88教案网

你的位置: 教案 > 高中教案 > 导航 > 20xx高考物理《功能关系能量守恒定律》材料分析

高中物理欧姆定律教案

发表时间:2021-01-25

20xx高考物理《功能关系能量守恒定律》材料分析。

俗话说,居安思危,思则有备,有备无患。教师要准备好教案,这是教师的任务之一。教案可以让学生能够在教学期间跟着互动起来,帮助教师更好的完成实现教学目标。所以你在写教案时要注意些什么呢?小编特地为大家精心收集和整理了“20xx高考物理《功能关系能量守恒定律》材料分析”,大家不妨来参考。希望您能喜欢!

20xx高考物理《功能关系能量守恒定律》材料分析

考点一|功能关系

1.内容
(1)功是能量转化的量度,即做了多少功就有多少能量发生了转化.
(2)做功的过程一定伴随着能量的转化,而且能量的转化必须通过做功来实现.
2.做功对应变化的能量形式(加试要求)
(1)合外力的功影响物体的动能的变化.
(2)重力的功影响物体重力势能的变化.
(3)弹簧弹力的功影响弹性势能的变化.
(4)除重力或系统内弹力以外的力做功影响物体机械能的变化.
(5)滑动摩擦力的功影响系统内能的变化.WWw.jAB88.CoM

1.对功能关系的进一步理解
(1)做功的过程是能量转化的过程.不同形式的能量发生相互转化是通过做功来实现的.
(2)功是能量转化的量度,功和能的关系,一是体现到不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数量上相等.
2.几种常见的功能关系及其表达式
力做功能的变化定量关系合力的功动能变化W=Ek2-Ek1=ΔEk重力的功重力势能变化(1)重力做正功,重力势能减少
(2)重力做负功,重力势能增加
(3)WG=-ΔEp=Ep1-Ep2弹簧弹力的功弹性势能变化(1)弹力做正功,弹性势能减少
(2)弹力做负功,弹性势能增加
(3)WF=-ΔEp=Ep1-Ep2只有重力、弹簧弹力做功机械能不变化机械能守恒ΔE=0除重力和弹簧弹力之外的其他力做的功机械能变化(1)其他力做多少正功,物体的机械能就增加多少
(2)其他力做多少负功,物体的机械能就减少多少
(3)W其他=ΔE一对相互作用的滑动摩擦力的总功机械能减少
内能增加(1)作用于系统的一对滑动摩擦力一定做负功,系统内能增加
(2)摩擦生热Q=Ffx相对
1.(20xx·平湖模拟)物质、能量、信息是构成世界的基本要素,下面关于能量的认识中错误的是()
A.能量是一个守恒量
B.同一个物体可能同时具有多种形式的能量
C.物体对外做了功,它的能量一定发生了变化
D.地面上滚动的足球最终停下来,说明能量消失了
D[能量的概念是在人类对能量守恒的认识过程中形成的,它的重要特性就是守恒,物体对外做功的过程即是能量释放的过程,功是能量转化的标志和量度.地面上滚动的足球最终停下来,其机械能转化为内能,能量并没有消失.故选项A、B、C正确,D错误.故选C.]
2.自然现象中蕴藏着许多物理知识,如图541所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能()

图541
A.变大B.变小
C.不变D.不能确定
A[人缓慢推水袋,对水袋做正功,由功能关系可知,水的重力势能一定增加,A正确.]
3.如图542所示,质量为m的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其运动的加速度大小为g,此物体在斜面上上升的最大高度为h,则在这个过程中物体()

图542
A.重力势能增加了mgh
B.克服摩擦力做功mgh
C.动能损失了mgh
D.机械能损失了mgh
D[重力势能增加量为mgh,A错;由mgsin30°+Ff=m×g知Ff=mg时,克服摩擦做功为mgh,由功能关系知B错,D对,动能损失等于合力做功,即ΔEk=mg×2h=mgh,C错.]
4.(加试要求)(20xx·杭州选考模拟)(多选)如图543所示,轻质弹簧一端固定,另一端与一质量为m、套在粗糙竖直固定杆A处的圆环相连,弹簧水平且处于原长.圆环从A处由静止开始下滑,经过B处的速度最大,到达C处的速度为零,AC=h.圆环在C处获得一竖直向上的速度v,恰好能回到A.弹簧始终在弹性限度内,重力加速度为g.则圆环()

图543
A.下滑过程中,加速度一直减小
B.下滑过程中,克服摩擦力做的功为mv2
C.在C处,弹簧的弹性势能为mv2-mgh
D.上滑经过B的速度大于下滑经过B的速度
BD[由题意知,圆环从A到C先加速后减速,到达B处的加速度减小为零,故加速度先减小后增大,故A错误;根据能量守恒,从A到C有mgh=Wf+Ep,从C到A有mv2+Ep=mgh+Wf联立解得:Wf=mv2,Ep=mgh-mv2,所以B正确,C错误;根据能量守恒,从A到B的过程有mv+ΔEp′+Wf′=mgh′,B到A的过程有mvB′2+ΔEp′=mgh′+Wf′,比较两式得vB′vB,所以D正确.]
考点二|能量守恒定律及应用
/华-资*源%库
1.内容
能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,在转化和转移的过程中,能量的总量保持不变.
2.适用范围
能量守恒定律是贯穿物理学的基本规律,是各种自然现象中普遍适用的一条规律.
3.表达式
(1)E初=E末,初状态各种能量的总和等于末状态各种能量的总和.
(2)ΔE增=ΔE减,增加的那些能量的增加量等于减少的那些能量的减少量.

(20xx·浙江10月学考)画作《瀑布》如图544所示.有人对此画作了如下解读:水流从高处倾泻而下,推动水轮机发电,又顺着水渠流动,回到瀑布上方,然后再次倾泻而下,如此自动地周而复始.这一解读违背了()

图544
A.库仑定律
B.欧姆定律
C.电荷守恒定律
D.能量守恒定律
D[这是第一类永动机模型,违背了能量守恒定律,选D.]

1.对能量守恒定律的两点理解
(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等.
(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.
2.应用能量守恒定律解题的步骤
(1)分清有多少形式的能(动能、势能、内能等)发生变化.
(2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE减和增加的能量ΔE增的表达式.
(3)列出能量守恒关系式:ΔE减=ΔE增.

1.如图545所示是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中()

图545
A.缓冲器的机械能守恒
B.摩擦力做功消耗机械能
C.垫板的动能全部转化为内能
D.弹簧的弹性势能全部转化为动能
B[本题考查能量转化和守恒定律.由于车厢相互撞击弹簧压缩的过程中存在克服摩擦力做功,所以缓冲器的机械能减少,选项A错误、B正确;弹簧压缩的过程中,垫板的动能转化为内能和弹簧的弹性势能,选项C、D错误.]
2.蹦极是一项既惊险又刺激的运动,深受年轻人的喜爱.如图546所示,蹦极者从P点静止下落,到达A点时弹性绳刚好伸直,继续下降到最低点B点,B点离水面还有数米距离.蹦极者(可视为质点)从P点下降到B点的整个过程中,重力势能的减少量为ΔE1、绳的弹性势能增加量为ΔE2、克服空气阻力做功为W,绳子重力不计.则下列说法正确的是()

图546
A.蹦极者从P到A的运动过程中,机械能守恒
B.蹦极者与绳组成的系统从A到B的运动过程中,机械能守恒
C.ΔE1=W+ΔE2
D.ΔE1+ΔE2=W
C[蹦极者从P到A及蹦极者与绳组成的系统从A到B的运动过程中都受到空气阻力作用,所以机械能不守恒,A、B错误;根据能量守恒定律可知,在整个过程中重力势能的减少量等于弹性势能的增加量和内能的增加量之和,内能的增加量等于克服空气阻力做的功,C正确,D错误.]
3.(20xx·宁波调研)如图547所示,光滑水平面AB与竖直面内的半圆形导轨在B点相切,半圆形导轨的半径为R.一个质量为m的物体将弹簧压缩至A点后由静止释放,在弹力作用下物体获得某一向右的速度后脱离弹簧,当它经过B点进入导轨的瞬间对轨道的压力为其重力的8倍,之后向上运动恰能到达最高点C,C、O、B三点在同一竖直线上.(不计空气阻力)试求:

