长快于对数函数y=logax(a>1)增长,但它们与指数增长比起来相差甚远,因此指数增长又称“指数爆炸”.
应用示例
例1某市的一家报刊摊点,从报社买进晚报的价格是每份0.20元,卖出价是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(以30天计)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?
活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:
设摊主每天从报社买进x份,显然当x∈[250,400]时,每月所获利润才能最大.而每月所获利润=卖报收入的总价-付给报社的总价.卖报收入的总价包含三部分:①可卖出400份的20天里,收入为20×0.30x;②可卖出250份的10天里,收入为10×0.30×250;③10天里多进的报刊退回给报社的收入为10×0.05×(x-250).付给报社的总价为30×0.20x.
解:设摊主每天从报社买进x份晚报,显然当x∈[250,400]时,每月所获利润才能最大.于是每月所获利润y为
y=20×0.30x+10×0.30×250+10×0.05×(x-250)-30×0.20x=0.5x+625,x∈[250,400].
因函数y在[250,400]上为增函数,故当x=400时,y有最大值825元.
图12
例2某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y与时间t之间近似满足如图12所示的曲线.
(1)写出服药后y与t之间的函数关系式;
(2)据测定:每毫升血液中含药量不少于4微克时治疗疾病有效,假若某病人一天中第一次服药时间为上午7:00,问一天中怎样安排服药的时间(共4次)效果最佳?
解:(1)依题意,得y=6t,0≤t≤1,-23t+203,1t≤10.
(2)设第二次服药时在第一次服药后t1小时,则-23t1+203=4,t1=4.因而第二次服药应在11:00;
设第三次服药在第一次服药后t2小时,则此时血液中含药量应为两次服药量的和,即有-23t2+203-23(t2-4)+203=4,解得t2=9,故第三次服药应在16:00;
设第四次服药在第一次后t3小时(t3>10),则此时第一次服进的药已吸收完,此时血液中含药量应为第二、三次的和,-23(t3-4)+203-23(t3-9)+203=4,解得t3=13.5,故第四次服药应在20:30.
变式训练
通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间:讲座开始时,学生兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态;随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生接受概念的能力[f(x)的值愈大,表示接受的能力愈强],x表示提出和讲授概念的时间(单位:分钟),可有以下的公式:
(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间?
(2)开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强一些?
解:(1)当0<x≤10时,f(x)=-0.1x2+2.6x+43=-0.1(x-13)2+59.9,
知当x=10时,[f(x)]max=f(10)=59;
当10<x≤16时,f(x)=59;当16<x≤30时,f(x)=-3x+107,
知f(x)<-3×16+107=59.
因此,开讲后10分钟,学生的接受能力最强,并能持续6分钟.
(2)∵f(5)=-0.1×(5-13)2+59.9=53.5,f(20)=-3×20+107=47<53.5,
∴开讲后5分钟时学生的接受能力比开讲后20分钟强.
点评:解析式与图象的转换是函数应用的重点,关于分段函数问题更应重点训练.
知能训练
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图13(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图13(2)的抛物线段表示.
(1)写出图13(1)表示的市场售价与时间的函数关系P=f(t);
写出图13(2)表示的种植成本与时间的函数关系式Q=g(t);
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?
(1)(2)
图13
(注:市场售价和种植成本的单位:元/102kg,时间单位:天)
活动:学生在黑板上书写解答.教师在学生中巡视其他学生的解答,发现问题及时纠正.
解:(1)由图13(1)可得市场售价与时间的函数关系为f(t)=300-t,0≤t≤200,2t-300,200t≤300.
由图13(2)可得种植成本与时间的函数关系为g(t)=1200(t-150)2+100,0≤t≤300.
(2)设t时刻的纯收益为h(t),
则由题意得h(t)=f(t)-g(t).
即h(t)=-1200t2+12t+1752,0≤t≤200,-1200t2+72t-10252,200t≤300.
当0≤t≤200时,配方整理,得h(t)=-1200(t-50)2+100,
所以当t=50时,h(t)取得区间[0,200]上的最大值100;
当200<t≤300时,配方整理,得h(t)=-1200(t-350)2+100,
所以当t=300时,h(t)取得区间[200,300]上的最大值87.5.
综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.
点评:本题主要考查由函数图象建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力.
拓展提升
探究内容
①在函数应用中如何利用图象求解析式.
②分段函数解析式的求法.
③函数应用中的最大值、最小值问题.
举例探究:某跨国公司是专门生产健身产品的企业,第一批产品A上市销售40天内全部售完,该公司对第一批产品A上市后的国内外市场销售情况进行调研,结果如图14(1)、图14(2)、图14(3)所示.其中图14(1)的折线表示的是国外市场的日销售量与上市时间的关系;图14(2)的抛物线表示的是国内市场的日销售量与上市时间的关系;图14(3)的折线表示的是每件产品A的销售利润与上市时间的关系.
图14
(1)分别写出国外市场的日销售量f(t)、国内市场的日销售量g(t)与第一批产品A上市时间t的关系式;
(2)第一批产品A上市后的哪几天,这家公司的国内和国外日销售利润之和超过6300万元?
分析:1.利用图象求解析式,先要分清函数类型再利用待定系数法求解析式.
2.在t∈[0,40]上,有几个分界点,请同学们思考应分为几段.
3.回忆函数最值的求法.
解:(1)f(t)=2t,0≤t≤30,-6t+240,30t≤40,
g(t)=-320t2+6t(0≤t≤40).
(2)每件A产品销售利润h(t)=3t,0≤t≤20,60,20t≤40.
该公司的日销售利润
当0≤t≤20时,F(t)=3t(-320t2+8t),先判断其单调性.
设0≤t1<t2≤20,
则F(t1)-F(t2)=3t1(-320t21+8t1)-3t2(-320t22+8t2)<0.
∴F(t)在区间[0,20]上为增函数.
∴F(t)max=F(20)=6000<6300.
当20<t≤30时,
令60(-320t2+8t)>6300,
则703<t<30;
当30<t≤40时,F(t)=60(-320t2+240)<60(-320×302+240)=6300,
故在第24,25,26,27,28,29天日销售利润超过6300万元.
点评:1.利用图象求解析式,先要分清函数类型再利用待定系数法求解析式,重点是找出关键点.
2.在t∈[0,40]上,有几个分界点,t=20,t=30两点把区间分为三段.
3.二次函数的最值可用配方法,另外利用单调性求最值也是常用方法之一.
课堂小结
本节学习了:①指数函数、对数函数、二次函数的增长差异.②幂函数、指数函数、对数函数的应用.
作业
课本习题3.2A组3,4.
设计感想
本节设计从精彩的故事开始,让学生从故事中体会数学带来的震撼,然后借助计算机感受不同函数模型的巨大差异.接着通过最新题型训练学生利用函数模型解决实际问题的能力;并且重点训练了由图象转化为函数解析式的能力,因为这是高考的一个重点.本节的每个例题都很精彩,可灵活选用.
备课资料
【备选例题】
【例1】某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府对该项特产的销售投资收益为:每年投入x万元,可获得利润P=-1160(x-40)2+100万元.当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在规划后对该项目每年都投入60万元的销售投资,在未来10年的前5年中,每年都从60万元中拨出30万元用于修建一条公路,5年修成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每年投入x万元,可获利润Q=-159160(60-x)2+1192(60-x)万元.
问从10年的累积利润看,该规划方案是否可行?
解:在实施规划前,由题设P=-1160(x-40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元.
则10年的总利润为W1=100×10=1000(万元).
实施规划后的前5年中,由题设P=-1160(x-40)2+100,知每年投入30万元时,有最大利润Pmax=7958(万元).
前5年的利润和为7958×5=39758(万元).
设在公路通车的后5年中,每年用x万元投资于本地的销售,而用剩下的(60-x)万元用于外地区的销售投资,则其总利润为
W2=-1160(x-40)2+100×5+-159160x2+1192x×5
=-5(x-30)2+4950.
当x=30时,(W2)max=4950(万元).
从而10年的总利润为39758+4950(万元).
∵39758+4950>1000,
∴该规划方案有极大实施价值.

