88教案网

你的位置: 教案 > 高中教案 > 导航 > 高考物理第一轮考纲知识复习:牛顿运动定律的综合运用

高中牛顿第一定律教案

发表时间:2021-02-18

高考物理第一轮考纲知识复习:牛顿运动定律的综合运用。

古人云,工欲善其事,必先利其器。高中教师要准备好教案,这是教师工作中的一部分。教案可以更好的帮助学生们打好基础,帮助高中教师有计划有步骤有质量的完成教学任务。你知道怎么写具体的高中教案内容吗?为此,小编从网络上为大家精心整理了《高考物理第一轮考纲知识复习:牛顿运动定律的综合运用》,欢迎大家与身边的朋友分享吧!

第3节牛顿运动定律的综合运用
【考纲知识梳理】
一、超重与失重
1、真重与视重。
如图所示,在某一系统中(如升降机中)用弹簧秤测某一物体的重力,悬于弹簧秤挂钩下的物体静止时受到两个力的作用:地球给物体的竖直向下的重力mg和弹簧秤挂钩给物体的竖直向上的弹力F,这里,mg是物体实际受到的重力,称力物体的真重;F是弹簧秤给物体的弹力,其大小将表现在弹簧秤的示数上,称为物体的视重。
2、超重与失重
(1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F(或对悬挂物的拉力)大于物体的重力,即F=mg+ma;
(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg,即FN=mg-ma,
(3)当a=g时,FN=0,即物体处于完全失重。
二、整体法和隔离法
1、整体法:连接体和各物体如果有共同的加速度,求加速度可把连接体作为一个整体,运用牛顿第二定律列方程求解。
2、隔离法:如果要求连接体之间的相互作用力,必须隔离出其中一个物体,对该物体应用牛顿第二定律求解。
【要点名师透析】
一、对超重、失重问题的理解
1.尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量即ay≠0,物体就会出现超重或失重状态.当ay方向竖直向上时,物体处于超重状态;当ay方向竖直向下时,物体处于失重状态.
2.尽管整体没有竖直方向的加速度,但只要物体的一部分具有竖直方向的分加速度,整体也会出现超重或失重状态.
3.超重并不是说重力增加了,失重并不是说重力减小了,完全失重也不是说重力完全消失了.在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生变化.
4.在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如天平失效、浸在水中的物体不再受浮力、液体柱不再产生向下的压强等.
【例1】物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a,如图所示.在物体始终相对于斜面静止的条件下,下列说法中正确的是()
A.当θ一定时,a越大,斜面对物体的正压力越小
B.当θ一定时,a越大,斜面对物体的摩擦力越大
C.当a一定时,θ越大,斜面对物体的正压力越小
D.当a一定时,θ越大,斜面对物体的摩擦力越小
【答案】BC
【详解】
解析:解法一:物体放在斜面上,受到三个力作用:重力mg、斜面的支持力FN和静摩擦力F,如图所示.由于物体在电梯中,具有与电梯相同的向上加速度,故物体在水平方向上合外力为零,在竖直方向由牛顿运动定律可得:
Ffcosθ=FNsinθFfsinθ+FNcosθ-mg=ma由以上两式解得FN=m(g+a)cosθFf=m(g+a)sinθ由支持力和摩擦力的表达式可判断选项B、C正确.
解法二:在加速度向上的系统中的物体处于超重状态,也就是在该系统中放一静止的物体,受到的重力大小可以认为是m(g+a).然后利用平衡条件进行判断.对于在斜面上的物体,斜面对物体的支持力FN=m(g+a)cosθ.斜面对物体的静摩擦力Ff=m(g+a)sinθ.由支持力和摩擦力的表达式可以判断B、C两项正确.
二、整体法与隔离法的选取原则
1.隔离法的选取原则:若连接体或关联体内各物体的加速度不相同,或者要求出系统内两物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.
2.整体法的选取原则:若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体来分析整体受到的外力,应用牛顿第二定律求出加速度(或其他未知量).
3.整体法、隔离法交替运用原则:若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.
4.涉及隔离法与整体法的具体问题
(1)涉及滑轮的问题,若要求绳的拉力,一般都必须采用隔离法.若绳跨过定滑轮,连接的两物体虽然加速度方向不同,但大小相同.
(2)固定斜面上的连接体问题.这类问题一般多是连接体(系统)各物体保持相对静止,即具有相同的加速度.解题时,一般采用先整体、后隔离的方法.建立坐标系时也要考虑矢量正交分解越少越好的原则,或者正交分解力,或者正交分解加速度.
(3)斜面体(或称为劈形物体、楔形物体)与在斜面体上物体组成的连接体(系统)的问题.当物体具有加速度,而斜面体静止的情况,解题时一般采用隔离法分析.
【例2】如图所示,在光滑的桌面上叠放着一质量为mA=2.0kg的薄木板A和质量为mB=3kg的金属块B.A的长度L=2.0m.B上有轻线绕过定滑轮与质量为mC=1.0kg的物块C相连.B与A之间的动摩擦因数μ=0.10,最大静摩擦力可视为等于滑动摩擦力.忽略滑轮质量及与轴间的摩擦.起始时令各物体都处于静止状态,绳被拉直,B位于A的左端(如图),然后放手,求经过多长时间后B从A的右端脱离(设A的右端距滑轮足够远)(取g=10m/s2).
【答案】4.0s
【详解】以桌面为参考系,令aA表示A的加速度,aB表示B、C的加速度,xA和xB分别表示t时间内A和B移动的距离,则由牛顿定律和匀加速运动的规律可得,
以B、C为研究对象
mCg-μmBg=(mC+mB)aB(3分)
以A为研究对象:μmBg=mAaA(2分)
则由xB=aBt2(2分)
xA=aAt2(2分)
xB-xA=L(2分)
由以上各式,代入数值,可得t=4.0s(2分)
【感悟高考真题】
1.(20xx上海高考物理T16)如图,在水平面上的箱子内,带异种电荷的小球a、b用绝缘细线分别系于上、下两边,处于静止状态。地面受到的压力为,球b所受细线的拉力为。剪断连接球b的细线后,在球b上升过程中地面受到的压力
(A)小于(B)等于(C)等于(D)大于
【答案】选D.
【详解】把箱子以及两小球a、b当做一个整体。静止时地面受到的压力为等于三个物体的总重力.在球b上升过程中,整体中的一部分具有了向上的加速度,根据整体法,,即①;在球b静止时,库仑引力,在球b向上加速时库仑引力,两球接近,库仑引力增加,有:,所以②,根据①②可得.
2.(20xx上海高考物理T19)受水平外力F作用的物体,在粗糙水平面上作直线运动,其图线如图所示,则
(A)在秒内,外力大小不断增大
(B)在时刻,外力为零
(C)在秒内,外力大小可能不断减小
(D)在秒内,外力大小可能先减小后增大
【答案】选CD.
【详解】秒内,F加速运动,,从图像斜率看,这段时间内的加速度减小,所以,秒内,F不断减小,A错误;从图像斜率看在时刻,加速度为零,B错误;在秒内减速运动,若开始时F的方向与a相反,则,从图像斜率看加速度逐渐增大,因此F不断减小,C正确,当F减小到零,反向之后,,当F增大时,加速度a逐渐增大,D正确.
3.(20xx山东高考T24)如图所示,在高出水平地面的光滑平台上放置一质量、由两种不同材料连接成一体的薄板A,其右段长度且表面光滑,左段表面粗糙。在A最右端放有可视为质点的物块B,其质量。B与A左段间动摩擦因数。开始时二者均静止,先对A施加水平向右的恒力,待B脱离A(A尚未露出平台)后,将A取走。B离开平台后的落地点与平台右边缘的水平距离。(取)求:
(1)B离开平台时的速度。
(2)B从开始运动到刚脱离A时,B运动的时间和位移xB
(3)A左端的长度l2
【答案】(1)2m/s(2)0.5s0.5m(3)1.5m
【详解】(1)物块B离开平台后做平抛运动:
(2)物块B与A右端接触时处于静止状态,当B与A左端接触时做匀加速直线运动,设加速度为aB,

