88教案网

你的位置: 教案 > 高中教案 > 导航 > 几类不同增长的函数模型(2课时)

高中函数的应用教案

发表时间:2020-04-03

几类不同增长的函数模型(2课时)。

古人云,工欲善其事,必先利其器。高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生们能够在上课时充分理解所教内容,帮助高中教师更好的完成实现教学目标。所以你在写高中教案时要注意些什么呢?下面是由小编为大家整理的“几类不同增长的函数模型(2课时)”,欢迎阅读,希望您能够喜欢并分享!

几类不同增长的函数模型(2课时)
教学要求:①结合实例体会直线上升,指数爆炸,对数增长等不同增长的函数模型的意义.
②借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异.
③恰当运用函数的三种表示法(解析式、图象、表格)并借助信息技术解决一些实际问题.
④收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),了解函数模型的广泛应用.
教学重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.
教学难点:怎样选择数学模型分析解决实际问题.
教学过程:
一、新课引入:(国际象棋棋盘的奖赏→教科书第三章的章头图:澳大利亚兔子数“爆炸”)
有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.
二、讲授新课:
1、例题讲解:
①例1.假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;
方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.
请问,你会选择哪种投资方案?
②探究:在本例中涉及哪些数量关系?如何用函数描述这些数量关系?→师生共同分析解答
探究:根据例1的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?
借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点吗?
根据以上分析,你认为就作出如何选择?
③例2.某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增加而增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:
;;.问:其中哪个模型能符合公司的要求?
④探究:本例涉及了哪几类函数模型?本例的实质是什么?
根据问题中的数据,如何判定所给的奖励模型是否符合公司要求?
通过对三个函数模型增长差异的比较,写出例2的解答.
2、探究与发现:幂函数、指数函数、对数函数的增长差异分析:
你能否仿照前面例题使用的方法,探索研究幂函数、指数函数、对数函数在区间上的增长差异,并进行交流、讨论、概括总结,形成较为准确、详尽的结论性报告.
3、尝试练习:教材P110练习1、2;教材P113练习.
4、小结与反思:直线上升、指数爆炸、对数增长等不同函数模型的增长的含义;数学的实用价
三、巩固练习:1.教材P120习题32(A组)第1~3题;
2.作业:教材P1252、3、4题
3、课外活动:收集一些社会生活中普遍使用的一次函数、指数函数、对数函数的实例,对它们的增长速度进行比较;有时同一个实际问题可以建立多个函数模型,怎样选用合理的函数模型?
第三、四课时3.2.2函数模型的应用实例(2课时)
教学要求:通过一些实例,来感受一次函数、二次函数、指数函数、对数函数以及幂函数的广泛应用,体会解决实际问题中建立函数模型的过程,从而进一步加深对这些函数的理解与应用.
教学重点:建立函数模型的过程.
教学难点:在实际问题中建立函数模型.
教学过程:
一、新课引入:前节课主要是讲授指数函数、对数函数以及幂函数的增长差异,本节课我们主要是通过一些生活中常遇到的实例来进一步说明函数模型在解决实际问题中的应用.
二、讲授新课:
1、例题讲解:
①例1、在中国轻纺城批发市场,季节性服装当季节即将来临时,价格呈上升趋势.设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的平稳销售;10周后当季节即将过去时,平均每周降价2元,直到16周末,该服装已不再销售.
(1)试建立价格P与周次t之间的函数关系;
(2)若此服装每件进价Q与周次t之间的关系式为,试问该服装第几周每件销售利润最大?
(找出实际问题中涉及的函数变量→引导学生根据变量间的关系建立函数模型→利用模型解决实际问题→小结:二次函数模型)
②练习(图表形式):某同学完成一项任务共花去9个小时,他记录的完成工作量的百分数如下:
时间/小时123456789
完成的百分数1530456060708090100
(1)如果用T(h)来表示h小时后完成的工作量的百分数,请问T(5)是多少?求出T(h)的解析式,并画出图象.(2)如果该同学在早晨8:00时开始工作,什么时候他未工作?
③例2、人中问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(1766-1834)就提出了自然状态下的人口增长模型:,其中t表示经过的时间,表示时的人口数,r表示人口的年平均增长率.……(数据和问题见P115)
(师生共析→教师小结:指数型函数模型→学生阅读课本,完善解题过程)
③例3、某地区不同身高的未成年男性的体重平均值研究:(数据和问题见P118)
分小组讨论该选用何种函数模型来刻画这个地区未成年男性体重与身高的函数关系并分别验证,总结讨论结果,找出最恰当的函数模型,利用函数模型来解决实际问题.
小结:根据收集到的数据的特点,通过建立函数模型,解决实际问题的基本过程:收集数据→画散点图→选择函数模型→求函数模型→检验→符合实际,用函数模型解释实际问题;不符合实际,则重新选择函数模型,直到符合实际为止.
2、练习:教材P114图形给出的函数应用研究;利润研究;
三、巩固练习:1.阅读P123、P73、P79等应用问题,小结函数模型类别
2.已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过年后的剩留量为,则的函数解析式为.
3.某新型电子产品2002年投产,计划2004年使其成本降低36℅.则平均每年应降低成本℅.
3.有一批影碟(VCD)原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下方法促销:买一台单价为780元,买两台单价都为760元,依次类推,每多买一台则所买各台单价均再减少20元,但每台售价不能低于440元;乙商场一律都按原价的75%销售.某单位需购买一批此类影碟机,问去哪家商场购买花费较低?4.作业:P1201、2、4、5题