图547
(1)物体在A点时弹簧的弹性势能;
(2)物体从B点运动至C点的过程中产生的内能.
【解析】(1)设物体在B点的速度为vB,受到的弹力为FNB,则有FNB-mg=m又FNB=8mg由能量守恒定律可知弹性势能Ep=mv=mgR.(2)设物体在C点的速度为vC,由题意可知mg=m物体由B点运动到C点的过程中,由能量守恒定律得E内=mv-=mgR.【答案】(1)mgR(2)mgR

延伸阅读

高一物理能量守恒定律


第3节能量守恒定律
从容说课
本节课的设计,教材继续沿用了前几节的课程模式,先由生活中的实例引出研究问题,然后用实验加以证实,让学生接受这个物理事实.接着再从理论上推导、证明,从而得出结论.
这节课教材是从生活中骑自行车上坡的实例入手,引出动能和重力势能在此过程中是在相互转化的.接着通过实验来证实这个转化过程中的守恒结论.最后提出了自然界中最普遍、最基本的规律之一能量转化和守恒定律.
机械能守恒定律是能量守恒定律的一个特例,要使学生对定律的得出、含义、适用条件有一个明确的认识,这是能够用该定律解决力学问题的基础.
各种不同形式的能相互转化和守恒的规律,贯穿在整个物理学中,是物理学的基本规律之一.能量守恒定律是学习各种不同形式的能量转化规律的起点,也是运动学和动力学知识的进一步综合和展开的重要基础.所以这一节知识是本章重要的一节.
机械能守恒定律是本章教学的重点内容,本节教学的重点是使学生掌握物体系统机械能守恒的条件;能够正确分析物体系统所具有的机械能.
分析物体系统所具有的机械能,尤其是分析、判断物体所具有的重力势能,是本节学习的难点之一.在教学中应让学生认识到,物体重力势能大小与所选取的参考平面(零势面)有关;而重力势能的变化量是与所选取的参考平面无关的.在讨论物体系统的机械能时,应先确定参考平面.
教学重点1.理解机械能守恒定律的内容;
2.在具体的问题中能判定机械能是否守恒,并能列出定律的数学表达式;
3.理解能量转化和守恒定律.
教学难点1.从能的转化和功能关系出发理解机械能守恒的条件;
2.能正确判断研究对象在所经历的过程中机械能是否守恒.
教具准备自制投影片、CAI课件、重物、电磁打点计时器以及纸带、复写纸片、低压电源及两根导线、铁架台和铁夹、刻度尺、小夹子.
课时安排1课时
三维目标
一、知识与技能
1.知道什么是机械能,知道物体的动能和势能可以相互转化;
2.理解机械能守恒定律的内容;
3.在具体问题中,能判定机械能是否守恒,并能列出机械能守恒的方程式;
4.理解能量守恒定律,能列举、分析生活中能量转化和守恒的例子.
二、过程与方法
1.初步学会从能量转化和守恒的观点解释现象、分析问题;
2.通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法.
三、情感态度与价值观
1.通过能量守恒的教学,使学生树立科学观点,理解和运用自然规律,并用来解决实际问题;
2.通过实验验证,体会学习的快乐,激发学习的兴趣;通过亲身实践,树立“实践是检验真理的唯一标准”的科学观.培养学生的观察和实践能力,培养学生实事求是的科学态度.
教学过程
导入新课
[实验演示]
动能与势能的相互转化
教师活动:演示实验1:如下图,用细线、小球、带有标尺的铁架台等做实验.
把一个小球用细线悬挂起来,把小球拉到一定高度的A点,然后放开,小球在摆动过程中,重力势能和动能相互转化.我们看到,小球可以摆到跟A点等高的C点,如图甲.
如果用尺子在某一点挡住细线,小球虽然不能摆到C点,但摆到另一侧时,也能达到跟A点相同的高度,如图乙.
问题:这个小实验中,小球的受力情况如何?各个力的做功情况如何?这个小实验说明了什么?
学生活动:观察演示实验,思考问题,选出代表发表见解.
小球在摆动过程中受重力和绳的拉力作用.拉力和速度方向总垂直,对小球不做功;只有重力对小球做功.
实验表明,小球在摆动过程中重力势能和动能在不断转化.在摆动过程中,小球总能回到原来的高度.可见,重力势能和动能的总和,即机械能应该保持不变.
教师活动:演示实验2:如图,水平方向的弹簧振子.
用弹簧振子演示动能和弹性势能的相互转化.
问题:这个实验中,小球的受力情况如何?各个力的做功情况如何?这个实验说明了什么?
学生活动:观察演示实验,思考问题,选出代表发表见解.
小球在往复运动过程中,竖直方向上受重力和杆的支持力作用,水平方向上受弹力作用.重力、支持力和速度方向总垂直,对小球不做功;只有弹簧的弹力对小球做功.
实验表明,小球在往复运动过程中弹性势能和动能在不断转化.小球在往复运动过程中总能回到原来的位置,可见,弹性势能和动能的总和,即机械能应该保持不变.
教师活动:总结、过渡:
通过上述分析,我们得到动能和势能之间可以相互转化,那么在动能和势能的转化过程中,动能和势能的和是否真的保持不变?下面我们就用实验来探索这个问题.
推进新课
一、机械能的转化和守恒的实验探索
在学生开始做实验之前,老师应强调如下几个问题:
1.该实验中选取被打点纸带应注意两点:一是第一点O为计时起点,O点的速度应为零.怎样判别呢?
2.是否需要测量重物的质量?
3.在架设打点计时器时应注意什么?为什么?
4.实验时,接通电源和释放纸带的顺序怎样?为什么?
5.测量下落高度时,某同学认为都必须从起始点算起,不能弄错.他的看法正确吗?为了减小测量h值的相对误差,选取的各个计数点要离起始点适当远些好,还是近些好?
学生活动:思考老师的问题,讨论、交流,选出代表发表见解.
1.因为打点计时器每隔0.02s打点一次,在最初的0.02s内物体下落距离应为0.002m,所以应从几条纸带中选择第一、二两点间距离接近2mm的纸带进行测量;二是在纸带上所选的点就是连续相邻的点,每相邻两点时间间隔t=0.02s.
2.因为不需要知道物体在某点动能和势能的具体数值,所以不必测量物体的质量m,而只需验证就行了.
3.打点计时器要竖直架稳,使其两限位孔在同一竖直平面内,以尽量减少重物带着纸带下落时所受到的阻力作用.
4.必须先接通电源,让打点计时器正常工作后才能松开纸带让重物下落.
5.这个同学的看法是正确的.为了减小测量h值的相对误差,选取的各个计数点要离起始点适当远些好.
教师活动:听取学生汇报,点评,帮助学生解决困难.
学生活动:学生进行分组实验.
数据处理:
明确本实验中要解决的问题即研究动能与重力势能的转化与守恒.
在右图中,质量为m的物体从O点自由下落,以地面作零势能面,下落过程中任意两点A和B的机械能分别为:
,
如果忽略空气阻力,物体下落过程中如果动能的改变量等于势能的改变量,于是有
Ea=Eb,即
上式亦可写成
该式左边表示物体由A到B过程中动能的增加,右边表示物体由A到B过程中重力势能的减少.
如果实验证明等式成立,说明物体重力势能的减少等于动能的增加.为了方便,可以直接从开始下落的O点至任意一点(上图中A点)来进行研究,这时应有:.式中h是物体从O点下落至A点的高度,vA是物体在A点的瞬时速度.
1.如何求出A点的瞬时速度vA?
根据做匀加速运动的物体在某一段时间t内的平均速度等于该时间中间时刻的瞬时速度可求出A点的瞬时速度vA.
右图是竖直纸带由下而上实际打点后的情况.从O点开始依次取点1、2、3……图中s1、s2、s3……分别为0~2点,1~3点,2~4点……各段间的距离.根据公式,t=2×0.02s(纸带上任意两个相邻的点间所表示的时间都是0.02s),可求出各段的平均速度.这些平均速度就等于1、2、3……各点相对应的瞬时速度v1、v2、v3……例如:
量出0~2点间距离s1,则在这段时间里的平均速度,这就是点1处的瞬时速度v1,以此类推可求出点2、3……处的瞬时速度v2、v3?……
2.如何确定重物下落的高度?
上图中h1、h2、h3……分别为纸带从O点下落的高度.
根据以上数值可以计算出任意点的重力势能和动能,从而验证动能与重力势能的转化和守恒.
二、机械能守恒定律
机械能守恒定律的推导:
教师活动:[多媒体展示下列物理情景]
在自由落体运动中机械能守恒
一个质量为m的物体自由下落,经过高度为h1的A点(初位置)时速度为v1,下落到高度为h2的B点(末位置)时速度为v2.
学生活动:思考并证明
如右图所示,设一个质量为m的物体自由下落,经过高度为h1的A点(初位置)时速度为v1,下落到高度为h2的B点(末位置)时速度为v2.在自由落体运动中,物体只受重力G=mg的作用,重力做正功.设重力所做的功为WG,则由动能定理可得