(3)A刚开始运动时,A做匀加速直线运动,设加速度为a1,B刚开始运动时,A的速度为v1,加速度为a2,则有。
4、(09广东物理8)某人在地面上用弹簧秤称得体重为490N。他将弹簧秤移至电梯内称其体重,至时间段内,弹簧秤的示数如图所示,电梯运行的v-t图可能是(取电梯向上运动的方向为正)(A)
解析:由图可知,在t0-t1时间内,弹簧秤的示数小于实际重量,则处于失重状态,此时具有向下的加速度,在t1-t2阶段弹簧秤示数等于实际重量,则既不超重也不失重,在t2-t3阶段,弹簧秤示数大于实际重量,则处于超重状态,具有向上的加速度,若电梯向下运动,则t0-t1时间内向下加速,t1-t2阶段匀速运动,t2-t3阶段减速下降,A正确;BD不能实现人进入电梯由静止开始运动,C项t0-t1内超重,不符合题意。
5.(09广东理科基础4)建筑工人用图所示的定滑轮装置运送建筑材料。质量为70.0kg的工人站在地面上,通过定滑轮将20.0kg的建筑材料以0.500m/s2的加速度拉升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g取lOm/s2)(B)
A.510NB.490NC.890ND.910N
解析:对建筑材料进行受力分析。根据牛顿第二定律有,得绳子的拉力大小等于
F=210N,然后再对人受力分析由平衡的知识得,得FN=490N,根据牛顿第三定律可知人对地面间的压力为490N.B对。
6.(09广东理科基础15)搬运工人沿粗糙斜面把一个物体拉上卡车,当力沿斜面向上,大小为F时,物体的加速度为a1;若保持力的方向不变,大小变为2F时,物体的加速度为a2,则(D)
A.al=a2B.a1a22alC.a2=2a1D.a22al
解析:当为F时有,当为2F时有,可知,D对。
7.(09山东22)图示为某探究活动小组设计的节能运动系统。斜面轨道倾角为30°,质量为M的木箱与轨道的动摩擦因数为。木箱在轨道端时,自动装货装置将质量为m的货物装入木箱,然后木箱载着货物沿轨道无初速滑下,与轻弹簧被压缩至最短时,自动卸货装置立刻将货物卸下,然后木箱恰好被弹回到轨道顶端,再重复上述过程。下列选项正确的是(BC)
A.m=M
B.m=2M
C.木箱不与弹簧接触时,上滑的加速度大于下滑的加速度
D.在木箱与货物从顶端滑到最低点的过程中,减少的重力势能全部转化为弹簧的弹性势能
解析:受力分析可知,下滑时加速度为,上滑时加速度为,所以C正确。设下滑的距离为l,根据能量守恒有,得m=2M。也可以根据除了重力、弹性力做功以外,还有其他力(非重力、弹性力)做的功之和等于系统机械能的变化量,B正确。在木箱与货物从顶端滑到最低点的过程中,减少的重力势能转化为弹簧的弹性势能和内能,所以D不正确。
考点:能量守恒定律,机械能守恒定律,牛顿第二定律,受力分析
提示:能量守恒定律的理解及应用。
8.(09山东24)(15分)如图所示,某货场而将质量为m1=100kg的货物(可视为质点)从高处运送至地面,为避免货物与地面发生撞击,现利用固定于地面的光滑四分之一圆轨道,使货物中轨道顶端无初速滑下,轨道半径R=1.8m。地面上紧靠轨道次排放两声完全相同的木板A、B,长度均为l=2m,质量均为m2=100kg,木板上表面与轨道末端相切。货物与木板间的动摩擦因数为1,木板与地面间的动摩擦因数=0.2。(最大静摩擦力与滑动摩擦力大小相等,取g=10m/s2)
(1)求货物到达圆轨道末端时对轨道的压力。
(2)若货物滑上木板4时,木板不动,而滑上木板B时,木板B开始滑动,求1应满足的条件。
(3)若1=0。5,求货物滑到木板A末端时的速度和在木板A上运动的时间。
解析:(1)设货物滑到圆轨道末端是的速度为,对货物的下滑过程中根据机械能守恒定律得,①设货物在轨道末端所受支持力的大小为,根据牛顿第二定律得,②
联立以上两式代入数据得③
根据牛顿第三定律,货物到达圆轨道末端时对轨道的压力大小为3000N,方向竖直向下。
(2)若滑上木板A时,木板不动,由受力分析得④
若滑上木板B时,木板B开始滑动,由受力分析得⑤
联立④⑤式代入数据得⑥。
(3),由⑥式可知,货物在木板A上滑动时,木板不动。设货物在木板A上做减速运动时的加速度大小为,由牛顿第二定律得⑦
设货物滑到木板A末端是的速度为,由运动学公式得⑧
联立①⑦⑧式代入数据得⑨
设在木板A上运动的时间为t,由运动学公式得⑩
联立①⑦⑨⑩式代入数据得。
考点:机械能守恒定律、牛顿第二定律、运动学方程、受力分析
9.(09海南物理15)(9分)一卡车拖挂一相同质量的车厢,在水平直道上以的速度匀速行驶,其所受阻力可视为与车重成正比,与速度无关。某时刻,车厢脱落,并以大小为的加速度减速滑行。在车厢脱落后,司机才发觉并紧急刹车,刹车时阻力为正常行驶时的3倍。假设刹车前牵引力不变,求卡车和车厢都停下后两者之间的距离。
解析:设卡车的质量为M,车所受阻力与车重之比为;刹车前卡车牵引力的大小为,
卡车刹车前后加速度的大小分别为和。重力加速度大小为g。由牛顿第二定律有
设车厢脱落后,内卡车行驶的路程为,末速度为,根据运动学公式有



式中,是卡车在刹车后减速行驶的路程。设车厢脱落后滑行的路程为,有

卡车和车厢都停下来后相距

由①至⑨式得
○10
带入题给数据得
○11
评分参考:本题9分。①至⑧式各1分,○11式1分
10.(09上海物理22)(12分)如图A.,质量m=1kg的物体沿倾角=37的固定粗糙斜面由静止开始向下运动,风对物体的作用力沿水平方向向右,其大小与风速v成正比,比例系数用k表示,物体加速度a与风速v的关系如图B.所示。求:

(1)物体与斜面间的动摩擦因数;(2)比例系数k。
(sin370=0.6,cos370=0.8,g=10m/s2)
解析:(1)对初始时刻:mgsin-mgcos=ma0○1
由图读出a0=4m/s2代入○1式,
解得:=gsin-ma0gcos=0.25;
(2)对末时刻加速度为零:mgsin-N-kvcos=0○2
又N=mgcos+kvsin
由图得出此时v=5m/s
代入○2式解得:k=mg(sin-cos)v(sin+cos=0.84kg/s。
11.(09广东物理20)(17分)如图20所示,绝缘长方体B置于水平面上,两端固定一对平行带电极板,极板间形成匀强电场E。长方体B的上表面光滑,下表面与水平面的动摩擦因数=0.05(设最大静摩擦力与滑动摩擦力相同)。B与极板的总质量=1.0kg.带正电的小滑块A质量=0.60kg,其受到的电场力大小F=1.2N.假设A所带的电量不影响极板间的电场分布。t=0时刻,小滑块A从B表面上的a点以相对地面的速度=1.6m/s向左运动,同时,B(连同极板)以相对地面的速度=0.40m/s向右运动。问(g取10m/s2)
(1)A和B刚开始运动时的加速度大小分别为多少?
(2)若A最远能到达b点,a、b的距离L应为多少?从t=0时刻至A运动到b点时,摩擦力对B做的功为多少?
解析:⑴由牛顿第二定律有
A刚开始运动时的加速度大小方向水平向右
B刚开始运动时受电场力和摩擦力作用
由牛顿第三定律得电场力
摩擦力
B刚开始运动时的加速度大小方向水平向左
⑵设B从开始匀减速到零的时间为t1,则有
此时间内B运动的位移
t1时刻A的速度,故此过程A一直匀减速运动。
此t1时间内A运动的位移
此t1时间内A相对B运动的位移
此t1时间内摩擦力对B做的功为
t1后,由于,B开始向右作匀加速运动,A继续作匀减速运动,当它们速度相等时A、B相距最远,设此过程运动时间为t2,它们速度为v,则有
对A速度
对B加速度
速度
联立以上各式并代入数据解得
此t2时间内A运动的位移
此t2时间内B运动的位移
此t2时间内A相对B运动的位移
此t2时间内摩擦力对B做的功为
所以A最远能到达b点a、b的距离L为
从t=0时刻到A运动到b点时,摩擦力对B做的功为

