88教案网

你的位置: 教案 > 高中教案 > 导航 > 高三化学一轮复习《碳酸钠与碳酸氢钠》学案

高中生物一轮复习教案

发表时间:2021-03-08

高三化学一轮复习《碳酸钠与碳酸氢钠》学案。

经验告诉我们,成功是留给有准备的人。高中教师要准备好教案,这是老师职责的一部分。教案可以让讲的知识能够轻松被学生吸收,让高中教师能够快速的解决各种教学问题。关于好的高中教案要怎么样去写呢?小编经过搜集和处理,为您提供高三化学一轮复习《碳酸钠与碳酸氢钠》学案,希望能对您有所帮助,请收藏。

高三化学一轮复习《碳酸钠与碳酸氢钠》学案


碳酸钠
碳酸氢钠
俗名
水溶性
易溶于水,溶液呈碱性
溶解度较碳酸钠小,溶液呈碱性
与盐酸反应
与NaOH反应
与Ca(OH)2反应
足量:
不足:-
与BaCl2反应
相互
转化
用途
1.判断正误,正确的划“√”,错误的划“×”
(1)向NaHCO3溶液中加入过量的澄清石灰水,出现白色沉淀:2HCO+Ca2++2OH-===CaCO3↓+CO+2H2O
(2)NaOH+NaHCO3===Na2CO3+H2O可用H++OH-===H2O表示
(3)向Na2CO3溶液中滴入酚酞试液,溶液变红CO+H2O??HCO+OH-
(4)小苏打与氢氧化钠溶液混合HCO+OH-===CO2↑+H2O
(5)向Na2CO3溶液中加入过量CH3COOH溶液CO+2H+―→CO2↑+H2O
2.将CO2气体通入到饱和Na2CO3溶液中有何现象?原因是什么?
3.Na2CO3固体粉末中混有少量NaHCO3,用什么方法除杂?Na2CO3溶液中混有少量NaHCO3,用什么方法除杂?NaHCO3溶液中混有少量Na2CO3,用什么方法除杂?
题组一 Na2CO3、NaHCO3的鉴别
高三化学一轮复习wbr 《碳酸钠与碳酸氢钠》wbr学案1.下列几种试剂能把等物质的量浓度的Na2CO3、NaHCO3鉴别开的是__________。
(1)CaCl2溶液 (2)澄清石灰水 (3)稀盐酸 (4)pH试纸
2.某校化学课外小组为了鉴别碳酸钠和碳酸氢钠两种白色固体,用不同的方法做了以下实验,如图Ⅰ~Ⅳ所示。
(1)只根据图Ⅰ、Ⅱ所示实验,能够达到实验目的的是____________________(填装置序号)。
高三化学一轮复习wbr 《碳酸钠与碳酸氢钠》wbr学案(2)图Ⅲ、Ⅳ所示实验均能鉴别这两种物质,其反应的化学方程式为_________________________;与实验Ⅲ相比,实验Ⅳ的优点是________(填选项序号)。
A.Ⅳ比Ⅲ复杂B.Ⅳ比Ⅲ安全
C.Ⅳ比Ⅲ操作简便
D.Ⅳ可以做到用一套装置同时进行两个对比实验,而Ⅲ不行
(3)若用实验Ⅳ验证碳酸钠和碳酸氢钠的稳定性,则试管B中装入的固体最好是_____________________________________________________________(填化学式)。
题组二 有关Na2CO3、NaHCO3的定量计算
3.(1)①纯净的Na2CO3ag ②Na2CO3与NaHCO3的混合物ag ③纯净的NaHCO3ag,按要求回答问题:
A.分别与盐酸完全反应时,耗酸量从大到小的顺序为__________。
B.分别和盐酸完全反应时,放出CO2气体的量从大到小的顺序为_____________。
C.分别溶于水,再加入足量的澄清石灰水,生成沉淀的质量从大到小的顺序为
_____________________________________________________________________。
D.分别配成等体积的溶液,c(Na+)的浓度从大到小的顺序为_________________。
(2)将agNa2CO3和NaHCO3的混合物充分加热,其质量变为bg,则Na2CO3的质量分数为__________。
(3)若将问题(1)中的等质量改为等物质的量,回答上述A、B、C、D四问。
高三化学一轮复习wbr 《碳酸钠与碳酸氢钠》wbr学案高三化学一轮复习wbr 《碳酸钠与碳酸氢钠》wbr学案高三化学一轮复习wbr 《碳酸钠与碳酸氢钠》wbr学案4.将0.4gNaOH和1.06gNa2CO3混合并配成溶液,向溶液中滴加0.1mol·L-1稀盐酸。下列图像能正确表示加入盐酸的体积和生成CO2的物质的量的关系的是
题组三 有关碳酸钠的制取
5.Na2CO3的制取方法及综合实验探究
(1)我国化学家侯德榜改革国外的纯碱生产工艺,其生产流程可简要表示如下:
①往饱和食盐水中依次通入足量的NH3、CO2(氨碱法),而不先通CO2再通NH3的原因是________________________________________________
②从生产流程图可知,可循环利用的物质是__________。
③写出沉淀池中、煅烧炉中反应的化学方程式_____________________________。
(2)如何用CO2和50mL2mol·L-1NaOH溶液制取50mL1mol·L-1Na2CO3溶液?
①写出简要的实验步骤:______________________________________________
_____________________________________________________________________。
②写出有关反应的化学方程式:________________________________________

相关推荐

高二化学教案:《碳酸钠和碳酸氢钠溶解性差异》教学设计


一、使用教材

苏教版《化学1》专题2第2单元第二节《碳酸钠的性质与应用》

二、实验器材

仪器:离心机、离心试管、锥形瓶、滴定管、滴定管夹、托盘天平、药匙、量筒、胶头滴管

试剂:固体碳酸钠、固体碳酸氢钠、蒸馏水

三、实验创新要点/改进要点

(1)实验内容上的创新:增加碳酸钠和碳酸氢钠溶解性差异的实验探究。苏教版的教材上无溶解性差异的实验探究,只在书本P52出现的表格中有水溶性的比较,显示两者都易溶,相同温度下,Na2CO3的溶解度大于NaHCO3。