上式表示,重力所做的功等于动能的增量.
另一方面,由重力做功与重力势能的关系知道,
WG=mgh1-mgh2②
上式表示,重力所做的功等于重力势能的减少.
由①式和②式可得
.③
小结:在自由落体运动中,重力做了多少功,就有多少重力势能转化为等量的动能,移项后可得
或者Ek1+Ep1=Ek2+Ep2④
上式表示,在自由落体运动中,动能和重力势能之和即总的机械能保持不变.
【教师精讲】
上述结论不仅对自由落体运动是正确的,可以证明,在只有重力做功的情形下,不论物体做直线运动还是曲线运动,上述结论都是正确的.
所谓只有重力做功,是指:物体只受重力,不受其他的力,如自由落体运动和其他方向运动;或者除重力外还受其他的力,但其他力不做功,如物体沿光滑斜面的运动.
在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变.
这个结论叫做机械能守恒定律,它是力学中的一条重要定律,是更普遍的能量守恒定律的一种特殊情况.
不仅重力势能和动能可以相互转化,弹性势能和动能也可以相互转化.放开被压缩的弹簧,可以把跟它接触的小球弹出去,这时弹簧的弹力做功,弹簧的弹性势能转化为小球的动能.在弹性势能和动能的相互转化中,如果只有弹力做功,动能和弹性势能之和保持不变,即机械能守恒.
【方法引导】
解决某些力学问题,从能量的观点来分析,应用机械能守恒定律求解,往往比较方便.应用机械能守恒定律解决力学问题,要分析物体的受力情况.在动能和重力势能的相互转化中,如果只有重力做功,就可以应用机械能守恒定律求解.
【例题剖析】
(一)机械能守恒条件的判断
[例1]下列关于机械能是否守恒的叙述正确的是()
A.做匀速直线运动的物体机械能一定守恒
B.做匀变速直线运动的物体的机械能可能守恒
C.合外力对物体做功为零时,机械能一定守恒
D.只有重力对物体做功,物体机械能一定守恒
解析:
A.做匀速直线运动的物体,除了重力做功外,可能还有其他力做功,如降落伞在空中匀速下降时,除了重力做功外,空气阻力也对降落伞做功,所以机械能不守恒,不选.
B.做匀变速直线运动的物体可能只受重力且只有重力做功,如自由落体运动,物体机械能守恒,应选.
C.如降落伞在空中匀速下降时合外力为零,合外力对物体做功为零,除重力做功外,空气阻力也做功,所以机械能不守恒,不选.
D.符合机械能守恒的条件,应选.
可见,对物体进行受力分析,确定各力做功情况是判定机械能是否守恒的一般程序.
[例2]如图所示,斜面体置于光滑水平地面上,其光滑斜面上有一物体由静止沿斜面下滑,在物体下滑过程中,下列说法正确的是()
A.物体的重力势能减少,动能增大
B.物体的重力势能完全转化为物体的动能
C.物体的机械能减少
D.物体和斜面体组成的系统机械能守恒
解析:由于斜面体放在光滑斜面上,当物体沿斜面下滑时,物体实际位移方向和物体所受支持力的方向不垂直,所以支持力对物体做了功(负功),物体的机械能不守恒,物体的机械能减少了,物体对斜面体的压力对斜面体做了功(正功),斜面体的机械能增加了,斜面体的机械能也不守恒.
对物体和斜面体组成的系统,斜面体和物体之间的弹力是内力,对系统做功的代数和为零,即不消耗机械能.在物体和斜面体的运动过程中只有重力做功,所以系统的机械能守恒.
物体在下滑过程中重力势能减少,一部分转化为物体的动能,另一部分则转化为斜面体的动能.
所以本题选ACD.
(二)机械能守恒定律的应用
[例3]一个物体从光滑斜面顶端由静止开始滑下(如图),斜面高1m,长2m.不计空气阻力,物体滑到斜面底端的速度是多大?
物体沿光滑斜面下滑时机械能守恒
分析:斜面是光滑的,不计摩擦,又不计空气阻力,物体所受的力有重力和斜面的支持力,支持力与物体的运动方向垂直,不做功.物体在下滑过程中只有重力做功,所以可用机械能守恒定律求解.
解析:题中没有给出物体的质量,可设物体的质量为m.物体在开始下滑到达斜面底端时的速度为v,则有Ep2=0,,末状态的机械能.此时,Ep1=mgh,Ek1=0,初状态的机械能Ek1+Ep1=mgh.
根据机械能守恒定律有
Ek2+Ep2=Ek1+Ep1

所以.
【方法引导】
这个问题也可以应用牛顿第二定律和运动学公式求解,但是应用机械能守恒定律求解,在思路和步骤上比较简单.在这个例题中,如果把斜面换成光滑的曲面(如图),同样可以应用机械能守恒定律求解,要直接用牛顿第二定律求解,由于物体在斜面上所受的力是变力,处理起来就困难得多.
物体沿光滑曲面下滑时机械能守恒
[例4]把一个小球用细绳悬挂起来,就成为一个摆.摆长为L,最大偏角为θ.小球运动到最低位置时的速度是多大?
分析:小球受两个力:重力和悬线的拉力.悬线的拉力始终垂直于小球的运动方向,不做功.小球在摆动过程中,只有重力做功,所以可用机械能守恒定律求解.
解析:选择小球在最低位置时所在的水平面为参考平面.小球在最高点时为初状态,初状态的动能Ek1=0,重力势能Ep1=mg(L-Lcosθ),机械能Ek1+Ep1=mg(L-Lcosθ).小球在最低点时为末状态,末状态的动能,重力势能Ep2=0,末状态的机械能为.
根据机械能守恒定律有
Ek2+Ep2=Ek1+Ep1
所以.
【教师精讲】
由这两个例题可以看出,应用机械能守恒定律解题,可以只考虑运动的初状态和末状态,不必考虑两个状态之间的过程的细节.这可以避免直接用牛顿第二定律解题的困难,简化解题的步骤.
守恒定律不仅给处理问题带来方便,而且有更深刻的意义.自然界千变万化,但有些物理量在一定条件下是守恒的,可以用这些“守恒量”表示自然界的变化规律,这就是守恒定律.寻求“守恒量”已经成为物理学研究中的重要方面.我们学习物理,要学会运用守恒定律处理问题.
三、能量转化和守恒定律
教师活动:提出问题:我们已学习了多种形式的能,请同学们说出你所知道的能量形式.我们还知道不同能量之间是可以相互转化的,请你举几个能量转化的例子.
学生活动:思考并回答问题,列举实例.
教师活动:
演示实验1:在一个玻璃容器内放入沙子,拿一个小铁球分别从某一高度释放,使其落到沙子中.
思考:小球运动过程中机械能是否守恒?请说出小球运动过程中能量的转化情况.
演示实验2:在盛有水的玻璃容器中放一小木块,让小木块在水中上下浮动,过一段时间,小木块停止运动.
思考:小木块运动过程中机械能是否守恒?请说出小木块运动过程中能量的转化情况.
学生活动:观察实验并积极思考讨论后,选出代表发表见解.
教师活动:
听取学生汇报,总结点评,回答学生可能提出的问题.
通过学生举例和演示实验,说明各种形式的能量可以相互转化,增强学生的感性认识,并激发学生的学习兴趣,唤起学生强烈的求知欲.
以上实验表明,各种形式的能量可以相互转化,一种能量减少,必有其他能量增加,一个物体的能量减少,必定其他物体的能量增加,能量的总和并没有变化.这就是大自然的一条普遍规律,而机械能守恒定律只是这一条规律的一种特殊情况.
学生活动:列举生活中不同能量之间相互转化的例子.
教师活动:引导学生阅读教材,说出能量守恒定律的内容,并引导学生说明能量守恒定律的建立有何重大意义.历史上曾有人设想制造一种不需要消耗任何能源就可以不断做功的机器,即永动机,这样的机器能不能制成?为什么?
学生活动:认真阅读教材,思考并回答问题.
课堂小结
本节课我们学习了机械能守恒定律,重点是机械能守恒定律的内容和表达式,难点是判断物体的机械能是否守恒,所以应透彻理解机械能守恒定律成立的条件,从而正确应用机械能守恒定律解题.
布置作业
课本P37作业4、5、6.
板书设计
活动与探究
有人设计了这样一台“永动机”:距地面一定高度架设一个水槽,水从槽底的管中流出,冲击一个水轮机,水轮机的轴上安装一个抽水机和一个砂轮.他指望抽水机把地面水槽里的水抽上去,这样循环不已.机器不停地转动,就可以永久地用砂轮磨制工件做功了(右图)
.
请你分析一下,高处水槽中水的势能共转变成哪几种形式的能,说明这个机器是否能够永远运动下去.