【考点精题精练】
1.(20xx德州模拟)电梯内的地板上竖直放置一根轻质弹簧,弹簧上方有一质量为m的物体.当电梯静止时弹簧被压缩了x;当电梯运动时弹簧又被压缩了x.试判断电梯运动的可能情况是()
A.以大小为2g的加速度加速上升
B.以大小为2g的加速度减速上升
C.以大小为g的加速度加速上升
D.以大小为g的加速度减速下降
【答案】选C、D.
【详解】物体静止时,kx=mg,当电梯运动时,取向上为正方向,由牛顿第二定律得:2kx-mg=ma,可求出:a=g,方向竖直向上,因此电梯可能以大小为g的加速度加速上升,也可能以大小为g的加速度减速下降,故A、B均错误,C、D正确.
2.(20xx广州模拟)在2009年第11届全运会上,福建女选手郑幸娟以“背越式”成功地跳过了1.95m的高度,成为全国冠军,若不计空气阻力,则下列说法正确的是()
A.下落过程中她处于失重状态
B.起跳以后上升过程她处于超重状态
C.起跳时地面对她的支持力等于她对地面的压力
D.起跳时地面对她的支持力大于她对地面的压力
【答案】选A、C.
【详解】无论是上升过程还是下落过程,运动员的加速度始终向下,所以她处于失重状态,A选项正确,B选项错误;起跳时地面对她的支持力与她对地面的压力为一对作用力与反作用力,大小应相等,C项正确,D项错误.
3.从正在加速上升的气球上落下一个物体,在物体刚离开气球的瞬间,下列说法正确的是()
A.物体向下做自由落体运动
B.物体向上运动,加速度向上
C.物体向上运动,加速度向下
D.物体向上还是向下运动,要看物体离开气球时的速度
【答案】选C.
【详解】刚离开气球瞬间,物体由于惯性保持向上的速度,但由于合外力向下,故加速度方向向下.
4.直升机悬停在空中向地面投放装有救灾物资的箱子,如图所示.设投放初速度为零,箱子所受的空气阻力与箱子下落速度的平方成正比,且运动过程中箱子始终保持图示姿态.在箱子下落过程中,下列说法正确的是()
A.箱内物体对箱子底部始终没有压力
B.箱子刚从飞机上投下时,箱内物体受到的支持力最大
C.箱子接近地面时,箱内物体受到的支持力比刚投下时大
D.若下落距离足够长,箱内物体有可能不受底部支持力“而飘起来”
【答案】C
【详解】以整体为研究对象,根据牛顿第二定律:(M+m)g-kv2=(M+m)a①,设箱内物体受到的支持力FN,以箱内物体为研究对象,有mg-FN=ma②,由①②两式得FN=.通过此式可知,随着下落速度的增大,箱内物体受到的支持力逐渐增大,所以ABD项错误,C项正确.
5.如图所示,光滑水平面上放置质量分别为m和2m的四个木块,其中两个质量为m的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg.现用水平拉力F拉其中一个质量为2m的木块,使四个木块以同一加速度运动,则轻绳对m的最大拉力为()
A.B.C.D.3μmg
【答案】B
【详解】分别对整体右端一组及个体受力分析,运用牛顿第二定律,由整体法、隔离法可得
F=6ma①F-μmg=2ma②μmg-T=ma③由①②③联立可得T=μmg所以B正确.
6.如图甲所示,在粗糙水平面上,物体A在水平向右的外力F的作用下做直线运动,其速度—时间图象如图乙所示,下列判断正确的是
()
A.在0~1s内,外力F不断增大
B.在1s~3s内,外力F的大小恒定
C.在3s~4s内,外力F不断减小
D.在3s~4s内,外力F的大小恒定
【答案】BC
【详解】在0~1s内,物体做匀加速直线运动,外力F恒定,故A错.在1s~3s内,物体做匀速运动,外力F也恒定,B正确.在3s~4s内,物体做加速度增大的减速运动,所以外力F不断减小,C对D错.
7.如图所示,底板光滑的小车上用两个量程为20N,完全相同的弹簧测力计甲和乙系住一个质量为1kg的物块,在水平地面上,当小车做匀速直线运动时,两弹簧测力计的示数均为10N,当小车做匀加速直线运动时,弹簧测力计甲的示数为8N,这时小车运动的加速度大小是
()
A.2m/s2B.4m/s2
C.6m/s2D.8m/s2
【答案】B
【详解】小车做匀速直线运动时,物块随小车也做匀速直线运动,两弹簧测力计示数均为10N,形变相同,弹簧测力计甲的示数变为8N,形变减小Δx,弹簧测力计乙形变要增加Δx,因此弹簧测力计乙的示数为12N,物块受到的合外力为4N,故加速度的大小是a=Fm=41m/s2=4m/s2.
8.如图甲所示,A、B两物体叠放在光滑水平面上,对物体A施加一水平力F,F-t图象如图乙所示,两物体在力F作用下由静止开始运动,且始终相对静止,规定水平向右为正方向,则下列说法正确的是()
A.两物体在4s时改变运动方向
B.在1s~3s时间内两物体间摩擦力为零
C.6s时两物体的速度为零
D.B物体所受的摩擦力方向始终与力F的方向相同
【答案】D
【详解】两物体在0~1s内,做加速度增大的变加速运动,在1s~3s内,做匀加速运动,在3s~4s内,做加速度增大的变加速运动,在4s~6s内,做加速度减小的变加速运动,故两物体一直向一个方向运动,A、C错误,D正确,1s~3s时间内两物体做匀加速运动,对B进行受力分析可知两物体间的摩擦力不为零,B错误.
9.图甲是某景点的山坡滑道图片,为了探究滑行者在滑道直线部分AE滑行的时间.技术人员通过测量绘制出如图乙所示的示意图.AC是滑道的竖直高度,D点是AC竖直线上的一点,且有AD=DE=10m,滑道AE可视为光滑,滑行者从坡顶A点由静止开始沿滑道AE向下做直线滑动,g取10m/s2,则滑行者在滑道AE上滑行的时间为()
A.2sB.2s
C.3sD.22s
【答案】B
【详解】AE两点在以D为圆心半径为R=10m的圆上,在AE上的滑行时间与沿AD所在的直径自由下落的时间相同,t=4Rg=2s,选B.
10.(20xx池州模拟)某大型游乐场内的新型滑梯可以等效为如图所示的物理模型,一个小朋友在AB段的动摩擦因数μ1tanθ,BC段的动摩擦因数μ2tanθ,他从A点开始下滑,滑到C点恰好静止,整个过程中滑梯保持静止状态.则该小朋友从斜面顶端A点滑到底端C点的过程中()
A.地面对滑梯的摩擦力方向先水平向左,后水平向右
B.地面对滑梯始终无摩擦力作用
C.地面对滑梯的支持力的大小始终等于小朋友和滑梯的总重力的大小
D.地面对滑梯的支持力的大小先大于、后小于小朋友和滑梯的总重力的大小
【答案】选A.
【详解】小朋友在AB段沿滑梯向下匀加速下滑,在BC段向下匀减速下滑,因此小朋友和滑梯组成的系统水平方向的加速度先向左后向右,则地面对滑梯的摩擦力即系统水平方向合外力先水平向左,后水平向右,A正确,B错误;系统在竖直方向的加速度先向下后向上,因此系统先失重后超重,故地面对滑梯的支持力的大小先小于、后大于小朋友和滑梯的总重力的大小,C、D错误.
11.(20xx广州模拟)一斜面固定在水平地面上,用平行于斜面的力F拉质量为m的物体,可使它匀速向上滑动,如图所示,若改用大小为3F的力,仍平行于斜面向上拉该物体,让物体从底部由静止开始运动、已知斜面长为L,物体的大小可以忽略,求:
(1)在3F力的作用下,物体到达斜面顶端时的速度;
(2)要使物体能够到达斜面顶端,3F力作用的时间至少多长?
【答案】
【详解】(1)设斜面倾角为θ,斜面对物体的摩擦力为Ff.当用F的拉力时,物体匀速运动,有
F-mgsinθ-Ff=0①
当用3F的拉力时,物体的加速度为a,到达顶端时的速度为v,
由牛顿第二定律
3F-mgsinθ-Ff=ma②
v2-0=2aL③
由①②③式解得
(2)设3F的拉力至少作用t时间,撤去拉力后加速度为a′,还能滑行t′时间,撤去拉力后有
mgsinθ+Ff=ma′④
at2+a′t′2=L⑤
由①②④式得a=2a′,又由速度关系
at-a′t′=0,得t′=2t
解得
12.一小轿车从高为10m、倾角为37°的斜坡顶端从静止开始向下行驶,当小轿车到达底端时进入一水平面,在斜坡底端115m的地方有一池塘,发动机在斜坡上产生的牵引力为2×103N,在水平地面上调节油门后,发动机产生的牵引力为1.4×104N,小轿车的质量为2t,小轿车与斜坡及水平地面间的动摩擦因数均为0.5(g取10m/s2).求:
(1)小轿车行驶至斜坡底端时的速度;
(2)为使小轿车在水平地面上行驶而不掉入池塘,在水平地面上加速的时间不能超过多少?(轿车在行驶过程中不采用刹车装置)
【答案】(1)10m/s(2)5s
【详解】(1)小轿车在斜坡上行驶时,由牛顿第二定律得F1+mgsin37°-μmgcos37°=ma1
代入数据得a1=3m/s2
由v21=2a1x1=2a1h/sin37°
得行驶至斜坡底端时的速度v1=10m/s
(2)在水平地面上加速时,由牛顿第二定律得F2-μmg=ma2
代入数据得a2=2m/s2
关闭油门后减速μmg=ma3
代入数据得a3=5m/s2
关闭油门时轿车的速度为v2
v22-v212a2+v222a3=x2
得v2=20m/s
t=v2-v1a2=5s
即在水平地面上加速的时间不能超过5s.

精选阅读

高考物理第一轮导学案复习:牛顿运动定律


20xx届高三物理一轮复习导学案
三、牛顿运动定律(4)

【课题】实验:探究物体的加速度a与所受合外力F、物体质量之间的关系。
【导学目标】
1.通过实验研究加速度与力、加速度与质量的关系。
2.掌握实验数据处理的方法,能根据图像写出加速度与力、质量的关系式。
【实验原理】
1.如图所示装置,保持小车质量M不变,改变小桶内砂的质量m,从而改变细线对小车的牵引力F(当mM时,F=mg近似成立),测出小车的对应加速度a,由多组a、F数据作出加速度和力的关系a-F图线,探究加速度与外力的关系。
2.保持小桶和砂的质量不变,在小车上加减砝码,改变小车的质量M,测出小车的对应加速度a,由多组a、M数据作出加速度和质量倒数的关系a-M-1图线,探究加速度与质量的关系。

【实验器材】
小车,砝码,小桶,砂,细线,附有定滑轮的长木板,垫块,打点计时器,低压交流电源,导线两根,纸带,托盘天平及砝码,米尺。

【实验步骤】
1.用调整好的天平测出小车和小桶的质量M和m,把数据记录下来。
2.按如图装置把实验器材安装好,只是不把挂小桶用的细线系在小车上,即不给小车加牵引力。
3.平衡摩擦力:在长木板的不带定滑轮的一端下面垫上垫块,反复移动垫块的位置,直至小车在斜面上运动时可以保持匀速直线运动状态(可以从纸带上打的点是否均匀来判断)。
4.在小车上加放砝码,小桶里放入适量的砂,把砝码和砂的质量M和m记录下来。把细线系在小车上并绕过滑轮悬挂小桶,接通电源,放开小车,打点计时器在纸带上打下一系列点,取下纸带,在纸带上写上编号。
5.保持小车的质量不变,改变砂的质量(要用天平称量),按步骤4再做5次实验。
6.算出每条纸带对应的加速度的值。
7.用纵坐标表示加速度a,横坐标表示作用力F,即砂和桶的总重力(m+m)g,根据实验结果在坐标平面上描出相应的点,作图线。探究加速度与外力的关系
8.保持砂和小桶的质量不变,在小车上加放砝码,重复上面的实验,并做好记录,求出相应的加速度,用纵坐标表示加速度a,横坐标表示小车和车内砝码总质量的倒数1/(M+M’),在坐标平面上根据实验结果描出相应的点并作图线。探究加速度与质量的关系。
【典型剖析】
[例1](江苏省南京市2008届高三质量检测)某同学设计了一个探究加速度a与物体所受合力F及质量m关系的实验,图(a)为实验装置简图。(交流电的频率为50Hz)