(2)实验方法上的创新:溶解性差异的比较有两种思路,其一是在等量的溶剂中能溶解溶质的质量,其二是等质量的溶质完全溶解所需要溶剂的体积,从不同角度作比较,从定性到半定量的探究。

四、实验原理

等质量(2.0g)的碳酸钠和碳酸氢钠,加入(4mL)水,溶解、振荡、沉降,比较剩余固体量的相对多少,判断溶解量的相对多少,从而得出两种物质溶解性差异;

等质量(1.5g)的碳酸钠和碳酸氢钠完全溶解所要消耗水的体积,通过比较水的体积,得出两种物质溶解性差异,并根据消耗的水量计算溶解度。

五、实验教学目标

宏观辨识与微观探析:物质的溶解过程本质上是构成物质的微粒均匀、稳定地分散在水分子中,并与水分子结合的过程,从微粒角度解析宏观变化。

变化观念与平衡思想:物质的溶解和离子的结合(结晶析出)是一个动态的平衡过程。

证据推理与模型认知:由实验现象推得结论,构建控制变量思想(单因子变量)与实践研究物质性质的模型。

科学探究与创新意识:通过对物质的溶解性差异问题的探究,使学生体验科学探究的过程,学习科学探究的方法及对实验条件的控制,培养学生的科学探究能力、创新能力。

科学精神与社会责任:通过实验,促学生认识到社会实践的科学原理本质,建立解决问题严谨的、实事求是的科学态度和精神。

六、实验教学内容

将“碳酸钠和碳酸氢钠溶解性差异”的探究过程设计为与学生一同探究的实验课,使学生体会科学研究过程,掌握基本研究方法,促进核心素养的形成。

(1)相同温度下,比较相同体积的水所能溶解的固体的质量。

(2)相同温度下,比较相同质量的固体完全溶解所需要的水的体积。

七、实验教学过程:

环节一:实际问题,引发思考。

往充满二氧化碳的矿泉水瓶中加入饱和碳酸钠溶液,振荡、静置后,会析出固体碳酸氢钠(因Na2CO3+H2O+CO2=2NaHCO3),有三方面的原因:反应后溶剂水的质量减少,生成的碳酸氢钠溶质质量增加,碳酸氢钠溶解度比碳酸钠小。像这种在多种因素共同影响下,我们能否通过这个实验得到碳酸氢钠溶解度比碳酸钠小的结论?

图1

环节二:实验方案设计

问题:设计怎样的实验来研究碳酸钠和碳酸氢钠的溶解性差异?

思考1:影响固体物质溶解性的因素有哪些?

溶质、溶剂、温度。

思考2:多变量影响实验结果时,怎样设计能较好地进行研究?

控制变量法。

共同讨论实验方案。

相同温度下,比较相同体积的水所能溶解的固体的质量。

相同温度下,比较相同质量的固体完全溶解所需要的水的体积。

环节三:实验操作(学生分组实验)

实验一、相同温度下,比较相同体积的水所能溶解的固体的质量。

第一步:用托盘天平分别称取2.0g的碳酸钠和碳酸氢钠,于离心试管中。

第二步:同时加入4mL水,溶解、振荡。

第三步:将离心试管置于离心机中,打开开关,3分钟后取出离心试管,比较剩余固体量的相对多少,判断溶解量的相对多少。

实验二、相同温度下,比较相同质量的固体完全溶解所需要的水的体积。

第一步:用托盘天平分别称取1.5g的碳酸钠和碳酸氢钠,于锥形瓶中。

第二步:用滴定管往锥形瓶中滴加蒸馏水,振荡。

第三步:滴加至固体完全溶解,记录所用蒸馏水的体积。

环节四:数据分析,得出结论

从相同质量的溶剂所能溶解的固体质量来分析,碳酸钠的溶解性大于碳酸氢钠。

相同质量的溶质完全溶解所消耗的水的体积来分析,碳酸钠的溶解性大于碳酸氢钠。并根据消耗的水量计算溶解度。与资料上20OC时的溶解度作对比。

图2

环节五:回归问题,联系生产生活实际。

在Na2CO3+H2O+CO2=2NaHCO3反应中,一是溶剂水减少,二是溶质NaHCO3质量增加,三是NaHCO3溶解度相对更小,上述三个原因都有利于碳酸氢钠的析出。侯氏制碱原理中析出碳酸氢钠,而不是碳酸钠的原因就是因为同温下,碳酸氢钠溶解度更小。

结束:实证研究中要注意方案的严密性。上述实验是基于两种物质溶解速率都比较快的模型下设计的比较粗略的实验方案。从定性到半定量还可以进行定量的研究。这样的实验研究真实地解决了我们想当然的问题,正是化学学科的本质所在。

八、实验效果评价

1.实验设计原理。在苏教版化学1教材中对碳酸钠与碳酸氢钠溶解度差异的比较,有的课堂实验呈现是取等质量固体加等量的水,比较溶解情况;有的是借助于往饱和碳酸钠溶液中通入二氧化碳时会析出碳酸氢钠。这个反应有这三方面的原因来分析碳酸氢钠的析出:反应后溶剂水的质量减少,生成的碳酸氢钠溶质质量增加,碳酸氢钠溶解度比碳酸钠小,那么既然有三个因素引起碳酸氢钠的析出,是否能通过这个实验说明碳酸氢钠溶解度更小?教材突出比较了两者的性质,所以溶解性的差异又会被提及,所以设置这样的实验探究背景有利于学生更加形象清晰的认识到碳酸钠比碳酸氢钠更易溶于水,甚至对他们的溶解度也有所认识。通过比较碳酸钠与碳酸氢钠的溶解性差异,为今后认识碳酸盐与碳酸氢盐之间的溶解性差异关系奠定一定的基础,增强了感性的认识,并为“侯氏制碱”原理的理解奠定基础。

2.科学知识的本质。碳酸钠与碳酸氢钠性质在水溶性方面的差异性与微观溶解过程中引起的焓变、熵变以及分子内氢键有关,也体现了物质的宏观性质取决于其微观结构的特点。碳酸(氢)盐溶解性不仅和氢键有关,也和离子键的强度有关,离子键越强越难溶解。对于CaCO3和Ca(HCO3)2等物质,其阳离子价态较高,正电场强,和CO3 2-的吸引力较大,而和HCO3-的吸引力较小,此时离子键强度起主导作用,酸式盐的溶解性好于正盐。而碱金属只有一个单位正电荷,此时氢键的作用就显现出来,使溶解性逆转。而对于很多过渡金属元素,其电子构型(主要是d电子的影响)造成极化能力增强,和CO32-的键有较多共价成分,而难以溶解。