能量守恒定律与能源(新课标)


高中物理课堂教学教案年月日
课题§5.10能量守恒定律与能源课型新授课(2课时)
教学目标知识与技能
理解能量守恒定律,知道能源和能量耗散.
过程与方法
通过对生活中能量转化的实例分析,理解能量守恒定律的确切含义.
情感,态度与价值观
1.用能量的观点分析问题应该深入学生的心中,因为这是最本质的分析方法.
2.感知我们周围能源的耗散,树立节能意识.
教学重点、难点教学重点
1.能量守恒定律的内容.
2.应用能量守恒定律解决问题.
教学难点
1.理解能量守恒定律的确切含义.
2.能量转化的方向性.
教学方法探究、讲授、讨论、练习
教学手段教具准备
投影仪、教学录像或课件、玻璃容器、沙子、小铁球、水、小木块.
教学活动
[新课导入]
师:我们已学习了多种形式的能,请同学们说出你所知道的能量形式.我们还知道不同量之间是可以相互转化的,请举几个能量转化的例子.
生1:电灯能够发光是因为电能转化为了光能.
师:当电灯发光的同时.还能感觉到电灯是热的,说明什么问题呢?
生1:说明在电能转化为光能的同时还产生了热能.
生2:我举一个例子,当两个物体相互摩擦的时候,它们的温度会升高,这个过程中机械能转化为内能.
生3:在火箭发射的时候,推进剂燃烧产生的化学能转化为火箭的机械能.
生4:汽车在行驶过程中,汽车内燃机产生的化学能转化为汽车的机械能.
师:刚才同学们分析得都很好,看起来自然界除了我们在上几节学过的机械能之外,还有各种各样的能量,机械能守恒定律成立的条件是什么?
生:机械能守恒定律成立的条件是只有重力或弹力做功.
师:我们看一下下面几种情况下物体所处的系统机械能是否守恒.
[新课教学]
一、能量守恒定律
(演示实验1:在一个玻璃容器内放人沙子,拿一个小铁球分别从某一高度释放,使其落到沙子中)
师:大家看这样一个问题:小球运动过程中机械能是否守恒?请说出小球运动过程中能量的转化情况.
生:小球在运动过程中机械能不守恒,根据机械能守恒定律成立的条件是只有重力或弹力做功,在小球下落的过程中,除了受到的重力做功之外,还有沙子对它做功,沙子对铁球做负功,铁球在下落过程中机械能是减少的.
师:从这个问题中我们可以得到什么结论?
生:外力(除了重力和弹力之外的力)对系统做负功,系统的机械能减少.
[演示实验2:用手提一个物体匀速上升,让学生分析机械能的变化情况(物体可以是身边的物体,例如黑板擦、课本等等)]
师:这个物体在运动过程中机械能是否守恒,如果不守恒,原因是什么,机械能是怎样变化的?
生:这个物体在运动过程中机械能不守恒,原因是不符合机械能守恒定律成立的条件,有外力对物体做了功,这个力是人对物体向上的拉力.在运动过程中,物体动能没有发生变化,而物体的重力势能增加了,所以系统的机械能是增加的.
师:我们可以得出什么结论?
生:当外力(除了重力或弹力以外的力)对物体做正功,物体的机械能增加,物体机械能的增加量等于外力对物体做的功.
师:从这两个例子中我们能够得出什么结论?
生:物体所处的系统机械能守恒是有条件的,当外力对物体做功时,系统的机械能不守恒,此时外力对系统做的功等于系统机械能的变化.
师:这里的外力是指的什么?
生:这里的外力是指的除了物体本身重力和弹力之外的力.
师:这个结论叫做功能原理.从这两个例子中我们可以看到,机械能守恒定律并不是自然界中最基本的守恒定律,当涉及到多个能量之间的相互转化时,我们应该怎样研究这些能量之间的关系呢?
师:下面大家阅读28页中有关能量守恒定律建立的过程,回答相应的问题.
(学生阅读课本,总结能量守恒定律的表达方式)
师:导致能量守恒定律最后确立的两类重要事实是什么?
生:导致能量守恒定律最后确立的两类重要事实是确立了永动机的不可能性和发现了各种自然现象之间的相互联系与转化.
师:能量守恒定律的内容是什么?
生:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式.或者从一个物体转移到另外一个物体,而在转化和转移的过程中,能量的总和保持不变.
师:能量守恒定律是一个人发现的吗?
生:能量守恒定律不是一个人发现的,到了19世纪40年代前后.科学界已经形成一种思想氛围,即用联系的观点去观察自然,各种不同能量可以相互转化,这预示着,到了把分立环节
连成一体的时候了,也就是到了建立能量转化与守恒定律的时候了,不同国家、不同领域的十几位科学家,以不同的方式,各自独立提出了能量守恒定律的内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另外一个物体.而在转化和转移的过程中.能量的总和保持不变.
师:看起来能量守恒定律是人类进步的一个必然的结果,那么对能量守恒定律作出贡献比较大的科学家是谁呢?
生:对能量守恒定律贡献比较大的科学家有:德国物理学家和医生迈尔,英国物理学家焦耳,德国物理和生理学家女姆霍兹等人.
师:现在看一个科教片:能量守恒定律的建立过程.
(多媒体播放能量守恒定律的建立过程)(参考案例)
能量守恒定律是建立在自然科学发展的基础上的,从16世纪到18世纪.经过伽利略、牛顿,惠更斯、莱布尼茨以及伯努利等许多物理学家的认真研究,使动力学得到了较大的发展,机械能的转化和守恒的初步思想,在这一时期已经萌发.18世纪末和19世纪初,各种自然现象之间联系相继被发现.伦福德和戴维的摩擦生热实验否定了热质说.把物体内能的变化与机械运动联系起来.1800年发明伏打电池之后不久,又发现了电流的热效应、磁效应和其他的一些电磁现象.这一时期,电流的化学效应也被发现,并被用来进行电镀.在生物学界,证明了动物维持体温和进行机械活动的能量跟它所摄取的食物的化学能有关,自然科学的这些成就,为建立能量守恒定律作了必要的准备.能量守恒定律的最后确定,是在19世纪中叶由迈尔、焦耳和荄姆霍兹等人完成.德国医生迈尔是从生理学的角度开始对能量进行研究的.1842年,他从“无不生有,有不变无”的哲学观念出发.表达了对能量转化和守恒思想,他分析了25种能量的转化和守恒现象,成为世界上最先阐述能量守恒思想的人.英国物理学家焦耳从1840年到1878年将近40年的时间里.研究了电流的热效应,压缩空气的温度升高以及电、化学和机械作用之间的联系,做了400多次实验,用各种方法测定了热和功之间的当量关系,为能量守恒定律的发现奠定了坚实的实验基础.在1847年,当焦耳宜布他的能量观点的时候,德国学者荄姆霍兹在柏林也宜读了同样课题的论文.在这篇论文里,他分析了化学能、机械能、电磁能、光能等不同形式的能的转化和守恒,并且把结果跟永动机不可能制造成功联系起采,他认为不可能无中生有地创造一个永久的推动力,机器只能转化能量,不能创造和消灭能量.女姆霍兹在论文里对能量守恒定律作了一个清晰、全面而且概括的论述,使这一定律为人们广泛接受.在19世纪中叶,还有一些人也致力于能量守恒地研究.他们从不同的角度出发,彼此独立地研究,却几乎同耐发现了这一伟大的定律.因此,能量守恒定律的发现是科学发展的必然结果.此时,能量转化和守恒定律得到了科学界的普遍承认.这一原理指出:自然界的一切物质都具有能量,对应于不同的运动形式,能量也有不同的形式,如机械运动的动能和势能,热运动的内能.电磁运动的电磁能,化学运动的化学能等,他们分别以各种运动形式特定的状态参量来表示。当运动形式发生变化或运动量发生转移时,能量也从一种形式转化为另一种形式,从一个系统传递给另一个系统:在转化和传递中总能量始终不变.恩格斯曾经把能量转化和守恒定律称为“伟大的运动基本规律”,认为它的发现是19世纪自然科学的三大发现之一.(另两个发现是细胞学说,达尔文的生物进化论)