相关推荐

几类不同增长的函数模型教学设计


教学设计
3.2.1几类不同增长的函数模型
整体设计
教学分析
函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述.本节的教学目标是认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同,应用函数模型解决简单问题.课本对几种不同增长的函数模型的认识及应用,都是通过实例来实现的.通过教学让学生认识到数学来自现实生活,数学在现实生活中是有用的.
三维目标
1.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异.
2.恰当运用函数的三种表示方法(解析式、表格、图象)并借助信息技术解决一些实际问题.
3.让学生体会数学在实际问题中的应用价值,培养学生的学习兴趣.
重点难点
教学重点:认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同.
教学难点:应用函数模型解决简单问题.
课时安排
2课时
教学过程
第1课时
作者:林大华
导入新课
思路1.(事例导入)
一张纸的厚度大约为0.01cm,一块砖的厚度大约为10cm,请同学们计算将一张纸对折n次的厚度和n块砖的厚度,列出函数关系式,并计算n=20时它们的厚度.你的直觉与结果一致吗?
解:纸对折n次的厚度:f(n)=0.012n(cm),n块砖的厚度:g(n)=10n(cm),f(20)≈105m,g(20)=2m.
也许同学们感到意外,通过对本节课的学习大家对这些问题会有更深的了解.
思路2.(直接导入)
请同学们回忆指数函数、对数函数以及幂函数的图象和性质,本节我们将通过实例比较它们的增长差异.
推进新课
新知探究
提出问题
(1)如果张红购买了每千克1元的蔬菜x千克,需要支付y元,把y表示为x的函数.
(2)正方形的边长为x,面积为y,把y表示为x的函数.
(3)某保护区有1单位面积的湿地,由于保护区的努力,使湿地面积每年以5%的增长率增长,经过x年后湿地的面积为y,把y表示为x的函数.
(4)分别用表格、图象表示上述函数.
(5)指出它们属于哪种函数模型.
(6)讨论它们的单调性.
(7)比较它们的增长差异.
(8)另外还有哪种函数模型与对数函数相关.
活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.
(1)总价等于单价与数量的积.
(2)面积等于边长的平方.
(3)由特殊到一般,先求出经过1年、2年…
(4)列表画出函数图象.
(5)引导学生回忆学过的函数模型.
(6)结合函数表格与图象讨论它们的单调性.
(7)让学生自己比较并体会.
(8)其他与对数函数有关的函数模型.
讨论结果:(1)y=x.
(2)y=x2.
(3)y=(1+5%)x.
(4)如下表
x123456
y=x123456
y=x2149162536
y=(1+5%)x1.051.101.161.221.281.34
它们的图象分别为图1,图2,图3.
图1图2图3
(5)它们分别属于:y=kx+b(直线型),y=ax2+bx+c(a≠0,抛物线型),y=kax+b(指数型).
(6)从表格和图象得出它们都为增函数.
(7)在不同区间增长速度不同,随着x的增大y=(1+5%)x的增长速度越来越快,会远远大于另外两个函数.
(8)另外还有与对数函数有关的函数模型,形如y=logax+b,我们把它叫做对数型函数.
应用示例
例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报40元;
方案二:第一天回报10元,以后每天比前一天多回报10元;
方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.
请问,你会选择哪种投资方案?
活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:我们可以先建立三种投资方案所对应的函数模型,再通过比较它们的增长情况,为选择投资方案提供依据.
解:设第x天所得回报是y元,则方案一可以用函数y=40(x∈N*)进行描述;方案二可以用函数y=10x(x∈N*)进行描述;方案三可以用函数y=0.4×2x-1(x∈N*)进行描述.三个模型中,第一个是常数函数,后两个都是递增函数模型.要对三个方案做出选择,就要对它的增长情况进行分析.我们先用计算机计算一下三种所得回报的增长情况.
x/天方案一方案二方案三
y/元增加量/元y/元增加量/元y/元增加量/元
140100.4
240020100.80.4
340030101.60.8
440040103.21.6
540050106.43.2
6400601012.86.4
7400701025.612.8
8400801051.225.6
94009010102.451.2
1040010010204.8102.4
…………………
3040030010214748364.8107374182.4
再作出三个函数的图象(图4).
图4
由表和图4可知,方案一的函数是常数函数,方案二、方案三的函数都是增函数,但方案二与方案三的函数的增长情况很不相同.可以看到,尽管方案一、方案二在第1天所得回报分别是方案三的100倍和25倍,但它们的增长量固定不变,而方案三是“指数增长”,其“增长量”是成倍增加的,从第7天开始,方案三比其他两方案增长得快得多,这种增长速度是方案一、方案二无法企及的.从每天所得回报看,在第1~3天,方案一最多;在第4天,方案一和方案二一样多,方案三最少;在第5~8天,方案二最多;第9天开始,方案三比其他两个方案所得回报多得多,到第30天,所得回报已超过2亿元.
下面再看累积的回报数.通过计算机或计算器列表如下:
因此,投资1~6天,应选择方案一;投资7天,应选择方案一或方案二;投资8~10天,应选择方案二;投资11天(含11天)以上,则应选择方案三.
针对上例可以思考下面问题:
①选择哪种方案是依据一天的回报数还是累积回报数.
②课本把两种回报数都列表给出的意义何在?
③由此得出怎样的结论.
答案:①选择哪种方案依据的是累积回报数.
②让我们体会每天回报数的增长变化.
③上述例子只是一种假想情况,但从中我们可以体会到,不同的函数增长模型,其增长变化存在很大差异.
变式训练
某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟付话费0.4元;“神州行”不缴月基础费,每通话1分钟付话费0.6元,若设一个月内通话x分钟,两种通讯业务的费用分别为y1元和y2元,那么
(1)写出y1、y2与x之间的函数关系式;
(2)在同一直角坐标系中画出两函数的图象;
(3)求出一个月内通话多少分钟,两种通讯业务费用相同;
(4)若某人预计一个月内使用话费200元,应选择哪种通讯业务较合算.
思路分析:我们可以先建立两种通讯业务所对应的函数模型,再通过比较它们的变化情况,为选择哪种通讯提供依据.(1)全球通的费用应为两种费用的和,即月基础费和通话费,神州行的费用应为通话费用;(2)运用描点法画图,但应注意自变量的取值范围;(3)可利用方程组求解,也可以根据图象回答;(4)求出当函数值为200元时,哪个函数所对应的自变量的值较大.