§3.2.1几类不同增长的函数模型学案


一名优秀的教师就要对每一课堂负责,作为高中教师就要精心准备好合适的教案。教案可以让学生更容易听懂所讲的内容,帮助高中教师提高自己的教学质量。高中教案的内容具体要怎样写呢?下面的内容是小编为大家整理的§3.2.1几类不同增长的函数模型学案,希望能为您提供更多的参考。

§3.2.1几类不同增长的函数模型学案
课前预习学案
一、预习目标
对于基本的实际问题能抽象出数学模型。
二、预习内容
(预习教材P95~P98,找出疑惑之处)
阅读:澳大利亚兔子数“爆炸”
有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点疑惑内容

课内探究学案
一、学习目标
1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;
2.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;
3.恰当运用函数的三种表示法(解析式、图象、表格)并借助信息技术解决一些实际问题.
学习重点:将实际问题转化为数学问题,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
学习难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。
二、学习过程
典型例题
例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报40元;
方案二:第一天回报10元,以后每天比前一天多回报10元;
方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.
请问,你会选择哪种投资方案?

反思:
①在本例中涉及哪些数量关系?如何用函数描述这些数量关系?

②根据此例的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点.
变式训练1某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么每轮病毒发作时,这台计算机都可能感染没被感染的20台计算机.现在10台计算机在第1轮病毒发作时被感染,问在第5轮病毒发作时可能有多少台计算机被感染?
例2某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增加而增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:
;;.
问:其中哪个模型能符合公司的要求?

反思:
①此例涉及了哪几类函数模型?本例实质如何?

②根据问题中的数据,如何判定所给的奖励模型是否符合公司要求?

变式训练2
经市场调查分析知,某地明年从年初开始的前个月,对某种商品需求总量(万件)近似地满足关系

写出明年第个月这种商品需求量(万件)与月份的函数关系式.

四、反思总结
解决应用题的一般程序:
①审题:弄清题意,分清条件和结论,理顺数量关系;
②建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;
③解模:求解数学模型,得出数学结论;
④还原:将用数学知识和方法得出的结论,还原为实际问题的意义.
五、当堂达标:课本108页2题

课后练习与提高
1.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……,现有2个这样的细胞,分裂x次后得到的细胞个数y为().
A.B.y=2C.y=2D.y=2x
2.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用().
A.一次函数B.二次函数
C.指数型函数D.对数型函数
3.一等腰三角形的周长是20,底边长y是关于腰长x的函数,它的解析式为().
A.y=20-2x(x≤10)B.y=20-2x(x10)
C.y=20-2x(5≤x≤10)D.y=20-2x(5x10)
4.某新品电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则销量y与投放市场的月数x之间的关系可写成.
5.如图,是某受污染的湖泊在自然净化过程中,某种有害物质的剩留量y与净化时间t(月)的近似函数关系:(t≥0,a0且a≠1).有以下叙述
①第4个月时,剩留量就会低于;
②每月减少的有害物质量都相等;
③若剩留量为所经过的时间分别是,则.
其中所有正确的叙述是.

6.某服装个体户在进一批服装时,进价已按原价打了七五折,他打算对该服装定一新价标在价目卡上,并注明按该价20%销售.这样,仍可获得25%的纯利.求此个体户给这批服装定的新标价与原标价之间的函数关系.