(1)图(b)为某次实验得到的纸带,根据纸带可求出小车的加速度大小为m/s2。(保留二位有效数字)
(2)保持砂和砂桶质量不变,改变小车质量m,分别得到小车加速度a与质量m及对应的1/m,数据如下表:
实验次数12345678
小车加速度a/ms—21.901.721.491.251.000.750.500.30
小车质量m/kg0.250.290.330.400.500.711.001.67
4.003.453.032.502.001.411.000.60
请在方格坐标纸中画出图线,并从图线求出小车加速度a与质量倒数1/m之间的关系式是。
(3)保持小车质量不变,改变砂和砂桶质量,该同学根据实验数据作出了加速度a随合力F的变化图线如图(c)所示。该图线不通过原点,其主要原因是

[例2]某活动小组欲探究光滑斜面上物体下滑的加速度与物体质量及斜面倾角是否有关系。实验室提供如下器材:
A.表面光滑的长木板(长度L);B.小车;C.质量为m的钩码若干个;D.方木块(备用于垫木板);E.米尺;F.秒表。
(1)实验过程:
第一步,在保持斜面倾角不变时,探究加速度与质量的关系。
实验中,通过向小车放入钩码来改变物体质量,只要测出小车由斜面顶端滑至底端用时t,就可以由公式a=_____________求出a,某同学记录了数据如下表所示:
根据以上信息,我们发现,在误差范围内质量改变之后平均下滑用时___________(填“改变”或“不改变”),经过分析你得出加速度和质量的关系为_________。
第二步,在物体质量不变时,探究加速度与倾角的关系。实验中通过改变方木块垫放位置来调整长木板倾角,由于没有量角器,我们可以测量出木板顶端到水平面高度h,则倾角α的正弦值sinα=h/L。某同学记录下高度h和加速度a如下表:
L(m)1.00
h(m)0.100.200.300.400.50
sinα=h/L0.100.200.300.400.50
a(m/s2)0.9701.9502.9253.9104.900
请先在坐标纸上建立适当的坐标轴后描点作图,然后根据你所作的图线求出当地的重力加速度g=____________。进一步分析可知,光滑斜面上物体下滑的加速度与倾角的关系为_____________________________。
(2)该探究小组所采用的探究方法是_____________________________________。

[例3](镇江市2008届期初教学情况调查)某同学在“探究当外力一定时,加速度和质量的关系”的实验时.得到下表中的实验数据,(l)这位同学决定使用a一1/m图象来处理这些数据,而不用a一m图象来处理这些数据的原因是

(2)请作出a一1/m图象,根据作出的图象,可以得到的结论是

【训练设计】
1、像打点计时器一样,光电计时器也是一种研究物体运动情况的常用计时仪器,其结构如图所示,a、b分别是光电门的激光发射和接收装置,当有物体从a、b间通过时,光电计时器就可以显示物体的挡光时间。现利用图所示装置测量滑块和长lm左右的木块间的动摩擦因数,图中MN是水平桌面,Q是木板与桌面的接触点,1和2是固定在木板上适当位置的两个光电门,与之连接的两个光电计时器没有画出。此外在木板顶端的P点还悬挂着一个铅锤,让滑块从木板的顶端滑下,光电门l、2各自连接的计时器显示的挡光时间分别为5.0×10-2s和2.0×10-2s。用游标卡尺测量小滑块的宽度d,卡尺示数如图所示。
(1)读出滑块的宽度d=cm。
(2)滑块通过光电门1的速度:v1=m/s,滑块通过光电门2的速度:v2=m/s.
(3)若仅提供一把米尺,已知当地的重力加速度为g,为完成测量,除了研究v1、v2和两个光电门之间的距离L外,还需测量的物理量是(说明各量的物理意义,同时指明代表物理量的字母).
(4)用(3)中各量求解动摩擦因数的表达式μ=(用字母表示)。

2、(徐州市2008届摸底考试)现要验证“当合外力一定时,物体运动的加速度与其质量成反比”这一物理规律。给定的器材如下:
一倾角可以调节的长斜面(如图)、小车、计时器一个、米尺、天平、砝码、钩码若干。
实验步骤如下(不考虑摩擦力的影响),在空格中填入适当的公式或文字
(1)用天平测出小车的质量m
(2)让小车自斜面上方一固定点A1从静止开始下滑到斜面底端A2,记下所用时间t。
(3)用米尺测量A1与A2之间的距离s。则小车的加速度a=。
(4)用米尺测量A1相对于A2的高度h。则小车所受的合外力F=。
(5)在小车中加钩码,用天平测出此时小车与钩码的总质量m,同时改变h,使m与h的乘积不变。测出小车从A1静止开始下滑到斜面底端A2所需的时间t。请说出总质量与高度的乘积不变的原因______________________________。
(6)多次测量m和t,以m为横坐标,t2为纵坐标,根据实验数据作图。如能得到一条____________线,则可验证“当合外力一定时,物体运动的加速度与其质量成反比”这一规律。

高考物理第一轮牛顿运动定律专题考点复习教案


第三章牛顿运动定律
本章是高中物理的重点内容,是解决力学问题的三大途径之一,是物理学各分科间、物理学与其它学科间、以及物理学与生产实际相结合的重要纽带.同时还渗透了“构建物理模型”、“整体法与隔离法”、“力和运动的关系”、“临界问题”等物理学思想方法,对学好电磁学、热学等各类知识有广泛而深远的影响.可以说,牛顿定律是高中物理学的重要基石.
本章及相关内容知识网络:

专题一牛顿第一定律惯性
【考点透析】
一、本专题考点牛顿第一定律和惯性是Ⅱ类要求,既能够确切理解其含义及与其它知识的联系,能够用它解决生活中的实际问题.在高考中主要考查方向是运用牛顿第一定律的知识解释科技、生产、生活中的物理现象和进行定性判断.
二、理解和掌握内容
1.知识点的理解①牛顿第一定律的内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.②惯性:物体保持匀速直线运动或静止状态的性质叫惯性.惯性是物体的固有属性,与物体的运动及受力情况无关.物体的惯性仅由质量决定,质量是惯性大小的量度.
2.几点说明:①不受力的物体是不存在的,牛顿第一定律不能用实验来直接验证,它是伽利略在大量实验现象的基础上,通过思维逻辑推理(既理想实验)方法得出的.②牛顿第一定律是独立定律,不能简单认为它是牛顿第二定律在不受力时的特例,事实上,牛顿第一定律是牛顿第二定律的基础,描述的是物体不受外力时的运动规律.③牛顿第一定律的意义在于指出了一切物体均有惯性,指出力不是物体运动的原因而是改变物体运动状态使物体产生加速度的原因.④惯性不是力,惯性是物体保持匀速直线运动或静止状态的性质,而力是物体对物体的作用,惯性和力是两个不同的概念.
3.难点释疑有的同学认为“惯性与物体的运动有关,速度大惯性大,速度小惯性小”,理由是物体的速度大则不易停下,速度小则易停下.产生这种错误的原因是把“惯性大小表示运动状态改变的难易程度”错误的理解成“惯性大小表示把物体由运动变为静止的难易程度”.事实上,在受到了相同阻力情况下,有相同的质量而速度不同的物体,在相同的时间内速度减少量是相同的.这就充分说明了质量相同的物体,它们运动状态改变的难易程度——惯性是相同的,与速度大小无关.
4.综合创新牛顿定律给人们定义了一种参考系:一个不受外力作用的物体在这个参考系中观察将保持静止或匀速直线运动状态,这个参考系称为惯性系.研究地面上物体的运动时,地面参考系可认为是惯性系,相对于地面做匀速直线运动的参考系,也是惯性系,相对于地面做变速运动的物体就称为非惯性系.牛顿定律只在惯性系成立.
【例题精析】
例1下列关于生活中常见的现象的说法正确的是()
A.运动越快的汽车越不易停下,是因为汽车运动越快,惯性越大.
B.骑车的人只有静止或匀速直线运动时才有惯性.
C.跳水运动员跳起后能继续上升,是因为运动员仍受到一个向上的推力
D.人推车的力是改变车惯性的原因.
E.汽车的牵引力是使汽车产生加速度的原因.
解析:物体的惯性仅由质量决定,与物体的运动及受力情况无关,所以ABC均错.力是改变物体运动状态原因故E正确.
思考与拓宽:大家不妨以“假如生活中没有了惯性”为标题展开联想,写一篇科普小论文,谈谈那将如何改变我们的生活.
例2一向右运动的车厢顶部悬挂两单摆M、N,如图3-1,某瞬时出现如图情形,由此可知,车厢运动情况及单摆相对车厢运动情况可能为()
A.车匀速直线运动,M摆动,N静止
B.车匀速直线运动,M摆动,N摆动
C.车匀速直线运动,M静止,N摆动
D.车匀加速直线运动,M静止,N静止
解析:由牛顿第一定律,当车匀速直线运动时,相对车厢静止的物体其悬线应为竖直,故M正在摆动;N可能相对车厢静止,也可能恰好摆到如图位置,故选项AB正确,C错误.当车匀加速运动时,由于物体的合外力向右,不可能出现N球悬线竖直情况,故选项D错误.
思考与拓宽:要正确理解牛顿第一定律,就要去除日常生活中的一些错误观点.如我们常看到的一些物体都是在推力和拉力作用下运动的,以至于我们一看到物体在运动,就认为物体必受一沿运动方向的动力,这显然是错误的.若没有阻力作用就不需要推力或牵引力,力不是维持物体运动的原因,是使物体产生加速度的原因.