师:通过学习能量守恒定律,你受到了什么启示?
生:能量守恒定律的建立过程,是人类认识自然的一次重大的飞跃,是哲学和自然科学长期发展和进步的结果.它是最普遍、最重要、最可靠的自然规律之一,而且是大自然普遍和谐性的一种表现形式.和谐美是科学的魅力所在.
师:这位同学总结得很好,美是无处不在的,物理学中更是处处存在着美,希望同学们在学习中注意发现,注意体会,这样我们的学习将会更加的丰富多彩.
[课堂训练]
下列对能的转化和守恒定律的认识正确的是……………………………()
A。某种形式的能减少,一定存在其他形式的能增加
B。某个物体的能减少.必然有其他物体的能增加
C。不需要任何外界的动力而持续对外做功的机器——永动机是不可能制成的
D。石子从空中落下,最后惨止在地面上,说明机械能消失了
解析;能量守恒定律是指能量的总量不变,但更重要的是指转化和转移过程中的守恒.在不同形式的能量间发生转化,在不同的物体间发生转移.不需要任何外界动力而持续对外做功的机器是违背能量守恒定律的,是永远不可能制成的.机械能转化成了其他形式的能量而不能消失,能量是不会消失的.
A选项是指不同形式的能量间在转化,转化过程中是守恒的.B选项是指能量在不同的物体间发生转移,转移过程中是守恒的.这正好是能量守恒定律的两个方面——转化与转移.任何永动机都是不可能制成的,它违背了能量守恒定律,所以ABC正确.D选项中石子的机械能在变化,比如受空气阻力作用,机械能可能要减少,但机械能并没有消失,能量守恒定律表明能量既不能创生,也不能消失.故D是错的.
说明:此题考查能量守恒定律的理解,以及对水动机的认识,凡是违背能量守恒定律的永动机是永远不能制成的.
二、能源和能量耗散
师:大家下面思考这样一个问题:既然能量是守恒的,我们为什么还要节约能源.带着这个问题.大家阅读课本第28页到29页有关能量和能量耗散的内容,回答相关问题.
(学生阅读教材,了解人类应用能源的历程,能源对人类社会发展所起的作用;人类在利用能源的同时也对环境造成了严重污染)
师:什么是能量耗散?
生:然料燃烧时一旦把自己的热量释放出去,它就不会再次自动聚集起来供人类重新利用,电池中的化学能转化为电能,它又通过灯泡转化成内能和光能,热和光被其他物质吸收后变为周围环境的内能,我们无法把这些内能收集起来重新利用.这种现象叫做能量的耗散.
师:能量耗散与能量守恒是否矛盾,该怎样理解?
生:能量耗散和能量守恒并不矛盾,能量耗散表明,在能源利用的过程中,即在能量的转化过程中,能量在数量上并没有减少.但是可利用的品质上降低了,从便于利用变为不便于利用了.
师:这说明什么问题?
生:这说明能量的耗散从能量转化的角度反映出自然界中宏观过程的方向性.
师:我们为什么要节约能源呢?
生:正是因为能量转化的方向性,能量的利用受这种方向性的制约,所以能量的利用是有条件的,也是有代价的.
生:节约能源同时开发可再生能源.
师:通过下面材料的阅读。加深你对能源的理解.
(多媒体播放世界能源的解决途径)(参考案例)
世界能源问题的解决途径是什么?能源,是人类敕以生存和进行生产的不可缺少的资源.近年来,随着生产力的发展和能源消费的增长.能源问题已被列为世界上研究的重大问题之一.解决世界能源问题的根本途径,主要有两个方面:其一是广泛开源,其二是认真节流.所谓开源,就是积极开发和利用各种能源.在继续加紧石油勘探和寻找新的石油产地的同时,积极开发丰富的煤炭资源,还要大力开发水能,生物能等常规能源,加强核能、太阳能,风能、沼气,海洋能,地热能以及其他各种新能源的研究和利用,从而不断扩大人类的能源资源的种类和来源.所谓节流,就是要大力提倡节约能源.节能是世界上许多国家关心和研究的重要课题,甚至有人把节能称为世界的“第五大能源”,与煤、石油和天然气、水能、核能等并列.在节能方面,在有计划地控制人口增长的同时,重点要发挥先进科学技术的优势,提高各国的能源利用效率.如果世界各国家和各地区都能改进各种用能设备,不断提高能源的质量标准和降低单位产品的能耗,加强科学管理,适当控制生活能源的合理使用,就能使能源更加有效地用于生产和生活之中,从而解决人类面临的能源问题.
[小结]
新课程更多地与社会实际相联系,鼓励学生提出问题.本节“思考与讨论”对能源问题做了讨论,这是一个质疑的范例.它引导我们考虑能量转化和转移的方向性.从物理学的角度研究宏观过程的方向性,在现阶段只需用一些简单的实例,让学生初步地体会一下就可以了.例如:摩擦力做功的过程,要损耗机械能而生热,产生的热不可能全部转化为机械功.在其他的宏观过程中也是如此,例如:两种气体放到一个容器内,总会均匀地混合到一起,但不会再自发地分离开来.通过实例说明.在能量的转化和转移过程中,能量是守恒的,但能量的品质却降低了,可被人直接利用的能在逐渐减少,这是能量耗散现象.所以,能量虽然守恒,但我们还要节约能源.
对功能关系的理解
[例1]一小滑块放在如图所示的凹形斜面上,用力F沿斜面向下拉小滑块,小滑块沿斜面运动了一段距离。若已知在这过程中,拉力F所做的功的大小(绝对值)为A,斜面对滑块的作用力所做的功的大小为B,重力做功的大小为G,空气阻力做功的大小为D。当用这些量表达时,小滑块的动能的改变(指末态动能减去初态动能)等于多少?,滑块的重力势能的改变等于多少?滑块机械能(指动能与重力势能之和)的改变等于多少?
解析:根据动能定理,动能的改变等于外力做功的代数和,其中做负功的有空气阻力,斜面对滑块的作用力的功(因弹力不做功,实际上为摩擦阻力的功),因此ΔEk=A-B+C-D;根据重力做功与重力势能的关系,重力势能的减少等于重力做的功,因此ΔEp=-C;滑块机械能的改变等于重力之外的其他力做的功,因此ΔE=A–B–D学生活动

作业[布置作业]
教材第30页问题与练习,1,2.
板书设计10.能量守恒定律与能源
一、能量守恒定律
1.内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另外一个物体,而在转化和转移的过程中,能量的总和保持不变.
2.建立过程.
二、能源和能量耗散
1.内容:能量转化具有方向性.
2.节约能源的重要意义.