3.探究实验设计模型构建。在问题背景的引导下,学生体验了科学的探究过程,认识了探究性实验的一般过程,也感受到化学思维的严密性与辩证性。通过探究相同体积的水所能溶解的固体的量和溶解相同质量的固体所需水的体积,初步建立了这种辩证思维的模型,有利于以后解决类似的问题。

4.实践与理论相结合。探究碳酸钠与碳酸氢钠溶解性差异实验过程,用实践实证理论,用理论指导实践,科学原理获得需要实践与理论相结合。定性结论获得真实体验,控制变量比较方案设计,实践研究导向科学原理。

钠、镁及其化合物碳酸钠的性质与应用


俗话说,磨刀不误砍柴工。准备好一份优秀的教案往往是必不可少的。教案可以让学生能够听懂教师所讲的内容,帮助高中教师更好的完成实现教学目标。那么如何写好我们的高中教案呢?以下是小编为大家收集的“钠、镁及其化合物碳酸钠的性质与应用”希望对您的工作和生活有所帮助。

第二单元
第2课时碳酸钠的性质与应用
一、学习目标
1.掌握碳酸钠和碳酸氢钠的性质。
2.运用对比实验方法比较碳酸钠和碳酸氢钠的性质。
3.了解碳酸钠和碳酸氢钠在生产、生活中用途。
二、教学重点及难点
重点:碳酸钠和碳酸氢钠的化学性质。
难点:碳酸钠和碳酸氢钠在化学性质上的差异。
三、设计思路
由药片溶于水产生气泡的现象引入钠的碳酸盐,在比较了碳酸钠与碳酸氢钠物理性质的基础上,通过类比碳酸钠与碳酸钙的方法学习碳酸钠的化学性质,进而通过对比实验探究碳酸钠与碳酸氢钠化学性质的异同,利用两者的性质介绍其在生产、生活中的用途,并解释药片溶于水产生气泡的原因。
四、教学过程
[情景导入]用维生素C泡腾片溶于水,药片迅速溶解并产生大量气泡的实验现象,引起学生探究碳酸氢钠性质的兴趣。将主题引导到钠的碳酸盐性质的研究。(注:维生素C泡腾片中含有碳酸氢钠和酒石酸氢钾。)
[板书]Na2CO3,俗名:纯碱。
NaHCO3,俗名:小苏打。
[活动与探究1]取适量的碳酸钠和碳酸氢钠的样品于小烧杯中,进行溶解性实验。
一、碳酸钠和碳酸氢钠的物理性质
Na2CO3:白色固体,可溶于水。
NaHCO3:白色固体,可溶于水。
[过渡]碳酸钠、碳酸氢钠与碳酸钙、碳酸氢钙同为碳酸盐,它们在化学性质上是否会有相似之处呢?现在以碳酸钠为例,进行研究。
[活动与探究2]在两支试管中分别取2~3mL澄清的石灰水和氯化钙溶液,再分别向上述两支试管中滴加碳酸钠溶液,振荡,观察实验现象。学生在实验中训练实验的设计、操作、观察和分析能力。总结出碳酸钠的主要化学性质,并能归纳出碳酸钠与碳酸钙在性质上的异同。
[板书]二、碳酸钠的化学性质
1.能与某些碱反应
Na2CO3+Ca(OH)2=CaCO3↓+2NaOH
2.能与某些盐反应
Na2CO3+CaCl2=CaCO3↓+2NaCl
[活动与探究3]组装如P51实验2的装置,将滴管中的浓盐酸加入瓶中,观察实验现象。
[板书]3.能与某些酸反应
Na2CO3+2HCl=2NaCl+H2O+CO2↑
Na2CO3+CO2+H2O=2NaHCO3
俗名:小苏打
[活动与探究4]用pH计或pH试纸测制得的碳酸钠溶液的pH值。
[活动与探究5]在一只烧杯中加入50mL前面配置好的碳酸钠溶液,用酒精灯加热至接近沸腾。将一小块沾有油污(植物油或动物脂肪)的铜片浸入碳酸钠溶液中,静置约2min。用镊子将铜片从溶液中取出后,用水冲洗干净。与另一块沾有相同油污浸入清水的铜片作比较。
[板书]4.碳酸钠溶液呈碱性。
热的纯碱溶液可以去除物品表面的油污。
[叙述]这是利用了油脂在碱性溶液中发生的水解反应,虽然这个反应很多人都不知道,但是这个反应在生产生活中的应用却十分广泛。比如碳酸钠可以用来制肥皂、洗涤剂等,就是利用了它的去污能力。
[设问]碳酸钙和碳酸氢钙之间怎样实现相互转换呢?
[思考与讨论]学生可能回答:碳酸钙与二氧化碳、水反应生成碳酸氢钙,碳酸氢钙受热分解转换成碳酸钙。
[设问]碳酸钠和碳酸氢钠之间怎样实现相互转换呢?
[思考与讨论]学生可能回答:碳酸钠与二氧化碳、水反应生成碳酸氢钠,但是碳酸氢钠受热分解的反应还不知道。
[叙述]碳酸氢钠与碳酸氢钙的化学性质相似,受热时也会分解为正盐、水和二氧化碳,请大家自行写出反应方程式。
[板书]
[活动与探究]学生根据“活动与探究”中给出的“碳酸钠与碳酸氢钠的性质比较”表格中的信息,设计实验方案辨别未知的白色固体粉末是碳酸钠还是碳酸氢钠。
[过渡]我们已经知道了碳酸钠和碳酸氢钠的有关性质,现在可以解决课前的那个小实验的现象了吗?
[思考与讨论]学生可能要求查看维C泡腾片的说明书,在获得有关成分信息后进行判断。还可能例举出生活中其他的类似现象,比如服用含有碳酸氢钠的胃药后会出现打嗝的现象等。
[过渡]碳酸钠和碳酸氢钠在生产、生活中还有其他用途吗?
[叙述]四、碳酸钠的应用
重要的用途之一是制造玻璃。在工业发达的国家,用于生产玻璃的纯碱量,约占纯碱生产总量的40~50%。
在化学工业方面,纯碱可以用作染料、有机合成的原料;在冶金工业方面,可以用于冶炼钢铁、铝和其它有色金属;在国防工业方面,可以用于生产TNT及60%的胶质炸药。
另外,在化肥、农药、造纸、印染、搪瓷、医药等产业也必不可少,特别在生活中,是人们发面做馒头的必需品。
[叙述]五、碳酸氢钠的用途
利用碳酸氢钠受热分解的性质,可以在制糕点的时候做发泡剂,也可利用能与酸反应的性质,用来治疗胃酸过多。
[练习]
1.下列物质露置在空气中,不能吸收CO2的是()
A.Na2CO3B.NaOHC.NaHCO3D.Na2O
答案:C。
2.下列关于Na2CO3固体和NaHCO3固体性质的有关叙述中正确的是()
A.在水中溶解性:Na2CO3>NaHCO3B.热稳定性:Na2CO3>NaHCO3
C.与相同浓度的盐酸反应的速度:Na2CO3<NaHCO3
D.Na2CO3与NaHCO3相互转化的反应是可逆反应
答案:BC。
3.相同物质的量的碳酸钠和碳酸氢钠分别与过量盐酸反应,下列说法中正确的是()
A.碳酸钠放出CO2多B.碳酸氢钠放出CO2多
C.碳酸钠消耗盐酸多D.碳酸氢钠消耗盐酸多
答案:C。
4.将Na2CO3和NaHCO3的混合物加强热,将生成的气体通入足量的石灰水中,生成CaCO320.0g,将残留物加足量盐酸时,生成CO2气体11.0g。试计算原混合物中含Na2CO3、NaHCO3的质量各为多少克?
答案:m(Na2CO3)=5.3gm(NaHCO3)=33.6g