解:(1)y1=50+0.4x(x≥0),y2=0.6x(x≥0).
(2)图象如图5所示.
图5
(3)根据图中两函数图象的交点所对应的横坐标为250,所以在一个月内通话250分钟时,两种通讯业务的收费相同.
(4)当通话费为200元时,由图象可知,y1所对应的自变量的值大于y2所对应的自变量的值,即选取全球通更合算.
另解:当y1=200时有0.4x+50=200,∴x1=375;
当y2=200时有0.6x=200,x2=10003.显然375>10003,
∴选用“全球通”更合算.
点评:在解决实际问题过程中,函数图象能够发挥很好的作用,因此,我们应当注意提高读图的能力.另外,本例题用到了分段函数,分段函数是刻画现实问题的重要模型.
例2某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随着利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司的要求?
活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:某个奖励模型符合公司要求,就是依据这个模型进行奖励时,奖金总数不超过5万元,同时奖金不超过利润的25%,由于公司总的利润目标为1000万元,所以人员销售利润一般不会超过公司总的利润.于是只需在区间[10,1000]上,检验三个模型是否符合公司要求即可.不妨先作出函数图象,通过观察函数的图象,得到初步结论,再通过具体计算,确认结果.
解:借助计算器或计算机作出函数y=0.25x,y=log7x+1,y=1.002x的图象(图6).
图6
观察函数的图象,在区间[10,1000]上,模型y=0.25x,y=1.002x的图象都有一部分在直线y=5的上方,只有模型y=log7x+1的图象始终在y=5的下方,这说明只有按模型y=log7x+1进行奖励时才符合公司的要求.
下面通过计算确认上述判断.
首先计算哪个模型的奖金总数不超过5万.
对于模型y=0.25x,它在区间[10,1000]上递增,而且当x=20时,y=5,因此,当x>20时,y>5,所以该模型不符合要求;
对于模型y=1.002x,由函数图象,并利用计算器,可知在区间(805,806)内有一个点x0满足1.002x0=5,由于它在区间[10,1000]上递增,因此当x>x0时,y>5,所以该模型也不符合要求;
对于模型y=log7x+1,它在区间[10,1000]上递增,而且当x=1000时,y=log71000+1≈4.55<5,所以它符合奖金总数不超过5万元的要求.
再计算按模型y=log7x+1奖励时,奖金是否不超过利润的25%,即当x∈[10,1000]时,是否有yx=log7x+1x≤0.25成立.
图7
令f(x)=log7x+1-0.25x,x∈[10,1000].利用计算器或计算机作出函数f(x)的图象(图7),由函数图象可知它是递减的,因此
f(x)<f(10)≈-0.3167<0,即log7x+1<0.25x.
所以当x∈[10,1000]时,log7x+1x<0.25.
说明按模型y=log7x+1奖励,奖金不超过利润的25%.
综上所述,模型y=log7x+1确实能符合公司的要求.
变式训练
市场营销人员对过去几年某商品的价格及销售数量的关系做数据分析发现有如下规律:该商品的价格每上涨x%(x>0),销售数量就减少kx%(其中k为正实数).目前,该商品定价为a元,统计其销售数量为b个.
(1)当k=12时,该商品的价格上涨多少,就能使销售的总金额达到最大?
(2)在适当的涨价过程中,求使销售总金额不断增加时k的取值范围.
解:依题意,价格上涨x%后,销售总金额为
y=a(1+x%)b(1-kx%)=ab10000[-kx2+100(1-k)x+10000].
(1)取k=12,y=ab10000-12x2+50x+10000,
所以x=50,
即商品价格上涨50%,y最大为98ab.
(2)因为y=ab10000[-kx2+100(1-k)x+10000],
此二次函数的开口向下,对称轴为x=50(1-k)k,在适当涨价过程后,销售总金额不断增加,即要求此函数当自变量x在{x|x>0}的一个子集内增大时,y也增大.
所以50(1-k)k>0,解得0<k<1.
点评:这类问题的关键在于列函数解析式建立函数模型,然后借助不等式进行讨论.
知能训练
光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为k,通过x块玻璃以后强度为y.
(1)写出y关于x的函数关系式;
(2)通过多少块玻璃以后,光线强度减弱到原来的13以下.(lg3≈0.4771)
解:(1)光线经过1块玻璃后强度为(1-10%)k=0.9k;
光线经过2块玻璃后强度为(1-10%)0.9k=0.92k;
光线经过3块玻璃后强度为(1-10%)0.92k=0.93k;
光线经过x块玻璃后强度为0.9xk.
∴y=0.9xk(x∈N*).
(2)由题意:0.9xk<k3.∴0.9x<13.
两边取以10为底的对数,xlg0.9<lg13.
∵lg0.9<0,∴x>lg13lg0.9.
∵lg13lg0.9=lg31-2lg3≈10.4,∴xmin=11.
∴通过11块玻璃以后,光线强度减弱到原来的13以下.
拓展提升
某池塘中野生水葫芦的面积与时间的函数关系的图象(如图8所示).假设其关系为指数函数,并给出下列说法:
①此指数函数的底数为2;
②在第5个月时,野生水葫芦的面积就会超过30m2;
③野生水葫芦从4m2蔓延到12m2只需1.5个月;
④设野生水葫芦蔓延到2m2、3m2、6m2所需的时间分别为t1、t2、t3,则有t1+t2=t3;
⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.
哪些说法是正确的?
图8
解:①说法正确.
∵关系为指数函数,
∴可设y=ax(a>0且a≠1).∴由图知2=a1.
∴a=2,即底数为2.
②∵25=32>30,∴说法正确.
③∵指数函数增长速度越来越快,
∴说法不正确.
④t1=1,t2=log23,t3=log26,∴说法正确.
⑤∵指数函数增长速度越来越快,∴说法不正确.
课堂小结
活动:学生先思考或讨论,再回答.教师提示、点拨,及时评价.
引导方法:从基本知识和基本技能两方面来总结.
答案:(1)建立函数模型;(2)利用函数图象性质分析问题、解决问题.
作业
课本习题3.2A组1,2.
设计感想
本节设计由学生熟悉的素材入手,结果却出乎学生的意料,由此使学生产生浓厚的学习兴趣.课本中两个例题不仅让学生学会了函数模型的应用,而且体会到它们之间的差异;我们补充的例题与之相映生辉,其难度适中,是各地高考模拟经常选用的素材.其中拓展提升中的问题紧贴本节主题,很好地体现了指数函数的性质特点,是不可多得的素材.
第2课时
作者:张建国
导入新课
思路1.(情境导入)