记思维方法是解决问题的灵魂,是物理教学的根本;亲自实践参与知识的发现过程是培养学生能力的关键,离开了思维方法和实践活动,物理教学就成了无源之水、无本之木。学生素质的培养就成了镜中花,水中月。

20xx高考物理《机械能守恒定律》材料分析


20xx高考物理《机械能守恒定律》材料分析

第3节机械能守恒定律
考点一|重力势能、弹性势能及机械能守恒的判断

1.重力做功与重力势能
(1)重力做功的特点
重力做功与路径无关,只与初、末位置的高度差有关.
(2)重力做功与重力势能变化的关系
①定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加.
②定量关系:物体从位置A到位置B时,重力对物体做的功等于物体重力势能的减少量,即WG=-ΔEp.
③重力势能的变化量是绝对的,与参考面的选取无关.
2.弹性势能
(1)定义
发生弹性形变的物体的各部分之间,由于有弹力的相互作用而具有的势能.
(2)弹力做功与弹性势能变化的关系
①弹力做功与弹性势能变化的关系类似于重力做功与重力势能变化的关系.
②对于弹性势能,一般物体的弹性形变量越大,弹性势能越大.
3.机械能
动能、重力势能和弹性势能统称为机械能.
4.机械能守恒定律
内容:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变.
5.机械能守恒的条件
(1)系统只受重力或弹簧弹力的作用,不受其他外力.
(2)系统除受重力或弹簧弹力作用外,还受其他内力和外力,但这些力对系统不做功.
(3)系统内除重力或弹簧弹力做功外,还有其他内力和外力做功,但这些力做功的代数和为零.
(4)系统跟外界没有发生机械能的传递,系统内外也没有机械能与其他形式的能发生转化.

(20xx·浙江10月学考)如图531所示,无人机在空中匀速上升时,不断增加的能量是()

图531
A.动能B.动能、重力势能
C.重力势能、机械能
D.动能、重力势能、机械能
C[动能与质量和速度有关,重力势能与质量和高度有关,机械能为两者之和,题目中无人机匀速上升,速度不变,高度增加,因此动能不变,重力势能增加,机械能增加.故选C.]

1.重力势能的求解方法
(1)定义法:选取参考平面,确定物体相对参考平面的高度h,代入Ep=mgh求解重力势能.
(2)WG和Ep关系法:由WG=Ep1-Ep2知Ep2=Ep1-WG或Ep1=WG+Ep2.
(3)变化量法:重力势能的变化量ΔEp=Ep2-Ep1,故Ep2=Ep1+ΔEp或Ep1=Ep2-ΔEp.
2.对重力做功和重力势能的“四点”提醒
(1)重力做功的大小与物体的运动状态无关,与物体是否受其他力无关;
(2)重力做功,一定会引起重力势能的变化;
(3)重力势能是标量,但有正负,其意义表示物体的重力势能比它在参考平面的重力势能大还是小;
(4)WG=-ΔEp中的负号表示重力做的功与重力势能变化的绝对值相等,符号相反.
3.机械能是否守恒的判断方法
(1)利用机械能的定义判断(直接判断):机械能包括动能、重力势能和弹性势能,判断机械能是否守恒可以看物体或系统机械能的总和是否变化.
(2)用做功判断:若物体或系统只有重力或系统内弹力做功,虽受其他力,但其他力不做功,机械能守恒.
(3)用能量转化来判断:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒.

1.关于重力势能的几种理解,正确的是()
A.重力势能的值与参考平面的选择有关
B.放在地面上的物体,它的重力势能一定等于零
C.不同质量的物体,由于在同一地点,所以重力势能相等
D.因为重力势能是标量,所以只能取正值
A[重力势能的值与参考平面有关,选定了参考平面后,物体处于比参考平面低处,其重力势能为负值,A正确.]
2.关于重力做功,下列说法不正确的是()
A.重力做正功,物体的重力势能一定减小
B.重力做负功,重力势能一定增加
C.重力做负功,可以说成物体克服重力做功
D.重力做正功,物体的动能一定增加
D[重力做正功,重力势能减小,重力做负功,重力势力增加,D符合题意.]
3.如图532所示为蹦床运动员在空中表演的情景.在运动员从最低点开始反弹至即将与蹦床分离的过程中,蹦床的弹性势能和运动员的重力势能变化情况分别是()

图532
A.弹性势能减小,重力势能增大
B.弹性势能减小,重力势能减小
C.弹性势能增大,重力势能增大
D.弹性势能增大,重力势能减小
A[当蹦床恢复原状时,运动员与蹦床分离,此过程中,蹦床的形变量减小,所以弹性势能减小;运动员的高度一直在增大,所以重力势能增大.A选项正确,B、C、D选项错误.]
4.如图533所示,一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离.假定空气阻力可忽略,运动员可视为质点,下列说法不正确的是()

图533
A.运动员到达最低点前重力势能始终减小
B.蹦极绳张紧后的下落过程中,弹力做负功,弹性势能增加
C.蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒
D.蹦极过程中,重力势能的改变量与重力势能零点的选取有关
D[运动员到达最低点前重力势能始终减小,选项A正确,不符合题意;蹦极绳张紧后的下落过程中,弹力做负功,由功能关系知,弹性势能增加,选项B正确,不符合题意;蹦极过程中,运动员、地球和蹦极绳所组成的系统只有动能和势能的转化,系统机械能守恒,选项C正确,不符合题意;蹦极过程中,重力势能的改变量与重力势能零点的选取无关,选项D错误,符合题意.]
5.(多选)(加试要求)如图534所示,下列关于机械能是否守恒的判断正确的是()

图534
A.甲图中,物体A将弹簧压缩的过程中,物体A机械能守恒
B.乙图中,物体A固定,物体B沿斜面匀速下滑,物体B的机械能守恒
C.丙图中,不计任何阻力和定滑轮的质量时,A加速下落,B加速上升过程中,A、B组成的系统机械能守恒
D.丁图中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒
CD[甲图中重力和弹力做功,物体A和弹簧组成的系统机械能守恒,但物体A机械能不守恒,A错.乙图中物体B除受重力外,还受到弹力和摩擦力作用,弹力不做功,但摩擦力做负功,物体B的机械能不守恒,B错.丙图中绳子张力对A做负功,对B做正功,代数和为零,A、B组成的系统机械能守恒,C对.丁图中小球的动能不变,势能不变,机械能守恒,D对.]考点二|机械能守恒定律的应用

机械能守恒的三种表达式
1.守恒观点
(1)表达式:
Ek1+Ep1=Ek2+Ep2或E1=E2.
(2)意义:系统初状态的机械能等于末状态的机械能.
(3)注意:要先选取零势能参考平面,并且在整个过程中必须选取同一个零势能参考平面.
2.转化观点
(1)表达式:ΔEk=-ΔEp.
(2)意义:系统的机械能守恒时,系统增加(或减少)的动能等于系统减少(或增加)的势能.
3.转移观点(加试要求)
(1)表达式:ΔEA增=ΔEB减.
(2)意义:若系统由A、B两部分组成,当系统的机械能守恒时,则A部分机械能的增加量等于B部分机械能的减少量.