碳酸钠的性质与应用


为了促进学生掌握上课知识点,老师需要提前准备教案,准备教案课件的时刻到来了。在写好了教案课件计划后,新的工作才会如鱼得水!你们知道哪些教案课件的范文呢?以下是小编为大家收集的“碳酸钠的性质与应用”但愿对您的学习工作带来帮助。

班级:高一()班姓名: 学号:成绩:
专题二:第二单元钠镁及其化合物
碳酸钠的性质与应用
【学海导航】1.碳酸钠的性质
2.Na2CO3与NaHCO3的性质与比较
3.侯制碱法
【主干知识】一.碳酸钠的性质
碳酸钠俗名___________或__________,____色_________状;碳酸钠晶体含结晶水,化学式为________________,在空气里碳酸钠晶体很容易_____________,并逐渐碎裂成粉末.
【实验探究1】在两支洁净的试管中分别加入2~3ml澄清石灰水和氯化钙溶液,再分别向上述两支试管中滴加碳酸钠溶液,振荡,观察实验现象.
现象_________________________________________________________
反应方程式______________________________________________________
______________________________________________________
【实验探究2】按图组装仪器,将滴管中的浓盐酸加入瓶中,观察实验现象.
现象____________________________________________________________
反应方程式______________________________________________________
【实验探究3】用pH试纸测定碳酸钠溶液的pH.
现象_____________________________________________________________
结论_____________________________________________________________
【实验探究4】在一只烧杯中加入50ml0.5molL-1碳酸钠溶液,用酒精灯将碳酸钠溶液加热至接近沸腾.将一块油污的铜片浸入碳酸钠溶液中,静置约2min.用镊子将铜片从溶液中取出后,用水冲洗干净.比较浸入碳酸钠溶液前后铜片表面的情况.
现象_____________________________________________________________
结论_____________________________________________________________
【问题】碳酸钠被称为“纯碱”的原因是什么?
_________________________________________________________________
_________________________________________________________________
碳酸钠在一定条件下,可以与碳酸氢钠相互转化
反应方程式分别为
______________________________________________________

______________________________________________________

二.Na2CO3与NaHCO3的性质与应用比较

碳酸钠碳酸氢钠
组成
俗名
晶体色态
溶解性
热稳定性
与酸反应

与BaCl2
水溶液碱性
主要用途

三.侯氏制碱法原理
工业上以_____________为原料生产纯碱
将__________通入____________的__________饱和溶液中,使溶解度较小的碳酸氢钠从溶液中析出,反应方程式
___________________________________________________________
过滤得到碳酸氢钠晶体,碳酸氢钠受热分解生成碳酸钠
过滤后的母液中加入氯化钠粉末、通入氨气,搅拌,经降温后副产品氯化铵晶体析出.

【巩固练习】
题号12345678910
答案
1、下列物质热稳定性最好的是
A.石灰石B.小苏打C.纯碱D.碳铵
2、下列各物质中的杂质(括号内)可用加热的方法除去的是
A.Na2O2(Na2O)B.NaHCO3(Na2CO3)
C.Na2O(NaOH)D.NaOH(Na2CO3)
3、一般情况下,将下列物质置于空气中,不发生变化的是
A.Na2CO310H2OB.NaOHC.Na2CO3D.Na2O

4、质量相等的NaHCO3和Na2CO3混合物共有a克,加热一段时间后质量变为b克,当NaHCO3完全分解时,b值为
A.53a/168B.137a/168C.53a/84D.159a/190

5、在甲,乙两坩埚中分别盛有等质量的NaHCO3固体,将甲坩埚充分加热后冷却,再加入足量盐酸,乙不经加热也加入足量盐酸,反应完全后,甲,乙两坩埚中实际参加反应的盐酸的质量比为
A、1∶1.5B、1∶1C、1∶2D、2∶1
6、可用于判断NaHCO3粉末中混有Na2CO3的实验方法是
A.加热时有无气体放出B.滴加盐酸时有无气泡放出
C.溶于水后滴加氯化钡稀溶液,有白色沉淀生成
D.溶于水后滴加澄清石灰水,有白色沉淀生成