国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他要什么.发明者说:“请在棋盘的第一个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,……,依次类推,每个格子里的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40g,据查,目前世界年度小麦产量为6亿吨,但这仍不能满足发明者要求,这就是指数增长.本节我们讨论指数函数、对数函数、二次函数的增长差异.
思路2.(直接导入)
我们知道,对数函数y=logax(a>1),指数函数y=ax(a>1)与幂函数y=xn(n>0)在区间(0,+∞)上都是增函数.但这三类函数的增长是有差异的.本节我们讨论指数函数、对数函数、二次函数的增长差异.
推进新课
新知探究
提出问题
(1)在区间(0,+∞)上判断y=log2x,y=2x,y=x2的单调性.
(2)列表并在同一坐标系中画出三个函数的图象.
(3)结合函数的图象找出其交点坐标.
(4)请在图象上分别标出使不等式log2x<2x<x2和log2x<x2<2x成立的自变量x的取值范围.
(5)由以上问题你能得出怎样的结论?
讨论结果:
(1)在区间(0,+∞)上函数y=log2x,y=2x,y=x2均为增函数.
(2)见下表与图9.
x0.20.61.01.41.82.22.63.03.4…
y=2x1.1491.51622.6393.4824.5956.063810.556…
y=x20.040.3611.963.244.846.76911.56…
y=log2x-2.322-0.73700.4850.8481.1381.3791.5851.766…
图9
(3)从图象看出y=log2x的图象与另外两函数的图象没有交点,且总在另外两函数的图象的下方,y=2x的图象与y=x2的图象有交点.
(4)不等式log2x<2x<x2和log2x<x2<2x成立的自变量x的取值范围分别是(2,4)和(0,2)∪(4,+∞).
(5)我们在更大的范围内列表作函数图象(图10),
x012345678…
y=2x1248163264128256…
y=x201491625364964…
图10
容易看出:y=2x的图象与y=x2的图象有两个交点(2,4)和(4,16),这表明2x与x2在自变量不同的区间内有不同的大小关系,有时2x<x2,有时x2<2x.
但是,当自变量x越来越大时,可以看到,y=2x的图象就像与x轴垂直一样,2x的值快速增长,x2比起2x来,几乎有些微不足道,如图11和下表所示.
x01020304050607080…
y=2x110241.05E+061.07E+091.10E+121.13E+151.15E+181.18E+211.21E+24…
y=x2010040090016002500360049006400…
图11
一般地,对于指数函数y=ax(a>1)和幂函数y=xn(n>0),通过探索可以发现,在区间(0,+∞)上,无论n比a大多少,尽管在x的一定变化范围内,ax会小于xn,但由于ax的增长快于xn的增长,因此总存在一个x0,当x>x0时,就会有ax>xn.
同样地,对于对数函数y=logax(a>1)和幂函数y=xn(n>0),在区间(0,+∞)上,随着x的增大,logax增长得越来越慢,图象就像是渐渐地与x轴平行一样.尽管在x的一定变化范围内,logax可能会大于xn,但由于logax的增长慢于xn的增长,因此总存在一个x0,当x>x0时,就会有logax<xn.
综上所述,尽管对数函数y=logax(a>1),指数函数y=ax(a>1)与幂函数y=xn(n>0)在区间(0,+∞)上都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=ax(a>1)的增长速度越来越快,会超过并远远大于y=xn(n>0)的增长速度,而y=logax(a>1)的增长速度则会越来越慢.因此,总会存在一个x0,当x>x0时,就会有logax<xn<ax.虽然幂函数y=xn(n>0)增长快于对数函数y=logax(a>1)增长,但它们与指数增长比起来相差甚远,因此指数增长又称“指数爆炸”.
应用示例
例1某市的一家报刊摊点,从报社买进晚报的价格是每份0.20元,卖出价是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(以30天计)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?
活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:
设摊主每天从报社买进x份,显然当x∈[250,400]时,每月所获利润才能最大.而每月所获利润=卖报收入的总价-付给报社的总价.卖报收入的总价包含三部分:①可卖出400份的20天里,收入为20×0.30x;②可卖出250份的10天里,收入为10×0.30×250;③10天里多进的报刊退回给报社的收入为10×0.05×(x-250).付给报社的总价为30×0.20x.
解:设摊主每天从报社买进x份晚报,显然当x∈[250,400]时,每月所获利润才能最大.于是每月所获利润y为
y=20×0.30x+10×0.30×250+10×0.05×(x-250)-30×0.20x=0.5x+625,x∈[250,400].
因函数y在[250,400]上为增函数,故当x=400时,y有最大值825元.
图12
例2某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y与时间t之间近似满足如图12所示的曲线.
(1)写出服药后y与t之间的函数关系式;
(2)据测定:每毫升血液中含药量不少于4微克时治疗疾病有效,假若某病人一天中第一次服药时间为上午7:00,问一天中怎样安排服药的时间(共4次)效果最佳?
解:(1)依题意,得y=6t,0≤t≤1,-23t+203,1t≤10.
(2)设第二次服药时在第一次服药后t1小时,则-23t1+203=4,t1=4.因而第二次服药应在11:00;
设第三次服药在第一次服药后t2小时,则此时血液中含药量应为两次服药量的和,即有-23t2+203-23(t2-4)+203=4,解得t2=9,故第三次服药应在16:00;
设第四次服药在第一次后t3小时(t3>10),则此时第一次服进的药已吸收完,此时血液中含药量应为第二、三次的和,-23(t3-4)+203-23(t3-9)+203=4,解得t3=13.5,故第四次服药应在20:30.
变式训练
通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间:讲座开始时,学生兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态;随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生接受概念的能力[f(x)的值愈大,表示接受的能力愈强],x表示提出和讲授概念的时间(单位:分钟),可有以下的公式:
(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间?