1.应用机械能守恒定律解题的优点
应用机械能守恒定律时,相互作用的物体间的力可以是变力,也可以是恒力,只要符合守恒条件,机械能就守恒.而且机械能守恒定律只涉及物体系的初、末状态的物理量,而不需分析中间过程的复杂变化,使处理问题得到简化.
2应用机械能守恒定律解题的步骤
(1)选取研究对象(物体系或物体),明确研究过程.
(2)进行受力、做功分析,判断机械能是否守恒.
(3)根据题意灵活选取定律的表达式,列方程并求解.
注意:应用守恒式E1=E2时,应选择合适的零势能面;应用转化式ΔEk=-ΔEp时,无需选择零势能面,但需要弄清动能或势能是增加还是减小;应用转移式ΔEA增=ΔEB减时,无需选择零势能面,但需要弄清每个物体的机械能是增加还是减小.

1.总质量约为3.8吨的“嫦娥三号”探测器在距月面3m处关闭反推发动机,让其以自由落体方式降落在月球表面.4条着陆腿触月信号显示,“嫦娥三号”完美着陆月球虹湾地区.月球表面附近重力加速度约为1.6m/s2,4条着陆腿可视作完全相同的四个轻弹簧,在软着陆后,每个轻弹簧获得的弹性势能大约是()

图535
A.28500JB.4560J
C.18240JD.9120J
B[设每个轻弹簧获得的弹性势能为Ep,由机械能守恒定律可得:mgh=4Ep,故Ep=mgh=4560J,故B正确.]
2.在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小()
A.一样大B.水平抛的最大
C.斜向上抛的最大D.斜向下抛的最大
A[由机械能守恒定律mgh+mv=mv知,落地时速度v2的大小相等,故A正确.]
3.如图536所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h.若将小球A换为质量为2m的小球B,仍从弹簧原长位置由静止释放,已知重力加速度为g,不计空气阻力,则小球B下降h时的速度为()

图536
A.B.
C.D.0
B[对弹簧和小球A,根据机械能守恒定律得弹性势能Ep=mgh;对弹簧和小球B,根据机械能守恒定律有Ep+×2mv2=2mgh,得小球B下降h时的速度v=,只有选项B正确.]
4.(加试要求)如图537所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中()

图537
A.圆环的机械能守恒
B.弹簧弹性势能变化了mgL
C.圆环下滑到最大距离时,所受合力为零
D.圆环重力势能与弹簧弹性势能之和保持不变
B[圆环沿杆下滑的过程中,圆环与弹簧组成的系统动能、弹性势能、重力势能之和守恒,选项A、D错误;弹簧长度为2L时,圆环下落的高度h=L,根据机械能守恒定律,弹簧的弹性势能增加了ΔEp=mgh=mgL,选项B正确;圆环释放后,圆环向下先做加速运动,后做减速运动,当速度最大时,合力为零,下滑到最大距离时,具有向上的加速度,合力不为零,选项C错误.]
5.(20xx·上虞模拟)如图538所示,竖直平面内的一半径R=0.50m的光滑圆弧槽BCD,B点与圆心O等高,一水平面与圆弧槽相接于D点,质量m=0.10kg的小球从B点正上方H=0.95m高处的A点自由下落,由B点进入圆弧轨道,从D点飞出后落在水平面上的Q点,DQ间的距离x=2.4m,球从D点飞出后的运动过程中相对水平面上升的最大高度h=0.80m,g取10m/s2,不计空气阻力,求:

图538
(1)小球经过C点时轨道对它的支持力大小FN;
(2)小球经过最高点P的速度大小vP;
(3)D点与圆心O的高度差hOD.
【解析】(1)设经过C点时速度为v1,由机械能守恒有mg(H+R)=mv由牛顿第二定律有FN-mg=代入数据解得FN=6.8N.(2)P到Q做平抛运动有h=gt2,=vPt代入数据解得vP=3.0m/s.(3)由机械能守恒定律,有mv+mgh=mg(H+hOD),代入数据,解得hOD=0.30m.
【答案】(1)6.8N(2)3.0m/s(3)0.30m

高考物理第一轮考纲知识复习:功能关系能量守恒定律


第4节功能关系能量守恒定律
【考纲知识梳理】
一、功能关系
1.做功的过程是能量转化的过程,功是能的转化的量度。
2.功能关系——功是能量转化的量度
⑴重力所做的功等于重力势能的减少
⑵电场力所做的功等于电势能的减少
⑶弹簧的弹力所做的功等于弹性势能的减少
⑷合外力所做的功等于动能的增加
⑸只有重力和弹簧的弹力做功,机械能守恒
⑹重力和弹簧的弹力以外的力所做的功等于机械能的增加WF=E2-E1=ΔE
⑺克服一对滑动摩擦力所做的净功等于机械能的减少ΔE=fΔS(ΔS为相对滑动的距离)
⑻克服安培力所做的功等于感应电能的增加
二、能量守恒定律
【要点名师透析】
一、几种常见的功能关系
【例1】(20xx杭州模拟)(10分)一物块放在如图所示的斜面上,用力F沿斜面向下拉物块,物块沿斜面运动了一段距离,若已知在此过程中,拉力F所做的功为A,斜面对物块的作用力所做的功为B,重力做的功为C,空气阻力做的功为D,其中A、B、C、D的绝对值分别为100J、30J、100J、20J,则
(1)物块动能的增量为多少?
(2)物块机械能的增量为多少?
【答案】(1)150J(2)50J
【详解】(1)在物块下滑的过程中,拉力F做正功,斜面对物块有摩擦力,做负功,重力做正功,空气阻力做负功.根据动能定理,合外力对物块做的功等于物块动能的增量,则
ΔEk=W合=A+B+C+D=100J+(-30J)+100J+(-20J)
=150J(5分)
(2)根据功能关系,除重力之外的其他力所做的功等于物块机械能的增量,则
ΔE机=A+B+D=100J+(-30J)+(-20J)=50J(5分)
二、摩擦力做功的特点
【例2】(20xx广州模拟)(12分)质量为M的长木板放在光滑的水平面上,一质量为m的滑块以某一速度沿木板表面从A点滑到B点,在板上前进了L,而木板前进了l,如图所示,若滑块与木板间的动摩擦因数为μ,求:
(1)摩擦力对滑块和木板做的功;
(2)系统产生的热量.
【答案】(1)-μmg(L+l)μmgl(2)μmgL
【详解】(1)滑块的对地位移为x1=L+l
摩擦力对滑块做的功为:W1=-Ffx1=-μmg(L+l)(4分)
木板的对地位移为x2=l
摩擦力对木板做的功为:W2=Ffx2=μmgl(4分)
(2)滑块相对木板的位移为Δx=L
系统产生的热量Q=FfΔx=μmgL(4分)
三、对能量守恒定律的理解和应用
1.对定律的理解
(1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等.即ΔE减=ΔE增.
(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.即ΔEA减=ΔEB增.
2.应用能量守恒定律解题的步骤
(1)分清有多少形式的能[如动能、势能(包括重力势能、弹性势能、电势能)、内能等]在变化.
(2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE减和增加的能量ΔE增的表达式.
(3)列出能量守恒关系式:ΔE减=ΔE增.
【例3】(20xx福州模拟)(16分)如图所示,光滑水平面AB与竖直面内的半圆形导轨在B点相切,半圆形导轨的半径为R.一个质量为m的物体将弹簧压缩至A点后由静止释放,在弹力作用下物体获得某一向右的速度后脱离弹簧,当它经过B点进入导轨的瞬间对轨道的压力为其重力的8倍,之后向上运动恰能到达最高点C.(不计空气阻力)试求:
(1)物体在A点时弹簧的弹性势能.
(2)物体从B点运动至C点的过程中产生的内能.
【答案】(1)(2)mgR
【详解】(1)设物体在B点的速度为vB,弹力为FNB,则有
(3分)
又FNB=8mg
由能量转化与守恒可知:
弹性势能(4分)
(2)设物体在C点的速度为vC,由题意可知:
(3分)
物体由B点运动到C点的过程中,由能量守恒得:
(4分)
解得:Q=mgR(2分)
【考点模拟演练】
1.(20xx新课标全国卷T16)一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离。假定空气阻力可忽略,运动员可视为质点,下列说法正确的是
A.运动员到达最低点前重力势能始终减小
B.蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加
C.蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒
D.蹦极过程中,重力势能的改变与重力势能零点的选取有关
【答案】选A、B、C。
【详解】运动员在下落过程中,重力做正功,重力势能减小,故A正确。蹦极绳张紧后的下落过程中,弹性力向上,位移向下,弹性力做负功,弹性势能增加,故B正确。选取运动员、地球和蹦绳为一系统,在蹦极过程中,只有重力和系统内弹力做功,这个系统的机械能守恒,故C正确。重力势能改变的表达式为Ep=mgh,由于h是绝对的与选取的重力势能参考零点无关,故D错。
6.(20xx安徽高考T24)如图所示,质量M=2kg的滑块套在光滑的水平
轨道上,质量m=1kg的小球通过长L=0.5m的轻质细杆与滑块上的光滑轴O连接,小球和轻杆可在竖直平面内绕O轴自由转动,开始轻杆处于水平状态,现给小球一个竖直向上的初速度=4m/s,g取10。
若锁定滑块,试求小球通过最高点P时对轻杆的作用力大小和方向。
(2)若解除对滑块的锁定,试求小球通过最高点时的速度大小。
在满足(2)的条件下,试求小球击中滑块右侧轨道位置点与小球起始位置点间的距离。
【答案】(1)2N,方向竖直向上(2)(3)m
【详解】设小球能通过最高点,且此时的速度为v1,在上升过程中,因只有重力做功,小球的机械能守恒,则①