【能力提升】
Ⅰ知识与技能
1.关于一些生活中常见的现象,下列说法正确的是()
A.一同学用手推不动原来静止的小车,于是说:这辆车惯性太大
B.在轨道上飞行的宇宙飞船中的物体不存在惯性
C.乒乓球可以快速抽杀,是因为乒乓球的惯性小的缘故
D.静止的火车起动较慢,是因为火车静止时惯性大
2.如图3-2所示,一个各面均光滑的劈形物体M,上表面水平,放在固定斜面上.在M的水平面上放一光滑小球m.将M由静止开始释放,则小球在碰到斜面前的运动轨迹为()
A.沿斜面向下的直线
B.竖直向下的直线
C.无规则的直线
D.抛物线
3.在水平轨道上匀速行驶的火车内,一个人向上跳起,发现仍落回原处,这是因为()
A.人跳起后空气给它向前的力,带着它随火车一起向前运动
B.人跳起的瞬间,车厢的地板给它向前的力,推动它随火车一起向前运动
C.车继续动人落下后必定偏后些,只是由于时间很短,偏后距离很小,不明显而已
D.人跳起直到落下,在水平方向始终具有和车同样的速度
4.在加速上升的电梯中用绳悬挂一物体,在剪断绳的瞬间,下列说法正确的是()
A.物体立即向下作自由落体运动
B.物体具有向上的加速度
C.物体速度为0,但具有向下的加速度
D.物体具有向上的速度和向下的加速度
5.如图3-3所示,一轻弹簧的一端系一物体,用手拉弹簧的另一端使弹簧和物体一起在光滑水平面上向左匀加速运动,当手突然停止时物体将()
A.立即停止B.向左作变加速运动
C.向左作匀速运动D.向左减速运动
6.关于力和运动的关系正确的是()
①.撤掉力的作用,运动的汽车最终必定停下
②.在跳高过程中,运动员受到的合外力不为0,但瞬时速度可能为0
③.行驶汽车的速度方向总和受力方向一致
④.加速行驶火车的加速度方向总和合外力方向一致
A.①③B.②④C.①④D.②③
Ⅱ能力与素质
7.如图3-4所示,在研究性学习活动中,某同学做了个小实验:将重球系于丝线DC下,重球下再系一根同样的丝线BA,下面说法正确的是()
①.在丝线A端慢慢增加拉力,结果CD先被拉断
②.在丝线A端慢慢增加拉力,结果AB先被拉断
③.在丝线A端突然加力一拉,结果AB被拉断
④.在丝线A端突然加力一拉,结果CD被拉断
A.①③B.②④C.①④D.②③
8.如图3-5所示,在匀加速向右行驶的车厢中,悬挂一盛油容器,从容器中依次滴下三滴油滴并均落在底板上,下列说法正确的是()
A.这三滴油滴依次落在OA间,且后滴较前滴离O点远
B.这三滴油滴依次落在OB间且后滴较前滴离O点近
C.这三滴油滴落在OA之间同一位置
D.这三滴油滴均落在O点
9.伽俐略理想实验将可靠的事实和理论思维结合起来,能更深刻地反映自然规律,伽俐略的斜面实验程序如下:
(1)减小第二斜面的倾角,小球在这斜面上仍然要达到原来的高度
(2)两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一斜面
(3)如果没有摩擦,小球将上升到释放时的高度
(4)继续减小第二个斜面的倾角,最后使它成水平面,小球沿水平面做匀速运动
请按程序先后次序排列,并指出它究竟属于可靠的事实,还是通过思维过程的推论,下列选项正确的是()
A.事实2→事实1→推论3→推论4B.事实2→推论1→推论3→推论4
C.事实2→推论1→推论3→推论4D.事实2→推论1→推论4
10.有一种车载电子仪器内部电路如图3—6所示,其中M为一质量较大金属块,将仪器固定一辆汽车上,汽车启动时,灯亮,原理是.汽车刹车时,灯亮.
【拓宽研究】
1.我国公安交通部门规定,从1993年7月起,在各种小型车辆的司机及前排乘座的人必须系安全带,请同学们认真分析这样规定的原因.
2.2001年2月11日晚上在中央台“实话实说”节目中,为了揭露李宏志的各种歪理邪说,司马南与主持人崔永元合作表演了“铁锤砸砖”的节目.崔永元头顶8块砖,司马南用铁锤奋力击砖,结果砖被击碎,但崔永元却安然无恙.据司马南讲,他作第一次实验时头顶一块砖,结果被震昏了过去.请从物理学角度定性解释上述事实.

专题一:1.C2.B3.D4.D5.B6.B7.A8.C9.A10.绿,金属块由于惯性而后移接通电路,红

高考物理第一轮考纲知识复习:圆周运动及其运用


一名优秀的教师在每次教学前有自己的事先计划,作为高中教师就要精心准备好合适的教案。教案可以让学生们充分体会到学习的快乐,帮助高中教师掌握上课时的教学节奏。那么一篇好的高中教案要怎么才能写好呢?下面是小编精心收集整理,为您带来的《高考物理第一轮考纲知识复习:圆周运动及其运用》,仅供您在工作和学习中参考。

第3节圆周运动及其运用
【考纲知识梳理】
一、描述圆周运动的物理量及其相互关系
1、定义:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。
2、描述圆周运动的物理量:
(1)线速度:
①线速度的大小等于质点作匀速圆周运动时通过的弧长跟通过这段弧长所用时间的比值。
②线速度的方向就是在圆周该点的切线方向上。
③线速度的定义与第二章速度的定义,从字面上看似乎是不同的,实质上并没有差别,因为圆周运动中线速度的概念是瞬时速度的概念。在匀速圆周运动中,速度的大小不变,平均速率与瞬时速率相等,那么,弧长与对应时间的比值,在数值上就反映了瞬时速度的大小。
(2)角速度:
①角速度是描述圆周运动的特有概念。角速度的定义为:连接运动物体和圆心的半径转过的角度跟所用时间的比,叫做匀速圆周运动的角速度。
②在国际单位中,角速度的单位是弧度每秒,符号是。要特别指出提,只有角速度以为单位时,才有的关系。
(3)周期
①周期:做匀速圆周运动的物体运动一周所用的时间叫做周期。
②转速:所谓转速,是指做匀速圆周运动的物体每秒转过的圈数。当转速的单位为时,它和角速度的关系为;当转速的单位为时,它和角速度的关系为。
(4)向心力
①向心力的方向总是与物体运动的方向垂直,总是沿着半径指赂圆心。向心力的作用只是改变速度的方向。
②向心力的大小为

(5)向心加速度
①定义:做圆周运动的物体,在向心力的作用下产生的指向圆心的加速度,叫做向心加速度。
②向心加速度的大小为

二、匀速圆周运动与非匀速圆周运动
1、匀速圆周运动
(1)特点:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的.
(2).性质:是速度大小不变而速度方向时刻在变的变速曲线运动,并且是加速度大小不变、方向时刻变化的变加速曲线运动.
(3).加速度和向心力:由于匀速圆周运动仅是速度方向变化而速度大小不变,故仅存在向心加速度,因此向心力就是做匀速圆周运动的物体所受外力的合力.
(4)质点做匀速圆周运动的条件:合外力大小不变,方向始终与速度方向垂直且指向圆心.
2、非匀速圆周运动
(1)非匀速圆周运动的物体,不仅线速度大小、方向时刻在改变,而且加速度的大小、方向也时刻在改变,是变加速曲线运动(注:匀速圆周运动也是变加速运动).
非匀速圆周运动的合力一般不指向圆心,非匀速圆周运动所受的合外力产生两个效果.
(2)半径方向的分力:产生向心加速度而改变速度方向.
(3)切线方向的分力:产生切线方向加速度而改变速度大小.
故利用公式求圆周上某一点的向心力和向心加速度的大小,必须用该点的瞬时速度值.
三、离心运动与向心运动
1.定义:做圆周运动的物体,在所受外力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。这种运动叫做离心运动。
2、做圆周运动的物体,离心现象条件的分析
(1)当时,物体被限制着沿圆周运动。
(2)当时,物体便沿所在位置的切线方向飞出去。
(3)当时,物体沿切线和圆周之间的一条曲线运动。
3、当时,物体离圆心将越来越近,即做向心运动。
【要点名师透析】
一、在传动装置中各物理量之间的关系
在分析传动装置的物理量时,要抓住不等量和相等量的关系,表现为:
1.同一转轴的各点角速度ω相同,而线速度v=ωr与半径r成正比,向心加速度大小a=rω2与半径r成正比.
2.当皮带不打滑时,传动皮带、用皮带连接的两轮边沿上的各点线速度大小相等,由可知,ω与r成反比,由可知,a与r成反比.
【例1】(20xx湛江模拟)如图所示,一种向自行车车灯供电的小发电机的上端有一半径r0=1.0cm的摩擦小轮,小轮与自行车车轮的边沿接触.当车轮转动时,因摩擦而带动小轮转动,从而为发电机提供动力.自行车车轮的半径R1=35cm,小齿轮的半径R2=4.0cm,大齿轮的半径R3=10.0cm.求大齿轮的转速n1和摩擦小轮的转速n2之比.(假定摩擦小轮与自行车车轮之间无相对滑动)
【答案】2∶175
【详解】大小齿轮间、摩擦小轮和车轮之间和皮带传动原理相同,两轮边沿各点的线速度大小相等,由v=2πnr可知转速n和半径r成反比;小齿轮和车轮同轴转动,两轮上各点的转速相同.大齿轮与小齿轮转速之间的关系为:n1∶n小=R2∶R3.车轮与小齿轮之间的转速关系为:n车=n小.车轮与摩擦小轮之间的关系为:n车∶n2=r0∶R1.由以上各式可解出大齿轮和摩擦小轮之间的转速之比为:n1∶n2=2∶175.
二、用动力学方法解决圆周运动中的问题
1.向心力的来源
向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.
2.向心力的确定
(1)确定圆周运动的轨道所在的平面,确定圆心的位置.
(2)分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力.
3.解决圆周运动问题的主要步骤
(1)审清题意,确定研究对象;
(2)分析物体的运动情况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等;
(3)分析物体的受力情况,画出受力示意图,确定向心力的来源;
(4)根据牛顿运动定律及向心力公式列方程;
(5)求解、讨论.
【例2】(20xx福州模拟)小球在半径为R的光滑半球内做水平面内的匀速圆周运动,试分析图中的θ(小球与半球球心连线跟竖直方向的夹角)与线速度v、周期T的关系.(小球的半径远小于R)
【详解】小球做匀速圆周运动的圆心在和小球等高的水平面上(不在半球的球心),向心力F是重力G和支持力FN的合力,所以重力和支持力的合力方向必然水平.如图所示,有:

mgtanθ==mRsinθω2,
由此可得:(式中h为小球轨道平面到球心的高度)可见,θ越大(即轨迹所在平面越高),v越大,T越小.
三、竖直面内圆周运动问题分析
竖直面内圆周运动问题的特点是:由于机械能守恒,物体做圆周运动的速率时刻在改变.常分析两种模型——轻绳模型和轻杆模型,分析比较如下:
注意:(1)绳模型和杆模型过最高点的临界条件不同.其原因是:绳只能有拉力,不能承受压力,而杆既能有拉力,也能承受压力.
(2)对于竖直面内的圆周运动问题,经常是综合考查牛顿第二定律、机械能守恒及功能关系等知识的综合性问题.
【例3】如图所示,放置在水平地面上的支架质量为M,支架顶端用细线拴着的摆球质量为m,现将摆球拉至水平位置,而后释放,摆球运动过程中,支架始终不动,以下说法正确的是()
A.在释放前的瞬间,支架对地面的压力为(m+M)g
B.在释放前的瞬间,支架对地面的压力为Mg
C.摆球到达最低点时,支架对地面的压力为(m+M)g
D.摆球到达最低点时,支架对地面的压力为(3m+M)g
【答案】选B、D.
【详解】在释放前的瞬间绳拉力为零,对M:对地面的压力F=Mg;
当摆球运动到最低点时,由机械能守恒得①
由牛顿第二定律得:②
由①②得绳对小球的拉力FT=3mg
对支架M由受力平衡,地面支持力FN=Mg+3mg
由牛顿第三定律知,支架对地面的压力FN2=3mg+Mg,故选项B、D正确.
【感悟高考真题】
1.(20xx.安徽高考)一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替。如图(a)所示,曲线上的A点的曲率圆定义为:通过A点和曲线上紧邻A点两侧的两点作一圆,在极限情况下,这个圆就叫做A点的曲率圆,其半径ρ叫做A点的曲率半径。现将一物体沿与水平面成α角的方向已速度υ0抛出,如图(b)所示。则在其轨迹最高点p处的曲率半径是
A.B.
C.D.
【答案】选C.
【详解】物体做斜上抛运动,最高点速度即为斜上抛的水平速度,最高点重力提供向心力,由两式得。
2.(20xx海南物理T15)如图,水平地面上有一个坑,其竖直截面为半圆。ab为沿水平方向的直径。若在a点以初速度沿ab方向抛出一小球,小球会击中坑壁上的c点。已知c点与水平地面的距离为圆半径的一半,求圆的半径。
【答案】
【详解】如图所示,,则
小球做平抛运动的水平位移
竖直位移
根据,
联立以上两式解得
3.(20xx上海理综)8.如图是位于锦江乐园的摩天轮,高度为108m,直径是98m。一质量为50kg的游客乘坐该摩天轮做匀速圆周运动旋转一圈需25min。如果以地面为零势能面,则他到达最高处时的(取g=10m/s2)()。
A.重力势能为5.4×104J,角速度为0.2rad/s
B.重力势能为4.9×104J,角速度为0.2rad/s
C.重力势能为5.4×104J,角速度为4.2×10-3rad/s
D.重力势能为4.9×104J,角速度为4.2×10-3rad/s
答案:C
4.(20xx江苏卷)14.(16分)在游乐节目中,选手需要借助悬挂在高处的绳飞越到水面的浮台上,小明和小阳观看后对此进行了讨论。如图所示,他们将选手简化为质量m=60kg的指点,选手抓住绳由静止开始摆动,此事绳与竖直方向夹角=,绳的悬挂点O距水面的高度为H=3m.不考虑空气阻力和绳的质量,浮台露出水面的高度不计,水足够深。取中立加速度,,
求选手摆到最低点时对绳拉力的大小F;
若绳长l=2m,选手摆到最高点时松手落入手中。设水碓选手的平均浮力,平均阻力,求选手落入水中的深度;
若选手摆到最低点时松手,小明认为绳越长,在浮台上的落点距岸边越远;小阳认为绳越短,落点距岸边越远,请通过推算说明你的观点。
【解析】(1)机械能守恒①
圆周运动F′-mg=m
解得F′=(3-2cos)mg
人对绳的拉力F=F′
则F=1080N
(2)动能定理mg(H-lcos+d)-(f1+f2)d=0

则d=
解得
(3)选手从最低点开始做平抛运动x=vt
H-l=
且有①式
解得
当时,x有最大值,解得l=1.5m
因此,两人的看法均不正确。当绳长钺接近1.5m时,落点距岸边越远。
本题考查机械能守恒,圆周运动向心力,动能定理,平抛运动规律及求极值问题。
难度:较难。
5.(20xx重庆卷)24.(18分)小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动。当球某次运动到最低点时,绳突然断掉,球飞行水平距离d后落地。如题24图所示。已知握绳的手离地面高度为d,手与球之间的绳长为d,重力加速度为g。忽略手的运动半径和空气阻力。
(1)求绳断时球的速度大小和球落地时的速度大小。
(2)向绳能承受的最大拉力多大?
(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应是多少?最大水平距离为多少?
解析:
(1)设绳段后球飞行时间为t,由平抛运动规律,有
竖直方向,水平方向

由机械能守恒定律,有

(2)设绳能承受的最大拉力大小为T,这也是球受到绳的最大拉力大小。
球做圆周运动的半径为
由圆周运动向心力公式,有

(3)设绳长尾l,绳断时球的速度大小为,绳承受的最大推力不变,
有得
绳断后球做平抛运动,竖直位移为,水平位移为x,时间为


当时,有极大值,
6.(09上海43)右图为一种早期的自行车,这种下带链条传动的自行车前轮的直径很大,这样的设计在当时主要是为了(A)
A.提高速度B.提高稳定性
C.骑行方便D.减小阻力
7.(09广东文科基础57)图7所示是一个玩具陀螺。a、b和c是陀螺上的三个点。当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是(B)
A.a、b和c三点的线速度大小相等B.a、b和c三点的角速度相等
C.a、b的角速度比c的大D.c的线速度比a、b的大

8.(09安徽24)(20分)过山车是游乐场中常见的设施。下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径、。一个质量为kg的小球(视为质点),从轨道的左侧A点以的初速度沿轨道向右运动,A、B间距m。小球与水平轨道间的动摩擦因数,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度取,计算结果保留小数点后一位
数字。试求
(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;
(2)如果小球恰能通过第二圆形轨道,B、C间距应是多少;
(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径应满足的条件;小球最终停留点与起点的距离。
答案:(1)10.0N;(2)12.5m(3)当时,;当时,
解析:(1)设小于经过第一个圆轨道的最高点时的速度为v1根据动能定理

小球在最高点受到重力mg和轨道对它的作用力F,根据牛顿第二定律

由①②得③
(2)设小球在第二个圆轨道的最高点的速度为v2,由题意


由④⑤得⑥
(3)要保证小球不脱离轨道,可分两种情况进行讨论:
I.轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为v3,应满足


由⑥⑦⑧得
II.轨道半径较大时,小球上升的最大高度为R3,根据动能定理
解得
为了保证圆轨道不重叠,R3最大值应满足
解得R3=27.9m
综合I、II,要使小球不脱离轨道,则第三个圆轨道的半径须满足下面的条件

当时,小球最终焦停留点与起始点A的距离为L′,则
当时,小球最终焦停留点与起始点A的距离为L〞,则
9.(09浙江24)(18分)某校物理兴趣小组决定举行遥控赛车比赛。比赛路径如图所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C点,并能越过壕沟。已知赛车质量m=0.1kg,通电后以额定功率P=1.5w工作,进入竖直轨道前受到阻力恒为0.3N,随后在运动中受到的阻力均可不记。图中L=10.00m,R=0.32m,h=1.25m,S=1.50m。问:要使赛车完成比赛,电动机至少工作多长时间?(取g=10)
答案:2.53s
解析:本题考查平抛、圆周运动和功能关系。
设赛车越过壕沟需要的最小速度为v1,由平抛运动的规律
解得
设赛车恰好越过圆轨道,对应圆轨道最高点的速度为v2,最低点的速度为v3,由牛顿第二定律及机械能守恒定律
解得m/s
通过分析比较,赛车要完成比赛,在进入圆轨道前的速度最小应该是
m/s
设电动机工作时间至少为t,根据功能原理
由此可得t=2.53s
10.(09四川25)(20分)如图所示,轻弹簧一端连于固定点O,可在竖直平面内自由转动,另一端连接一带电小球P,其质量m=2×10-2kg,电荷量q=0.2C.将弹簧拉至水平后,以初速度V0=20m/s竖直向下射出小球P,小球P到达O点的正下方O1点时速度恰好水平,其大小V=15m/s.若O、O1相距R=1.5m,小球P在O1点与另一由细绳悬挂的、不带电的、质量M=1.6×10-1kg的静止绝缘小球N相碰。碰后瞬间,小球P脱离弹簧,小球N脱离细绳,同时在空间加上竖直向上的匀强电场E和垂直于纸面的磁感应强度B=1T的弱强磁场。此后,小球P在竖直平面内做半径r=0.5m的圆周运动。小球P、N均可视为质点,小球P的电荷量保持不变,不计空气阻力,取g=10m/s2。那么,
(1)弹簧从水平摆至竖直位置的过程中,其弹力做功为多少?
(2)请通过计算并比较相关物理量,判断小球P、N碰撞后能否在某一时刻具有相同的速度。
(3)若题中各量为变量,在保证小球P、N碰撞后某一时刻具有相同速度的前提下,请推导出r的表达式(要求用B、q、m、θ表示,其中θ为小球N的运动速度与水平方向的夹角)。
解析:(1)设弹簧的弹力做功为W,有:

代入数据,得:W=J②
(2)由题给条件知,N碰后作平抛运动,P所受电场力和重力平衡,P带正电荷。设P、N碰后的速度大小分别为v1和V,并令水平向右为正方向,有:③
而:④
若P、N碰后速度同向时,计算可得Vv1,这种碰撞不能实现。P、N碰后瞬时必为反向运动。有:⑤
P、N速度相同时,N经过的时间为,P经过的时间为。设此时N的速度V1的方向与水平方向的夹角为,有:


代入数据,得:⑧
对小球P,其圆周运动的周期为T,有:

经计算得:<T,
P经过时,对应的圆心角为,有:⑩
当B的方向垂直纸面朝外时,P、N的速度相同,如图可知,有:
联立相关方程得:
比较得,,在此情况下,P、N的速度在同一时刻不可能相同。
当B的方向垂直纸面朝里时,P、N的速度相同,同样由图,有:,
同上得:,
比较得,,在此情况下,P、N的速度在同一时刻也不可能相同。
(3)当B的方向垂直纸面朝外时,设在t时刻P、N的速度相同,,
再联立④⑦⑨⑩解得:
当B的方向垂直纸面朝里时,设在t时刻P、N的速度相同,
同理得:,
考虑圆周运动的周期性,有:
(给定的B、q、r、m、等物理量决定n的取值)
11.(09广东物理17)(20分)(1)为了清理堵塞河道的冰凌,空军实施了投弹爆破,飞机在河道上空高H处以速度v0水平匀速飞行,投掷下炸弹并击中目标。求炸弹刚脱离飞机到击中目标所飞行的水平距离及击中目标时的速度大小。(不计空气阻力)
(2)如图17所示,一个竖直放置的圆锥筒可绕其中心OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A点的高度为筒高的一半。内壁上有一质量为m的小物块。求
①当筒不转动时,物块静止在筒壁A点受到的摩擦力和支持力的大小;
②当物块在A点随筒做匀速转动,且其受到的摩擦力为零时,筒转动的角速度。
解析:⑴炸弹作平抛运动,设炸弹脱离飞机到击中目标所飞行的水平距离为x,
联立以上各式解得
设击中目标时的竖直速度大小为vy,击中目标时的速度大小为v
联立以上各式解得
⑵①当筒不转动时,物块静止在筒壁A点时受到的重力、摩擦力和支持力三力作用而平衡,由平衡条件得
摩擦力的大小
支持力的大小
②当物块在A点随筒做匀速转动,且其所受到的摩擦力为零时,物块在筒壁A点时受到的重力和支持力作用,它们的合力提供向心力,设筒转动的角速度为有
由几何关系得
联立以上各式解得
【考点模拟演练】
1.关于匀速圆周运动的说法,正确的是()
A.匀速圆周运动的速度大小保持不变,所以做匀速圆周运动的物体没有加速度
B.做匀速圆周运动的物体,虽然速度大小不变,但方向时刻都在改变,所以必有加速度
C.做匀速圆周运动的物体,加速度的大小保持不变,所以是匀变速(曲线)运动
D.匀速圆周运动的物体加速度大小虽然不变,但加速度的方向始终指向圆心,加速度的方向时刻都在改变,所以匀速圆周运动既不是匀速运动,也不是匀变速运动
【答案】选B、D.
【详解】速度和加速度都是矢量,做匀速圆周运动的物体,虽然速度大小不变,但方向时刻在改变,速度时刻发生变化,必然具有加速度.加速度大小虽然不变,但方向时刻改变,所以匀速圆周运动是变加速曲线运动.故本题选B、D.
2.如图所示,天车下吊着两个质量都是m的工件A和B,系A的吊绳较短,系B的吊绳较长.若天车运动到P处突然停止,则两吊绳所受的拉力FA和FB的大小关系为()
A.FAFBB.FAFB
C.FA=FB=mgD.FA=FBmg
【答案】选A.
【详解】天车运动到P处突然停止后,A、B各以天车上的悬点为圆心做圆周运动,线速度相同而半径不同,由,得:,因为m相等,v相等,而LALB,所以FAFB,A选项正确.
3.如图所示是一种娱乐设施“魔盘”,而且画面反映的是魔盘旋转转速较大时,盘中人的情景.甲、乙、丙三位同学看了图后发生争论,甲说:“图画错了,做圆周运动的物体受到向心力的作用,魔盘上的人应该向中心靠拢”.乙说:“图画得对,因为旋转的魔盘给人离心力,所以人向盘边缘靠拢.”丙说:“图画得对,当盘对人的摩擦力不能满足人做圆周运动的向心力时,人会逐渐远离圆心.”该三位同学的说法应是
()
A.甲正确B.乙正确C.丙正确D.无法判断
【答案】C
【详解】人在水平魔盘上做匀速圆周运动时,静摩擦力提供向心力,转速增大到一
定值,最大静摩擦力不足以提供向心力,人将做离心运动,所以丙的说法正确.
4.一小球用一不可伸缩且柔软的轻绳拉着在竖直平面内做圆周运动,不计空气阻力,下面说法中正确的是
()
A.小球在竖直平面内做匀速圆周运动
B.小球的机械能一定守恒
C.小球的向心加速度的大小一定是变化的
D.小球的向心加速度的大小一定是不变的
【答案】BC
【详解】不计空气阻力,轻绳的拉力不做功,因此小球的机械能守恒,高度增大时速度减小,A错B对;小球的向心加速度a=v2R随速度的变化而变化,C正确D错.考查圆周运动的向心加速度、机械能守恒等知识点,本题较易.
5.中央电视台《今日说法》栏目报道了一起发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭遇七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲撞进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图14所示.交警根据图示作出以下判断,你认为正确的是
()
A.由图可知汽车在拐弯时发生侧翻是因为车做离心运动
B.由图可知汽车在拐弯时发生侧翻是因为车做向心运动
C.公路在设计上可能内(东)高外(西)低
D.公路在设计上可能外(西)高内(东)低
【答案】AC
【详解】汽车进入民宅,远离圆心,因而车作离心运动,A对,B错.汽车在水平公路上拐弯时,静摩擦力提供向心力,此处,汽车以与水平公路上相同速度拐弯,易发生侧翻,摩擦力不足以提供向心力;也可能是路面设计不太合理,内高外低.重力沿斜面方向的分力背离圆心而致,C对,D错.
6.如图所示为某一皮带传动装置.主动轮的半径为r1,从动轮的半径为r2.已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑.下列说法正确的是()
A.从动轮做顺时针转动
B.从动轮做逆时针转动
C.从动轮的转速为r1r2n
D.从动轮的转速为r2r1n
【答案】BC
【详解】因为主动轮顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,A错误,B正确;由于通过皮带传动,皮带与轮边缘接触处的速度相等,所以由2πnr1=2πn2r2,得从动轮的转速为n2=nr1r2,C正确,D错误.
7.皮带传送机传送矿石的速度v大小恒定,在轮缘A处矿石和皮带恰好分离,如图所示.若轮子的半径为R,则通过A点的半径OA和竖直方向OB的夹角θ为()
A.arcsinv2RgB.arccotv2Rg
C.arctanv2RgD.arccosv2Rg
【答案】D
【详解】矿石和皮带分离时两者之间的弹力为零,将重力沿半径OA方向和垂直于OA的方向分解,有mgcosθ=mv2R,则θ=arccosv2Rg,D正确.
8.如图所示,质量为m的小球在竖直平面内的光滑圆环轨道上做圆周运动.圆环半径为R,小球经过圆环最高点时刚好不脱离圆环,则其通过最高点时()
A.小球对圆环的压力大小等于mg
B.小球受到的向心力等于0
C.小球的线速度大小等于gR
D.小球的向心加速度大小等于g
【答案】CD
【详解】小球在最高点时刚好不脱离圆环,则圆环刚好对小球没有作用力,小球只受重力作用,重力竖直向下且过圆心,根据牛顿第二定律得小球的向心加速度大小为a=mgm=g,此时小球满足mg=mv2R,得v=gR.
9.(20xx惠州模拟)甲、乙两名溜冰运动员,面对面拉着弹簧测力计做圆周运动.已知M甲=80kg,M乙=40kg,两人相距0.9m,弹簧测力计的示数为96N,下列判断中正确的是
()
A.两人的线速度相同,约为40m/s
B.两人的角速度相同,为2rad/s
C.两人的运动半径相同,都是0.45m
D.两人的运动半径不同,甲为0.3m,乙为0.6m
【答案】选B、D.
【详解】两人旋转一周的时间相同,故两人的角速度相同,两人做圆周运动所需的向心力相同,由F=mω2r可知,旋转半径满足:r甲∶r乙=M乙∶M甲=1∶2,又r甲+r乙=0.9m,则r甲=0.3m,r乙=0.6m.两人的角速度相同,则v甲∶v乙=1∶2.由F=M甲ω2r甲可得ω=2rad/s.故选项B、D正确.
10.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,管道内侧壁半径为R,小球半径为r,则下列说法中正确的是()
A.小球通过最高点时的最小速度
B.小球通过最高点时的最小速度vmin=0
C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力
D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力
【答案】选B、C.
【详解】小球沿管上升到最高点的速度可以为零,故A错误,B正确;小球在水平线ab以下的管道中运动时,由外侧管壁对小球的作用力FN与球重力在背离圆心方向的分力Fmg的合力提供向心力,即:,因此,外侧管壁一定对球有作用力,而内侧管壁无作用力,C正确;小球在水平线ab以上的管道中运动时,小球受管壁的作用力与小球速度大小有关,D错误.
11.如图所示,一个竖直放置的圆锥筒可绕其中心OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A点的高度为筒高的一半,内壁上有一质量为m的小物块.求:
(1)当筒不转动时,物块静止在筒壁A点受到的摩擦力和支持力的大小;
(2)当物块在A点随筒做匀速转动,且其受到的摩擦力为零时,筒转动的角速度.
【答案】(1)HR2+H2mgRR2+H2mg(2)2gHR
【详解】(1)如图所示,当圆锥筒静止时,物块受到重力mg、摩擦力Ff和支持力FN.由题意可知:
Ff=mgsinθ=HR2+H2mg,①
FN=mgcosθ=RR2+H2mg.②
(2)物块受到重力和支持力的作用,设圆筒和物块匀速转动的角速度为ω,
竖直方向FNcosθ=mg,③
水平方向FNsinθ=mω2r,④
联立③④,得ω=grtanθ,其中tanθ=HR,r=R2,
ω=2gHR.
12.如图所示,把一个质量m=1kg的物体通过两根等长的细绳与竖直杆上A、B两个固定点相连接,绳a、b长都是1m,AB长度是1.6m,直杆和球旋转的角速度等于多少时,b绳上才有张力?
【答案】ω3.5rad/s
【详解】已知a、b绳长均为1m,即
Am=Bm=1m,AO=12AB=0.8m
在△AOm中,cosθ=AOAm=0.81=0.8,
sinθ=0.6,θ=37°
小球做圆周运动的轨道半径
r=Om=Amsinθ=1×0.6m=0.6m.
b绳被拉直但无张力时,小球所受的重力mg与a绳拉力FTa的合力F为向心力,其受力分析如图所示,由图可知小球的向心力为
F=mgtanθ
根据牛顿第二定律得
F=mgtanθ=mrω2
解得直杆和球的角速度为
ω=gtanθr=10×cos37°0.6rad/s=3.5rad/s.
当直杆和球的角速度ω3.5rad/s时,b中才有张力.