(2)开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强一些?
解:(1)当0<x≤10时,f(x)=-0.1x2+2.6x+43=-0.1(x-13)2+59.9,
知当x=10时,[f(x)]max=f(10)=59;
当10<x≤16时,f(x)=59;当16<x≤30时,f(x)=-3x+107,
知f(x)<-3×16+107=59.
因此,开讲后10分钟,学生的接受能力最强,并能持续6分钟.
(2)∵f(5)=-0.1×(5-13)2+59.9=53.5,f(20)=-3×20+107=47<53.5,
∴开讲后5分钟时学生的接受能力比开讲后20分钟强.
点评:解析式与图象的转换是函数应用的重点,关于分段函数问题更应重点训练.
知能训练
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图13(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图13(2)的抛物线段表示.
(1)写出图13(1)表示的市场售价与时间的函数关系P=f(t);
写出图13(2)表示的种植成本与时间的函数关系式Q=g(t);
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?
(1)(2)
图13
(注:市场售价和种植成本的单位:元/102kg,时间单位:天)
活动:学生在黑板上书写解答.教师在学生中巡视其他学生的解答,发现问题及时纠正.
解:(1)由图13(1)可得市场售价与时间的函数关系为f(t)=300-t,0≤t≤200,2t-300,200t≤300.
由图13(2)可得种植成本与时间的函数关系为g(t)=1200(t-150)2+100,0≤t≤300.
(2)设t时刻的纯收益为h(t),
则由题意得h(t)=f(t)-g(t).
即h(t)=-1200t2+12t+1752,0≤t≤200,-1200t2+72t-10252,200t≤300.
当0≤t≤200时,配方整理,得h(t)=-1200(t-50)2+100,
所以当t=50时,h(t)取得区间[0,200]上的最大值100;
当200<t≤300时,配方整理,得h(t)=-1200(t-350)2+100,
所以当t=300时,h(t)取得区间[200,300]上的最大值87.5.
综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.
点评:本题主要考查由函数图象建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力.
拓展提升
探究内容
①在函数应用中如何利用图象求解析式.
②分段函数解析式的求法.
③函数应用中的最大值、最小值问题.
举例探究:某跨国公司是专门生产健身产品的企业,第一批产品A上市销售40天内全部售完,该公司对第一批产品A上市后的国内外市场销售情况进行调研,结果如图14(1)、图14(2)、图14(3)所示.其中图14(1)的折线表示的是国外市场的日销售量与上市时间的关系;图14(2)的抛物线表示的是国内市场的日销售量与上市时间的关系;图14(3)的折线表示的是每件产品A的销售利润与上市时间的关系.
图14
(1)分别写出国外市场的日销售量f(t)、国内市场的日销售量g(t)与第一批产品A上市时间t的关系式;
(2)第一批产品A上市后的哪几天,这家公司的国内和国外日销售利润之和超过6300万元?
分析:1.利用图象求解析式,先要分清函数类型再利用待定系数法求解析式.
2.在t∈[0,40]上,有几个分界点,请同学们思考应分为几段.
3.回忆函数最值的求法.
解:(1)f(t)=2t,0≤t≤30,-6t+240,30t≤40,
g(t)=-320t2+6t(0≤t≤40).
(2)每件A产品销售利润h(t)=3t,0≤t≤20,60,20t≤40.
该公司的日销售利润
当0≤t≤20时,F(t)=3t(-320t2+8t),先判断其单调性.
设0≤t1<t2≤20,
则F(t1)-F(t2)=3t1(-320t21+8t1)-3t2(-320t22+8t2)<0.
∴F(t)在区间[0,20]上为增函数.
∴F(t)max=F(20)=6000<6300.
当20<t≤30时,
令60(-320t2+8t)>6300,
则703<t<30;
当30<t≤40时,F(t)=60(-320t2+240)<60(-320×302+240)=6300,
故在第24,25,26,27,28,29天日销售利润超过6300万元.
点评:1.利用图象求解析式,先要分清函数类型再利用待定系数法求解析式,重点是找出关键点.
2.在t∈[0,40]上,有几个分界点,t=20,t=30两点把区间分为三段.
3.二次函数的最值可用配方法,另外利用单调性求最值也是常用方法之一.
课堂小结
本节学习了:①指数函数、对数函数、二次函数的增长差异.②幂函数、指数函数、对数函数的应用.
作业
课本习题3.2A组3,4.
设计感想
本节设计从精彩的故事开始,让学生从故事中体会数学带来的震撼,然后借助计算机感受不同函数模型的巨大差异.接着通过最新题型训练学生利用函数模型解决实际问题的能力;并且重点训练了由图象转化为函数解析式的能力,因为这是高考的一个重点.本节的每个例题都很精彩,可灵活选用.
备课资料
【备选例题】
【例1】某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府对该项特产的销售投资收益为:每年投入x万元,可获得利润P=-1160(x-40)2+100万元.当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在规划后对该项目每年都投入60万元的销售投资,在未来10年的前5年中,每年都从60万元中拨出30万元用于修建一条公路,5年修成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每年投入x万元,可获利润Q=-159160(60-x)2+1192(60-x)万元.
问从10年的累积利润看,该规划方案是否可行?
解:在实施规划前,由题设P=-1160(x-40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元.
则10年的总利润为W1=100×10=1000(万元).
实施规划后的前5年中,由题设P=-1160(x-40)2+100,知每年投入30万元时,有最大利润Pmax=7958(万元).
前5年的利润和为7958×5=39758(万元).
设在公路通车的后5年中,每年用x万元投资于本地的销售,而用剩下的(60-x)万元用于外地区的销售投资,则其总利润为
W2=-1160(x-40)2+100×5+-159160x2+1192x×5
=-5(x-30)2+4950.
当x=30时,(W2)max=4950(万元).
从而10年的总利润为39758+4950(万元).
∵39758+4950>1000,
∴该规划方案有极大实施价值.