7、除去Na2CO3固体中混有的少量NaHCO3的最佳方法是
A、加入适量盐酸B、加入NaOH溶液
C、加热灼烧D、配成溶液后通入CO2
8、在一定温度下,向足量的饱和Na2CO3中加入1.06g无水Na2CO3,搅拌后靜置,最终所得晶体的质量为
A、等于1.06gB、等于2.86g
C、大于1.06g而小于2.86gD、大于2.86g
※9、下列实验操作最终可得无色透明溶液的是
A、过量CO2通入饱和Na2CO3溶液中
B、过量CO2通入澄清石灰水中
C、将少量的钠投入到饱和的NaHCO3溶液中
D、少量的钠投入到饱和Na2CO3溶液中
※10、有甲、乙、丙三种溶液。甲溶液中加入Na2CO3溶液有白色沉淀生成,再加入乙溶液,沉淀溶解并有气体放出,再加入丙溶液,又有白色沉淀生成。则甲、乙、丙三种溶液依次是
A.CaCl2、稀HNO3、BaCl2三种溶液B.CaCl2、稀Na2SO4、K2SO4三种溶液
C.BaCl2、稀HNO3、Na2SO4三种溶液D.CaCl2、稀HCl、Ba(NO3)2三种溶液
11、通常用盛有饱和NaHCO3溶液的洗气瓶来除去混杂在CO2中的HCl气体,写出反应的方程式。不允许采用NaOH溶液的原因是,也不允许采用饱和Na2CO3溶液的原因是_______________。

12、把AgNaHCO3固体加热分解一段时间后,固体质量变为Bg。求:
(1)未分解的NaHCO3的质量和生成的Na2CO3的质量。
(2)当B为多少时,表明NaHCO3完全分解。

13、有一种白色粉末是无水碳酸钠和碳酸氢钠的混合物,称取0.442g灼烧至恒重,把放出的气体通入足量澄清石灰水中,生成0.2g沉淀,灼烧后的残渣能与30mL盐酸恰好完全反应。试求:(1)原混合物中各物质的质量。(2)所用盐酸的物质的量浓度。