20xx高考物理复习知识点:牛顿运动定律综合运用


20xx高考物理复习知识点:牛顿运动定律综合运用
1.一有固定斜面的小车在水平面上做直线运动,小球通过细绳与车顶相连.小球某时刻正处于如图所示状态.设斜面对小球的支持力为N,细绳对小球的拉力为T,关于此时刻小球的受力情况,下列说法正确的
A.若小车向左运动,N不可能为零?
B.若小车向右运动,N不可能为零
C.若小车向左运动,T可能为零
D.若小车向右运动,T不可能为零
2.如图所示,质量为M的木板,上表面水平,放在水平桌面上,木板上面有一质量为m的物块,物块与木板及木板与桌面间的动摩擦因数均为,若要以水平外力F将木板抽出,则力F的大小至少为()
A.B.
C.D.
3.一物块以一定的初速度沿斜面向上滑出,利用速度传感器可以在计算机屏幕上得到其速度大小随时间的变化关系图像如图所示,则:
A.该斜面的倾角为300B.沿斜面上升的最大距离为2m
C.该斜面的动摩擦因数为
D.该斜面的动摩擦因数
4.如图示,m1m2,滑轮质量和摩擦均不计,则当m1和m2匀加速运动的过程中,弹簧秤的读数是
A.(m1+m2)gB.(m1-m2)g
C.2m1m2g/(m1+m2)D.4m1m2g/(m1+m2)
5.如图所示,物体A、B、C质量分别为m、2m、3m,A与天花板间,B与C之间用轻弹簧连接,当系统平衡后,突然将AB间绳烧断,在绳断的瞬间,A、B、C的加速度分别为(以向下的方向为正方向)
A、g,g,g
B、-5g,2.5g,0
C、-5g,2g,0
D、-g,2.5g,3g
6.如图所示,DO是水平面,AB是斜面。初速为10m/s的物体从D点出发沿路面DBA恰好可以达到顶点A,如果斜面改为AC,再让该物体从D点出发沿DCA恰好也能达到A点,则物体第二次运动具有的初速度:(已知物体与路面之间的动摩擦因数处处相同且不为零,斜面与水平面间都有微小圆弧连接,物体经过时动能不损失。
A.可能大于10m/s,具体数值与斜面的倾角有关
B.可能小于10m/s,具体数值与斜面的倾角有关
C.一定等于10m/s,具体数值与斜面的倾角无关
D.可能等于10m/s,具体数值与斜面的倾角有关
7.如图所示,小车上有一定滑轮,跨过定滑轮的绳上一端系一重球,另一端系在弹簧秤上,弹簧秤固定在小车上.开始时小车处在静止状态.当小车匀加速向右运动时
A.弹簧秤读数不变,小车对地面的压力不变
B.弹簧秤读数变大,小车对地面的压力变大
C.弹簧秤读数变大,小车对地面的压力不变
D.弹簧秤读数不变,小车对地面的压力变大
8.如图所示,质量为的粗糙斜面上有一质量为的木块在匀减速下滑,则地面受到的压力应
A.等于B.大于
C.小于D.无法确定
9.如图所示,在光滑水平面上放着紧靠在一起的A、B两物体,B的质量是A的2倍,B受到向右的恒力FB=2N,A受到的水平力FA=(9-2t)N(t的单位是s)。从t=0开始计时,则
A.A物体3s末的加速度是初始时刻的
B.t4s后,B物体做匀加速直线运动
C.t=4.5s时,A物体的速度为零
D.t4.5s时,A、B的加速度方向相反
10.升降机沿竖直方向运动,在其水平地板上放有一物体,若物体
对地板的压力大小随时间的变化关系如图所示,则升降机运
动的速度随时间的变化图象可能是
11.如图12所示,一质量为1kg的小球套在一根固定的直杆上,直杆与水平面夹角θ为30°。现小球在F=20N的竖直向上的拉力作用下,从A点静止出发向上运动,已知杆与球间的动摩擦因数为36。试求:
(1)小球运动的加速度a1;
(2)若F作用1.2s后撤去,小球上滑过程中距A点最大距离sm;
(3)若从撤去力F开始计时,小球经多长时间将经过距A点上方为2.25m的B点。
12如图所示,在倾角为θ的光滑斜面上端系有一劲度系数为k的轻质弹簧,弹簧下端连一个质量为m的小球,球被一垂直于斜面的挡板A挡住,此时弹簧没有形变.若挡板A以加速度a(a
(1)小球向下运动多少距离时速度最大?
(2)从开始运动到小球与挡板分离所经历的时间为多少?
13.如图所示,已水平传送带以2m/s的速度传送物块,水平部分长为2m,其右端与一倾角为β=370的光滑斜面相连,斜面长为0.4m,一物块无初速度地放在传送带的最左端,已知物块与传送带间的动摩擦因数为,试问,物块能否达到斜面的顶端,若能请说明理由,若不能则请求出物块从出发后9.5s内运动的路程(传送带与斜面间平滑连接,取g=10m/s2)
14.质量分别为m1和m2的两个小物块用轻绳连接,绳跨过位于倾角α=30°的光滑斜面顶端的轻滑轮,滑轮与转轴之间的摩擦不计,斜面固定在水平桌面上,如图所示。第一次,m1悬空,m2放在斜面上,用t表示m2自斜面底端由静止开始运动至斜面顶端所需的时间。第二次,将m1和m2位置互换,使m2悬空,m1放在斜面上,发现m1自斜面底端由静止开始运动至斜面顶端所需的时间为。求m1与m2之比。
15.如图所示,平板A长L=5m,质量M=5kg,放在水平桌面上,板右端与桌边相齐.在A上距右端s=3m处放一物体B(大小可忽略),其质量m=2kg,已知A、B间动摩擦因数μ1=0.1,A与桌面间和B与桌面间的动摩擦因数μ2=0.2,原来系统静止.现在在板的右端施一大小恒定的水平力F持续作用在物体A上直到将A从B下抽出才撤去,且使B最后停于桌的右边缘,求:(1)物体B运动的时间是多少?(2)力F的大小为多少?
16.一卡车拖挂一相同质量的车厢,在水平直道上以的速度匀速行驶,其所受阻力可视为与车重成正比,与速度无关。某时刻,车厢脱落,并以大小为的加速度减速滑行。在车厢脱落后,司机才发觉并紧急刹车,刹车时阻力为正常行驶时的3倍。假设刹车前牵引力不变,求卡车和车厢都停下后两者之间的距离。
17传送带与水平面夹角37°,皮带以10m/s的速率运动,皮带轮沿顺时针方向转动,如图所示。今在传送带上端A处无初速地放上一个质量为的小物块,它与传送带间的动摩擦因数为0.5,若传送带A到B的长度为16m,g取,则物体从A运动到B的时间为多少?
18.如图所示,质量的小车停放在光滑水平面上,在小车右端施加一水平恒力F=8N。当小车向右运动速度达到3m/s时,在小车的右端轻放一质量m=2kg的小物块,物块与小车间的动摩擦因数,假定小车足够长,问:
(1)经过多长时间物块停止与小车间的相对运动?
(2)小物块从放在车上开始经过所通过的位移是多少?(g取)
参考答案:1C2D3AC4D5B6C7C8B9ABD10ABD11(1)2.5m/s2(2)2.4m(3)0.2s或0.6s
12(1)xm=mgsinθk.(2)t=2m?gsinθ-a?ka13(1)不能达斜面顶端(2)10m1411/19
15(1)3s(2)26N1636m172s182s;8.4m