§3.2.1几类不同增长的函数模型学案


一名优秀的教师就要对每一课堂负责,作为高中教师就要精心准备好合适的教案。教案可以让学生更容易听懂所讲的内容,帮助高中教师提高自己的教学质量。高中教案的内容具体要怎样写呢?下面的内容是小编为大家整理的§3.2.1几类不同增长的函数模型学案,希望能为您提供更多的参考。

§3.2.1几类不同增长的函数模型学案
课前预习学案
一、预习目标
对于基本的实际问题能抽象出数学模型。
二、预习内容
(预习教材P95~P98,找出疑惑之处)
阅读:澳大利亚兔子数“爆炸”
有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点疑惑内容

课内探究学案
一、学习目标
1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;
2.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;
3.恰当运用函数的三种表示法(解析式、图象、表格)并借助信息技术解决一些实际问题.
学习重点:将实际问题转化为数学问题,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
学习难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。
二、学习过程
典型例题
例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报40元;
方案二:第一天回报10元,以后每天比前一天多回报10元;
方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.
请问,你会选择哪种投资方案?

反思:
①在本例中涉及哪些数量关系?如何用函数描述这些数量关系?

②根据此例的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点.
变式训练1某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么每轮病毒发作时,这台计算机都可能感染没被感染的20台计算机.现在10台计算机在第1轮病毒发作时被感染,问在第5轮病毒发作时可能有多少台计算机被感染?
例2某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增加而增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:
;;.
问:其中哪个模型能符合公司的要求?

反思:
①此例涉及了哪几类函数模型?本例实质如何?

②根据问题中的数据,如何判定所给的奖励模型是否符合公司要求?

变式训练2
经市场调查分析知,某地明年从年初开始的前个月,对某种商品需求总量(万件)近似地满足关系

写出明年第个月这种商品需求量(万件)与月份的函数关系式.

四、反思总结
解决应用题的一般程序:
①审题:弄清题意,分清条件和结论,理顺数量关系;
②建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;
③解模:求解数学模型,得出数学结论;
④还原:将用数学知识和方法得出的结论,还原为实际问题的意义.
五、当堂达标:课本108页2题

课后练习与提高
1.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……,现有2个这样的细胞,分裂x次后得到的细胞个数y为().
A.B.y=2C.y=2D.y=2x
2.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用().
A.一次函数B.二次函数
C.指数型函数D.对数型函数
3.一等腰三角形的周长是20,底边长y是关于腰长x的函数,它的解析式为().
A.y=20-2x(x≤10)B.y=20-2x(x10)
C.y=20-2x(5≤x≤10)D.y=20-2x(5x10)
4.某新品电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则销量y与投放市场的月数x之间的关系可写成.
5.如图,是某受污染的湖泊在自然净化过程中,某种有害物质的剩留量y与净化时间t(月)的近似函数关系:(t≥0,a0且a≠1).有以下叙述
①第4个月时,剩留量就会低于;
②每月减少的有害物质量都相等;
③若剩留量为所经过的时间分别是,则.
其中所有正确的叙述是.

6.某服装个体户在进一批服装时,进价已按原价打了七五折,他打算对该服装定一新价标在价目卡上,并注明按该价20%销售.这样,仍可获得25%的纯利.求此个体户给这批服装定的新标价与原标价之间的函数关系.

几种不同增长的函数模型教案(2课时)


几种不同增长的函数模型(两课时)

一、教学目的

1、利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;

2、结合实例让学生体会直线上升,指数爆炸,对数增长等不同增长的函数模型的意义;

3、运用函数的三种表示法(解析式、图象、表格)并结合信息技术解决一些实际问题;

4、以一些实际例子,让学生了解社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的广泛应用。

二、教学重点、难点

重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

难点:怎样选择数学模型分析解决实际问题。

三、教学过程

第一课时

1、复习引入

师:在我们的生活中,有没有用到函数的例子?

生:细胞分裂;银行储蓄;早晨跑步锻炼时速度与时间的关系;……

师:很好,生活中,数学无处不在,用好数学,将会给我们带来很大的方便。今天,我们就来看一个利用数学为我们服务的例子。

2、新课

(用幻灯片展示例题)

假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:

1)每天回报40元;

2)第一天回报10元,以后每天比前一天多回报10元;

3)第一天回报0.4元,以后每天的回报比前一天翻一番。

请问:你会选择哪一种投资方案?(让学生充分讨论)

教师提示:

1)、考虑回报量,除了要考虑每天的回报量之外,还得考虑什么?(回报的累积值)。

2)、本题中涉及哪些数量关系?如何利用函数描述这些数量关系?

教师引导学生分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作适当的指导。

设问:根据所列的表格中提供的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?