高三物理一轮复习学案:磁场


20xx届高三物理一轮复习学案:磁场
教学目标
1.了解磁场的产生和基本特性,加深对场的客观性、物质性的理解。
2.通过磁场与电场的联系,进一步使学生了解和探究看不见、摸不着的场的作用的方法.掌握描述磁场的各种物理量。
3.掌握安培力的计算方法和左手定则的使用方法和应用。
4.使学生掌握带电粒子在匀强磁场中做匀速圆周运动的规律。
5.培养学生应用平面几何知识解决物理问题的能力。
6.进行理论联系实际的思想教育。
教学重点、难点分析
1.对磁感强度、磁通量的物理意义的理解及它们在各种典型磁场中的分布情况。
2.对安培力和电磁力矩的大小、方向的分析。
3.如何确定圆运动的圆心和轨迹。
4.如何运用数学工具解决物理问题。
教学过程设计
一、基本概念
1.磁场的产生
(1)磁极周围有磁场。
(2)电流周围有磁场(奥斯特)。
安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。(不等于说所有磁场都是由运动电荷产生的。)
(3)变化的电场在周围空间产生磁场(麦克斯韦)。
磁场是一种特殊的物质,我们看不到,但可以通过它的作用效果感知它的存在,并对它进行研究和描述。它的基本特征是对处于其中的通电导线、运动电荷或磁体的磁极能施加力的作用。磁现象的电本质是指所有磁现象都可归纳为:运动电荷之间通过磁场而发生的相互作用。
2.磁场的基本性质
磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。这一点应该跟电场的基本性质相比较。
3.磁感应强度
电场和磁场都是无法直接看到的物质。我们在描述电场时引入电场强度E这个物理量,描述磁场则是用磁感应强度B。研究这两个物理量采用试探法,即在场中引入试探电荷或试探电流元,研究电磁场对它们的作用情况,从而判定场的分布情况。试探法是一种很好的研究方法,它能帮助我们研究一些因无法直接观察或接近而感知的物质,如电磁场。
磁感强度的定义式为:B=F/IL(条件是匀强磁场中,或ΔL很小,并且L⊥B)
其中电流元(IL)受的磁场力的大小与电流方向相关。因此采用电流与磁场方向垂直时受的最大力F来定义B。
研究电场、磁场的基本方法是类似的。但磁场对电流的作用更复杂一些,涉及到方向问题。我们分析此类问题时要多加注意。
磁感应强度B的单位是特斯拉,符号为T,1T=1N/(Am)=1kg/(As2)
磁感强度矢量性:磁感强度是描述磁场的物理量。因此它的大小表征了磁场的强弱,而它的方向,也就是磁场中某点小磁针静止时N极的指向,则代表该处磁场的方向。同时,它也满足矢量叠加的原理:若某点的磁场几个场源共同形成,则该点的磁感强度为几个场源在该点单独产生的磁感强度的矢量和。
4.磁感线
(1)用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N极的指向。磁感线的疏密表示磁场的强弱。
特点:磁体外方向N极指向S极(内部反之)。
(2)磁感线是封闭曲线(和静电场的电场线不同)。
(3)要熟记常见的几种磁场的磁感线:
(4)安培定则(右手螺旋定则):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。
【例题1】如图所示,两根垂直纸面平行放置的直导线A、C由通有等大电流,在纸面上距A、C等远处有一点P。若P点磁感强度及方向水平向左,则导线A、C中的电流方向是如下哪种说法?
A.A中向纸里,C中向纸外
B.A中向纸外,C中向纸里
C.A、C中均向纸外
D.A、C中均向纸里
5.磁通量
如果在磁感应强度为B的匀强磁场中有一个与磁场方向垂直的平面,其面积为S,则定义B与S的乘积为穿过这个面的磁通量,用U表示。U是标量,但是有方向(进该面或出该面)。单位为韦伯,符号为Wb。1Wb=1Tm2=1Vs=1kgm2/(As2)。
穿过磁场中某一面积的磁感线条数称为穿过这一面积的磁通量。定义式为:U=BS⊥(S⊥为垂直于B的面积)。磁感强度是描述磁场某点的性质,而磁通量是描述某一面积内磁场的性质。由B=U/S⊥可知磁感强度又可称为磁通量密度。在匀强磁场中,当B与S的夹角为α时,有U=BSsinα。
【例题2】如图所示,在水平虚线上方有磁感强度为2B,方向水平向右的匀强磁场,水平虚线下方有磁感强度为B,方向水平向左的匀强磁场。边长为L的正方形线圈放置在两个磁场中,线圈平面与水平面成α角,线圈处于两磁场中的部分面积相等,则穿过线圈平面的磁通量大小为多少?
分析:注意到B与S不垂直,应把S投影到与B垂直的方向上;水平虚线上下两部分磁场大小与方向的不同。应求两部分磁通量按标量叠加,求代数和。
解:(以向右为正)U=U1+U2=[(2BL2/2)-(BL2/2)]sinα=BL2sinα/2
二、安培力(磁场对电流的作用力)
讨论如下几种情况安培力的大小计算,并用左手定则对其方向进行判断。
安培力大小:F=B⊥IL.B⊥为磁感强度与电流方向垂直分量。
方向:左手定则(内容略)。注意安培力总是与磁场方向和电流方向决定的平面垂直(除了二者平行,安培力为0的情况)。
1.安培力方向的判定
(1)用左手定则。
(2)用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。
(3)用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁)。
只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则判定。
【例题3】如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?
解:先画出导线所在处的磁感线,上下两部分导线所受安培力的方向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转90°后平移)。分析的关键是画出相关的磁感线。
【例题4】条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会(增大、减小还是不变?)。水平面对磁铁的摩擦力大小为。
解:本题有多种分析方法。(1)画出通电导线中电流的磁场中通过两极的那条磁感线(如图中粗虚线所示),可看出两极受的磁场力的合力竖直向上。磁铁对水平面的压力减小,但不受摩擦力。(2)画出条形磁铁的磁感线中通过通电导线的那一条(如图中细虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。(3)把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。
【例题5】如图在条形磁铁N极附近悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转?
解:用“同向电流互相吸引,反向电流互相排斥”最简单:条形磁铁的等效螺线管的电流在正面是向下的,与线圈中的电流方向相反,互相排斥,而左边的线圈匝数多所以线圈向右偏转。(本题如果用“同名磁极相斥,异名磁极相吸”将出现判断错误,因为那只适用于线圈位于磁铁外部的情况。)
【例题6】电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。该时刻由里向外射出的电子流将向哪个方向偏转?
解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠电子流的一侧为向外。电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。(本题用其它方法判断也行,但不如这个方法简洁)。
2.安培力大小的计算
F=BLIsinα(α为B、L间的夹角)高中只要求会计算α=0(不受安培力)和α=90°两种情况。
【例题7】如图所示,光滑导轨与水平面成α角,导轨宽L。匀强磁场磁感应强度为B。金属杆长也为L,质量为m,水平放在导轨上。当回路总电流为I1时,金属杆正好能静止。求:(1)B至少多大?这时B的方向如何?(2)若保持B的大小不变而将B的方向改为竖直向上,应把回路总电流I2调到多大才能使金属杆保持静止?
解:画出金属杆的截面图。由三角形定则可知,只有当安培力方向沿导轨平面向上时安培力才最小,B也最小。根据左手定则,这时B应垂直于导轨平面向上,大小满足:BI1L=mgsinα,B=mgsinα/I1L。
当B的方向改为竖直向上时,这时安培力的方向变为水平向右,沿导轨方向合力为零,得BI2Lcosα=mgsinα,I2=I1/cosα。(在解这类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方向,从而弄清各矢量方向间的关系)。
【例题8】如图所示,质量为m的铜棒搭在U形导线框右端,棒长和框宽均为L,磁感应强度为B的匀强磁场方向竖直向下。电键闭合后,在磁场力作用下铜棒被平抛出去,下落h后落在水平面上,水平位移为s。求闭合电键后通过铜棒的电荷量Q。
解:闭合电键后的极短时间内,铜棒受安培力向右的冲量FΔt=mv0而被平抛出去,其中F=BIL,而瞬时电流和时间的乘积等于电荷量Q=IΔt,由平抛规律可算铜棒离开导线框时的初速度,最终可得。
三、洛伦兹力
1.洛伦兹力
运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的微观表现。
公式的推导:如图所示,整个导线受到的磁场力(安培力)为F安=BIL;其中I=nesv;设导线中共有N个自由电子N=nsL;每个电子受的磁场力为F,则F安=NF。由以上四式可得F=qvB。条件是v与B垂直。当v与B成θ角时,F=qvBsinθ。
2.洛伦兹力方向的判定
在用左手定则时,四指必须指电流方向(不是速度方向),即正电荷定向移动的方向;对负电荷,四指应指负电荷定向移动方向的反方向。
【例题9】磁流体发电机原理图如右。等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。该发电机哪个极板为正极?两板间最大电压为多少?
解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。所以上极板为正。正、负极板间会产生电场。当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:U=Bdv。当外电路断开时,这也就是电动势E。当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将发生偏转。这时电动势仍是E=Bdv,但路端电压将小于Bdv。
在定性分析时特别需要注意的是:
(1)正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。
(2)外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于Bdv,但电动势不变(和所有电源一样,电动势是电源本身的性质。)
(3)注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。在外电路断开时最终将达到平衡态。
【例题10】半导体靠自由电子(带负电)和空穴(相当于带正电)导电,分为p型和n型两种。p型半导体中空穴为多数载流子;n型半导体中自由电子为多数载流子。用以下实验可以判定一块半导体材料是p型还是n型:将材料放在匀强磁场中,通以图示方向的电流I,用电压表比较上下两个表面的电势高低,若上极板电势高,就是p型半导体;若下极板电势高,就是n型半导体。试分析原因。
解:分别判定空穴和自由电子所受的洛伦兹力的方向,由于四指指电流方向,都向右,所以洛伦兹力方向都向上,它们都将向上偏转。p型半导体中空穴多,上极板的电势高;n型半导体中自由电子多,上极板电势低。
注意:当电流方向相同时,正、负离子在同一个磁场中的所受的洛伦兹力方向相同,所以偏转方向相同。
3.洛伦兹力大小的计算
带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,由此可以推导出该圆周运动的半径公式和周期公式:,。
【例题11】如图直线MN上方有磁感应强度为B的匀强磁场。正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?
解:正负电子的半径和周期是相同的。只是偏转方向相反。先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。所以两个射出点相距2r,由图还看出经历时间相差2T/3。答案为射出点相距,时间差为。关键是找圆心、找半径和用对称。
【例题12】一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。求匀强磁场的磁感应强度B和射出点的坐标。
解:由射入、射出点的半径可找到圆心O/,并得出半径为,;射出点坐标为(0,)。
四、带电粒子在匀强磁场中的运动
1.带电粒子在匀强磁场中运动规律
初速度力的特点运动规律
v=0f洛=0静止
v//Bf洛=0匀速直线运动
v⊥Bf洛=Bqv匀速圆周运动,半径,周期