教师引导学生观察表格中三个方案的数量变化情况,对“增加量”进行比较,体会“直线增长”、“指数爆炸”等;让学生通过观察,说出自己的发现,并进行交流。

利用计算机作出函数图象,引导学生根据三个方案的不同变化趋势,描述三个方案的特点,为方案的选择提供依据。

通过自主活动,使学生认识到怎样选择才是正确的。综合学生的分析意见,教师总结:选择最佳方案,除了要考虑每天的收益,还要考虑一段时间内的总收益。

由上面的分析可见:投资8天以下(不含8天),应选择第一种投资方案;投资8~10天,应选择第二种方案;投资11天(含11天)以上,则应选择第三种方案。

设问:若有人给你这么一个建议:投资前8天用第一种方案,第9天到第10天用第二种方案,投资第11天开始用第三种方案。你觉得这建议如何?

3)、(幻灯片展示例题2)

设问:本题中涉及了哪几类函数模型?实质是什么?

教师引导学生分析三种函数的不同增长情况对于奖励模型的选择影响,使学生明确问题的实质就是要比较三个函数的增长情况。

让学生分组讨论:对每一个奖励模型的奖金总额是否超过5万元,以及奖励比例是否超过25%进行分析,由各小组代表陈述讨论结果。

教师根据学生讨论的结果作出总结,并利用解析式,结合图象,对三个模型的增长情况进行分析比较,写出完整的解题过程。

3、小结:

一般地,对指数函数、幂函数和对数函数,在(0,+∞)上,尽管指数函数y=ax(a1)、对数函数y=logax(a1)和幂函数y=xa(a0)都是增函数,但它们的增长速度不同,而且不在同一“档次”上,随着x的增大,指数函数y=ax(a1)的增长速度越来越快,会超过并远远大于幂函数y=xa(a0),而对数函数y=logax(a1)的增长速度则会越来越慢。因此,总会存在一个x0,当xx0时,就有logaxxaax。

第二课时

1、复习引入

通过上节课的学习,我们已经知道,应用数学函数模型能为我们解决实际问题提供很大的帮助,。我们不仅要应用好数学模型,我们更应该在面对实际问题时,能通过自己建立函数模型来解决问题。2、新课

1、(用幻灯片展示例题3)

教师引导学生读图,弄懂题意,由学生写出解题过程。

课堂练习:P128第1、3题。

小结:在解决实际问题过程中,函数图象能够发挥很好的作用,因此,提高读图能力非常重要。分段函数也是刻画现实问题的一个重要的函数模型。

2、(展示例题4)

教师引导学生根据收集到的数据,作出散点图,通过观察图象判定问题所适合的函数模型,利用计算机的数据拟合功能得出具体的函数解析式,再用得到的函数模型解决相应的问题,这是函数应用的一个基本过程。

课堂练习:P123第1题。

教师小结指出:用已知的函数模型来刻画实际问题时,由于实际问题的条件与得出已知函数模型的条件会有所不同,所以,必须对模型进行修正。

3、(用幻灯片展示例题5)

让学生集体讨论,寻求相应的函数模型,并作出解答。

教师小结:所收集到的数据中,规律性很明显的问题,可直接找出与之对应的函数模型进行解答。

4、(用幻灯片展示例题6)

观察散点图,教师引导学生分析,这些点的连线是一条向上弯曲的曲线,根据这些点的分布情况,可考虑用y=a·bx这一函数模型来近似刻画这一地区未成年男性体重y与身高x的函数关系。

课堂练习:P133B组第3题。

小结:应用函数模型解决实际问题的基本过程:

①确定函数模型;

②利用数据表格,函数图象讨论模型;

③体会直线上升、指数爆炸、对数增长等不同类型增长的含义。

作业:P127第4、5题

高中数学必修一《几类不用增长的函数模型》说课稿


俗话说,磨刀不误砍柴工。高中教师要准备好教案为之后的教学做准备。教案可以让学生更容易听懂所讲的内容,帮助高中教师缓解教学的压力,提高教学质量。您知道高中教案应该要怎么下笔吗?下面是小编为大家整理的“高中数学必修一《几类不用增长的函数模型》说课稿”,欢迎阅读,希望您能够喜欢并分享!

高中数学必修一《几类不用增长的函数模型》说课稿

一、说课标

课程标准中明确指出:高中数学课程应提供基本内容的实际背景,反映数学的应用价值,开展“数学建模”的学习活动.数学建模就是引导学生从实际情境中提出问题,并归结为数学模型,尝试用数学思想和方法去解决问题.在教学中,要特别注意以下两点:(1)数学建模的问题应是多样的,开放的,同时解决问题所涉及的知识、技能、方法、思想应与高中数学课程紧密相关;(2)学生可以根据自己的生活经验发现并提出问题,对同样的问题,可以发挥自己的特长和个性,从不同的角度、层次探索解决的途径.

二、说教材

1.本节课在教材中的地位和作用

本节课选自高中数学人教A版必修1第三章第二节“函数模型及其应用”,教学安排为四课时,在这里主要研究的是第一课时的内容:几类不同增长的函数模型.

在义务教育阶段,学生对数学建模就已经积累了一定的研究经验.到了高中阶段,通过第二章的学习,学生有了利用函数知识解决实际问题的经历,熟悉了几种基本初等函数的概念,掌握了对应函数图象的基本特征,这是本节课的知识基础.而本节课在探求解决实际问题的过程中,体验到几种常见函数模型在描述客观世界变化规律时各自的特点,从不同的方面对实际问题多视点、宽角度地进行了探究,始终贯穿着函数模型的应用这条主线,从而拉开高中阶段数学建模活动的帷幕.

2.教学目标:

知识与技能目标:

①尝试从实际问题中建构出数学问题的技能;

②体验用简单的函数模型解决实际问题的经历;

③结合实例体会直线上升,指数爆炸等不同函数模型的增长差异.

过程与方法目标:

①使学生经历建立和运用函数模型的过程,初步体验数学建模的基本思想;

②通过三种表示方法的恰当运用,认识函数问题的研究方法.

情感、态度与价值观目标:

在认真分析实际背景,抽象概括现实问题,转化整合数学模型的过程中,养成严谨、求真、奋进的科学态度,学会交流、分享、合作,增强团队意识.3.教学目标的重点与难点:

教学重点:

①培养学生用数学知识描述实际问题的数学化能力;

②在比较不同函数模型的过程中,体会直线上升、指数爆炸等不同类型函数的增长差异;

③通过小组内部的合作,使学生学会交流、分享、展示,增强团队意识.

教学难点:

结合实际问题让学生体会不同函数模型的增长差异,增强合作意识.

三、说学情

知识基础:

①熟悉了几种基本函数的概念;

②掌握了这些函数图象的基本特征;

②具有利用函数知识解决实际问题的初步体验.

认知特点:

建模思想对学生的应用、合作、探究、创新意识都有较高要求,在这方面尚需要教师精心的组织引导.

四、说教法

选用合作探究与尝试概括相结合的教学方法.

在教学中,从精心创设的问题情境出发,为学生提供更多的机会和时间,提问质疑、尝试探究、讨论交流、归纳总结等,促使学生的思维空间充分开放;积极营造出一个有利于人际沟通与合作的环境,使学生学会交流和分享自己的成果,并能把每个人的成果进行有效的整合,增强团队意识;丰富学生对数学与日常生活紧密联系的体验,感受数学的实际价值,增强应用意识,发展创新意识,真正做到学有所思、思有所得、得有所悟,悟有所获,获有所用.

五、说设计

1.挖掘背景,提出问题

请同学们根据下面的两个实验,提出数学问题:

模拟实验1、动画演示摞砖游戏,

模拟实验2、师生一起动手做折纸游戏.

设计意图:这两个实验都源于学生熟悉的生活背景,在认真观察、实际操作中,要求学生充分发挥自己的特长与个性,从不同角度、层次挖掘其中所蕴涵的数学问题,最终获得数学建模的初步体验.这样做,不仅要求学生能够自己发现问题,体现了数学建模与解应用题的不同;也激发了学生的学习兴趣,充分体现了“数学是自然的”这一新课程理念.

2.阅读问题,尝试建模

请同学们阅读下面的问题,并建立相关的函数模型:

问题1张女士给今年上大学的儿子花5400元买了一部“苹果”手机.由于电子技术的飞速发展,手机成本不断降低,每隔一年手机的价格降低30﹪,四年后大学毕业时此人这部手机还值多少钱?

设计意图:这个问题选自学生关注的日常生活,其背景对学生来说非常熟悉,在已有知识的基础上,学生通过认真的阅读,能够用指数型函数来解决这个问题,这样的设计可以使学生体验数学在解决实际问题中的作用,发展数学的应用意识,提高实践能力.

问题2某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的

问题3已知A、B两地相距150千米,某人开汽车以60千米/小时的速度从A地到达B地,在B地停留1小时后再以50千米/小时的速度返回A地,把汽车与A地的距离x表示为时间t(小时)的函数,并画出函数的图象.设计意图:这两个问题的处理都交给学生完成,目的在于培养学生收集、分析和加工信息的能力.学生通过数据分析、模型整合、独立思考、合作交流,真正成为学习的践行者,课堂的主人..另外,通过小组内部的合作,还增强了学生的合作意识,这也是现代人所必须具备的基本素质.

3.探究模型,回归说明

数学建模思想:①从一个实际背景中抽象出数学问题;

②用相关的函数知识来描述数学问题;

③对函数模型进行分析

④回归说明实际问题.

例题我们公司有一笔资金用于投资,现有三种投资方案可供选择,这三种方案的回报如下:方案一:每天回报40元;

方案二:第一天回报10元,以后每天比前一天多回报10元;

方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.

如果你作为公司的一员,会选择哪种投资方案呢?

请同学们根据下面的分析,解决这个问题:

(1)选择投资方案的标准是什么?

(2)“翻一番”的含义怎样理解?

(3)研究函数问题的方法有几种,分别是什么?

设计意图:面对精心创设的问题情境,通过恰点恰时而又层层递进的问题串,让学生在不断的观察、思考和探究的过程中,选择恰当的函数模型,借助三种不同的表示方法,弄清几个函数间的增长差异.这种处理方式,一方面可以使学生学会如何选择恰当的表示形式对问题进行分析,另一方面也提高了学生分析问题、解决问题的能力.

4.归纳体会,类比应用

(1)今天你学到了什么?

(2)请同学们针对新课引入中的两个实验,建立相关的函数模型,并分析它的增长特点.

设计意图:本环节以讨论的形式展开,在热烈的讨论过程中,再现本节课的知识体系,梳理整个探究过程中体现的思想方法,优化学生的知识结构,使之系统化、条理化,加强对知识间内在联系的理解和认识.

5.布置作业,课外延伸

巩固性作业:P107习题3.2A组:1、2、3

课外探究:收集身边有关分期付款的信息,建立并分析相关的数学模型课后作业分为两种形式,体现作业的巩固性和发展性原则,巩固性作业用于检测学生的学习效果,而课外探究采用开放性问题,供学生课后研究,有利于扩展学生的数学视野,提高实践能力,它也是新课标里研究性学习内容的一部分.六、说评价

要注意:过程与结果并重;自评与互评并重;建立学生的成长档案.

在评价学生课堂活动中的表现时,不苛求数学建模过程的严密,结果的准确,要重过程,重参与,其内容应关注:创新性、现实性、真实性、合理性、有效性,有一项做得好就要给与充分的肯定.

七、说开发

作为数学建模的起始课,本节课可以开发出丰富的课程资源,要重点关注两个方面:

1.研究性学习课题数列在分期付款中的应用;

线性规划的实际应用;

定积分在经济生活中的应用

2.相关的选修专题3-2信息安全与密码

3-3球面上的几何

3-5欧拉公式与闭曲面分类

4-3数列与差分

4-7优化法与试验设计初步

4-10开关电路与布尔代数