v与B成θ角f洛=Bqv⊥(0<θ<90°)较复杂的曲线运动,高中阶段不要求
2.带电粒子在匀强磁场中的偏转
(1)穿过矩形磁场区。一定要先画好辅助线(半径、速度及延长线)。偏转角由sinθ=L/R求出。侧移由R2=L2-(R-y)2解出。经历时间由得出。
注意,这里射出速度的反向延长线与初速度延长线的交点不再是宽度线段的中点,这点与带电粒子在匀强电场中的偏转结论不同!
(2)穿过圆形磁场区。画好辅助线(半径、速度、轨迹圆的圆心、连心线)。偏角可由求出。经历时间由得出。
注意:由对称性,射出线的反向延长线必过磁场圆的圆心。
3.解题思路及方法
电荷在洛仑兹力的作用下做匀速圆周运动,圆运动的圆心的确定方法:
(1)利用洛仑兹力的方向永远指向圆心的特点,只要找到圆运动两个点上的洛仑兹力的方向,其延长线的交点必为圆心。
(2)利用圆上弦的中垂线必过圆心的特点找圆心。
【例题13】氘核、氚核、氦核都垂直磁场方向射入同一匀强磁场,求以下几种情况下,它们轨道半径之比及周期之比各是多少?(1)以相同速率射入磁场;(2)以相同动量射入磁场;(3)以相同动能射入磁场。
解:因为带电粒子在同一匀强磁场中做匀速圆周运动,所以圆运动的半径,周期。
(1)因为三粒子速率相同,所以,,有,
(2)因为三粒子动量相同,所以,,有,
(3)因为三粒子初动能相同,所以,,有,
通过例题复习基本规律。由学生完成,注意公式变换。
【例题14】如图所示,abcd为绝缘挡板围成的正方形区域,其边长为L,在这个区域内存在着磁感应强度大小为B,方向垂直纸面向里的匀强磁场.正、负电子分别从ab挡板中点K,沿垂直挡板ab方向射入场中,其质量为m,电量为e。若从d、P两点都有粒子射出,则正、负电子的入射速度分别为多少?(其中bP=L/4)
做题过程中要特别注意分析圆心是怎样确定的,利用哪个三角形解题。
提问:1.怎样确定圆心?2.利用哪个三角形求解?
学生自己求解。
(1)分析:若为正电子,则初态洛仑兹力方向为竖直向上,该正电子将向上偏转且由d点射出.Kd线段为圆轨迹上的一条弦,其中垂线与洛仑兹力方向延长线交点必为圆心,设该点为O1.其轨迹为小于1/4的圆弧。
解:如图所示,设圆运动半径为R1,则O1K=O1d=R1
由Rt△O1da可知:


(2)解:若为负电子,初态洛仑兹力方向竖直向下,该电子将向下偏转由P点射出,KP为圆轨迹上的一条弦,其中垂线与洛仑兹力方向的交点必为圆心,设该点为O2,其轨迹为大于1/4圆弧。(如图所示)
由Rt△KbP可知:


【例题15】一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径。重力忽略不计。
提问:
1.带电质点的圆运动半径多大?
2.带电质点在磁场中的运动轨迹有什么特点?
3.在xy平面内什么位置加一个圆形磁场可使带电质点按题意运动?其中有什么样特点的圆形磁场为半径最小的磁场?常见错误:
加以aM和bN连线交点为圆心的圆形磁场,其圆形磁场最小半径为R。
分析:带电质点在磁场中做匀速圆周运动,其半径为
因为带电质点在a、b两点速度方向垂直,所以带电质点在磁场中运动轨迹为1/4圆弧,O1为其圆心,如图所示MN圆弧。
在xy平面内加以MN连线为弦,且包含MN圆弧的所有圆形磁场均可使带电质点完成题意运动。其中以MN连线为半径的磁场为最小圆形磁场。
解:设圆形磁场的圆心为O2点,半径为r,则由图知:
因为,所以
小结:这是一个需要逆向思维的问题,同时考查了空间想象能力,即已知粒子运动轨迹,求所加圆形磁场的位置。考虑问题时,要抓住粒子运动特点,即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的1/4圆弧必须包含在磁场区域中,且圆运动起点、终点必须是磁场边界上的点。然后再考虑磁场的最小半径。
【例题16】在真空中,半径为r=3×10-2m的圆形区域内,有一匀强磁场,磁场的磁感应强度为B=0.2T,方向如图所示,一带正电粒子,以初速度v0=106m/s的速度从磁场边界上直径ab一端a点处射入磁场,已知该粒子荷质比为q/m=108C/kg,不计粒子重力,则(1)粒子在磁场中匀速圆周运动的半径是多少?(2)若要使粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应如何(以v0与Oa的夹角θ表示)?最大偏转角多大?
问题:
1.第一问由学生自己完成。
2.在图中画出粒子以图示速度方向入射时在磁场中运动的轨迹图,并找出速度的偏转角。
3.讨论粒子速度方向发生变化后,粒子运动轨迹及速度偏转角的比。
分析:(1)圆运动半径可直接代入公式求解。
(2)先在圆中画出任意一速度方偏转角为初速度与未速度的夹角,且偏转角等于粒子运动轨迹所对应的圆心角。向入射时,其偏转角为哪个角?如图所示。由图分析知:弦ac是粒子轨迹上的弦,也是圆形磁场的弦。
因此,弦长的变化一定对应速度偏转角的变化,也一定对应粒子圆运动轨迹的圆心角的变化。所以当弦长为圆形磁场直径时,偏转角最大。
解:(1)设粒子圆运动半径为R,则
(2)由图知:弦长最大值为ab=2r=6×10-2m
设速度偏转角最大值为αm,此时初速度方向与ab连线夹角为θ,则
,故
当粒子以与ab夹角为37°斜向右上方入射时,粒子飞离磁场时有最大偏转角,其最大值为74°。
小结:本题所涉及的问题是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使得粒子运动轨迹的长短和位置均发生变化,要会灵活运用平面几何知识去解决.
计算机演示:(1)随粒子入射速度方向的变化,粒子飞离磁场时速度偏转角的变化。(2)随粒子入射速度方向的变化,粒子做匀速圆周运动的圆心的运动轨迹。其轨迹为以a点为圆心的一段圆弧。
【例题17】如图所示,很长的平行边界面M、N与N、P间距分别为L1、L2,其间分别有磁感应强度为B1与B2的匀强磁场区,磁场方向均垂直纸面向里.已知B1≠B2,一个带正电的粒子电量为q,质量为m,以大小为v0。的速度垂直边界面M与磁场方向射入MN间磁场区,试讨论粒子速度v0应满足什么条件,才能通过两个磁场区,并从边界面P射出?(不计粒子重力)
问题:
1.该粒子在两磁场中运动速率是否相同?
2.什么是粒子运动通过磁场或不通过磁场的临界条件?
3.画出轨迹草图并计算。
分析:带电粒子在两磁场中做半径不同的匀速圆周运动,但因为洛仑兹力永远不做功,所以带电粒子运动速率不变.粒子恰好不能通过两磁场的临界条件是粒子到达边界P时,其速度方向平行于边界面。粒子在磁场中轨迹如图所示。再利用平面几何和圆运动规律即可求解。
解:如图所示,设O1、O2分别为带电粒子在磁场B1和B2中运动轨迹的圆心。则
在磁场B1中运动的半径为
在磁场B2中运动的半径为
设角α、β分别为粒子在磁场B1和B2中运动轨迹所对应圆心角,则由几何关系知
,,且α+β=90°
所以
若粒子能通过两磁场区,则
小结:
1.洛仑兹力永远不做功,因此磁场中带电粒子的动能不变。
2.仔细审题,挖掘隐含条件。
【例题18】在M、N两条长直导线所在的平面内,一带电粒子的运动轨迹,如图所示.已知两条导线M、N只有一条中有恒定电流,另一条导线中无电流,关于电流、电流方向和粒子带电情况及运动方向,可能是
A.M中通有自上而下的恒定电流,带正电的粒子从b点向a点运动
B.M中通有自上而下的恒定电流,带负电的粒子从a点向b点运动
C.N中通有自下而上的恒定电流,带正电的粒子从b点向a点运动
D.N中通有自下而上的恒定电流,带负电的粒子从a点向b点运动
让学生讨论得出结果。很多学生会选择所有选项,或对称选择A、D(或B、C)。前者是因为没有考虑直线电流在周围产生非匀强磁场,带电粒子在其中不做匀速圆周运动。后者是在选择过程中有很强的猜测成分。
分析:两根直线电流在周围空间产生的磁场为非匀强磁场,靠近导线处磁场强,远离导线处磁场弱。所以带电粒子在该磁场中不做匀速圆周运动,而是复杂曲线运动。因为带电粒子在运动中始终只受到洛仑兹力作用,所以可以定性使用圆运动半径规律R=mv/Bq。由该规律知,磁场越强处,曲率半径越小,曲线越弯曲;反之,曲线弯曲程度越小。
解:选项A、B正确。
小结:这是一道带电粒子在非匀强磁场中运动的问题,这时粒子做复杂曲线运动,不再是匀速圆周运动。但在定性解决这类问题时可使用前面所分析的半径公式。洛仑兹力永远不做功仍成立。
五、带电粒子在混合场中的运动
1.速度选择器
正交的匀强磁场和匀强电场组成速度选择器。带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。否则将发生偏转。这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq,。在本图中,速度方向必须向右。
(1)这个结论与离子带何种电荷、电荷多少都无关。
(2)若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。
【例题19】某带电粒子从图中速度选择器左端由中点O以速度v0向右射去,从右端中心a下方的b点以速度v1射出;若增大磁感应强度B,该粒子将打到a点上方的c点,且有ac=ab,则该粒子带___电;第二次射出时的速度为_____。
解:B增大后向上偏,说明洛伦兹力向上,所以为带正电。由于洛伦兹力总不做功,所以两次都是只有电场力做功,第一次为正功,第二次为负功,但功的绝对值相同。,故。
【例题20】如图所示,一个带电粒子两次以同样的垂直于场线的初速度v0分别穿越匀强电场区和匀强磁场区,场区的宽度均为L偏转角度均为α,求E∶B
解:分别利用带电粒子的偏角公式。在电场中偏转:
,在磁场中偏转:,由以上两式可得。可以证明:当偏转角相同时,侧移必然不同(电场中侧移较大);当侧移相同时,偏转角必然不同(磁场中偏转角较大)。
2.带电微粒在重力、电场力、磁场力共同作用下的运动
(1)带电微粒在三个场共同作用下做匀速圆周运动。必然是电场力和重力平衡,而洛伦兹力充当向心力。
【例题21】一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速圆周运动。则该带电微粒必然带_____,旋转方向为_____。若已知圆半径为r,电场强度为E磁感应强度为B,则线速度为_____。
解:因为必须有电场力与重力平衡,所以必为负电;由左手定则得逆时针转动;再由
(2)与力学紧密结合的综合题,要认真分析受力情况和运动情况(包括速度和加速度)。必要时加以讨论。
【例题22】质量为m带电量为q的小球套在竖直放置的绝缘杆上,球与杆间的动摩擦因数为μ。匀强电场和匀强磁场的方向如图所示,电场强度为E,磁感应强度为B。小球由静止释放后沿杆下滑。设杆足够长,电场和磁场也足够大,求运动过程中小球的最大加速度和最大速度。
解:不妨假设设小球带正电(带负电时电场力和洛伦兹力都将反向,结论相同)。刚释放时小球受重力、电场力、弹力、摩擦力作用,向下加速;开始运动后又受到洛伦兹力作用,弹力、摩擦力开始减小;当洛伦兹力等于电场力时加速度最大为g。随着v的增大,洛伦兹力大于电场力,弹力方向变为向右,且不断增大,摩擦力随着增大,加速度减小,当摩擦力和重力大小相等时,小球速度达到最大。
若将磁场的方向反向,而其他因素都不变,则开始运动后洛伦兹力向右,弹力、摩擦力不断增大,加速度减小。所以开始的加速度最大为;摩擦力等于重力时速度最大,为。