设小球到达最高点时,轻杆对小球的作用力为F,方向向下,则小球受到的拉力和重力提供做圆周运动的向心力,有③
由②③式,得④
由牛顿第三定律知,小球对轻杆的作用力大小为2N,方向竖直向上。
(2)若解除锁定,设小球通过最高点时的速度为v2,此时滑块的速度为V。小球和滑块起始状态沿在水平方向初速度均为零,在上升过程中,因系统在水平方向不受外力作用,水平方向的动量守恒。以水平向右方向为正方向,有⑤
在上升过程中,因只有重力做功,系统的机械能守恒,则⑥,
由⑤⑥式得。
(3)设小球击中滑块右侧轨道的位置点与小球起始位置点间的距离为s1,滑块向左移动的距离为s2。任意时刻小球的水平速度大小为v3,滑块的速度大小为V‘。由系统水平方向的动量守恒,得⑦将⑦式两边同乘以,得⑧,因⑧式对任意时刻附近的微小间隔都成立,累积相加后,有⑨,又⑩,由⑨⑩式,得m
3.(20xx大纲版全国T26)26.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击。通过对一下简化模型的计算可以粗略说明其原因。
质量为2m、厚度为2d的钢板静止在水平光滑桌面上。质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿。现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示。若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度。设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响。
【详解】设子弹初速度为,射入厚为的钢板后,最终的共同速度为,根据动量守恒
…………………①
解得
动能损失…………………③
分成两块钢板之后,设子弹打穿第一块时两者的速度分别是和,根据动量守恒
…………………③
子弹在钢板中所受的阻力为恒力,射穿第一块钢板的动能损失为,根据能量守恒,
…………………④
联立①②③④,考虑到必须大于,得
…………………⑤
设子弹射入第二块钢板并留在其中后两者的共同速度为,根据动量守恒
…………………⑥
动能损失
…………………⑦
联立①②⑤⑥⑦,得
…………………⑧
因为子弹在钢板中所受的阻力为恒力,由⑧式,得射入第二块钢版的深度
…………………⑨
4.(09天津10)如图所示,质量m1=0.3kg的小车静止在光滑的水平面上,车长L=15m,现有质量m2=0.2kg可视为质点的物块,以水平向右的速度v0=2m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数=0.5,取g=10m/s2,求
(1)物块在车面上滑行的时间t;
(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不超过多少。
答案:(1)0.24s(2)5m/s
解析:本题考查摩擦拖动类的动量和能量问题。涉及动量守恒定律、动量定理和功能关系这些物理规律的运用。
(1)设物块与小车的共同速度为v,以水平向右为正方向,根据动量守恒定律有

设物块与车面间的滑动摩擦力为F,对物块应用动量定理有

其中③
解得
代入数据得④
(2)要使物块恰好不从车厢滑出,须物块到车面右端时与小车有共同的速度v′,则

由功能关系有

代入数据解得=5m/s
故要使物块不从小车右端滑出,物块滑上小车的速度v0′不能超过5m/s。
5.(09山东38)(2)如图所示,光滑水平面轨道上有三个木块,A、B、C,质量分别为mB=mc=2m,mA=m,A、B用细绳连接,中间有一压缩的弹簧(弹簧与滑块不栓接)。开始时A、B以共同速度v0运动,C静止。某时刻细绳突然断开,A、B被弹开,然后B又与C发生碰撞并粘在一起,最终三滑块速度恰好相同。求B与C碰撞前B的速度。

解析:(2)设共同速度为v,球A和B分开后,B的速度为,由动量守恒定律有,,联立这两式得B和C碰撞前B的速度为。
考点:动量守恒定律
6.(09安徽24)过山车是游乐场中常见的设施。下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径、。一个质量为kg的小球(视为质点),从轨道的左侧A点以的初速度沿轨道向右运动,A、B间距m。小球与水平轨道间的动摩擦因数,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度取,计算结果保留小数点后一位数字。试求
(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;
(2)如果小球恰能通过第二圆形轨道,B、C间距应是多少;
(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径应满足的条件;小球最终停留点与起点的距离。

答案:(1)10.0N;(2)12.5m(3)当时,;当时,
解析:(1)设小于经过第一个圆轨道的最高点时的速度为v1根据动能定理

小球在最高点受到重力mg和轨道对它的作用力F,根据牛顿第二定律

由①②得③
(2)设小球在第二个圆轨道的最高点的速度为v2,由题意


由④⑤得⑥
(3)要保证小球不脱离轨道,可分两种情况进行讨论:
I.轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为v3,应满足


由⑥⑦⑧得
II.轨道半径较大时,小球上升的最大高度为R3,根据动能定理
解得
为了保证圆轨道不重叠,R3最大值应满足
解得R3=27.9m
综合I、II,要使小球不脱离轨道,则第三个圆轨道的半径须满足下面的条件

当时,小球最终焦停留点与起始点A的距离为L′,则
当时,小球最终焦停留点与起始点A的距离为L〞,则
7.(09重庆23)2009年中国女子冰壶队首次获得了世界锦标赛冠军,这引起了人们对冰壶运动的关注。冰壶在水平冰面上的一次滑行可简化为如下过程:如题23图,运动员将静止于O点的冰壶(视为质点)沿直线推到A点放手,此后冰壶沿滑行,最后停于C点。已知冰面各冰壶间的动摩擦因数为,冰壶质量为m,AC=L,=r,重力加速度为g

(1)求冰壶在A点的速率;
(2)求冰壶从O点到A点的运动过程中受到的冲量大小;
(3)若将段冰面与冰壶间的动摩擦因数减小为,原只能滑到C点的冰壶能停于点,求A点与B点之间的距离。
解析:
8.(09广东物理19)如图19所示,水平地面上静止放置着物块B和C,相距=1.0m。物块A以速度=10m/s沿水平方向与B正碰。碰撞后A和B牢固地粘在一起向右运动,并再与C发生正碰,碰后瞬间C的速度=2.0m/s。已知A和B的质量均为m,C的质量为A质量的k倍,物块与地面的动摩擦因数=0.45.(设碰撞时间很短,g取10m/s2)
(1)计算与C碰撞前瞬间AB的速度;
(2)根据AB与C的碰撞过程分析k的取值范围,并讨论与C碰撞后AB的可能运动方向。
解析:⑴设AB碰撞后的速度为v1,AB碰撞过程由动量守恒定律得
设与C碰撞前瞬间AB的速度为v2,由动能定理得
联立以上各式解得
⑵若AB与C发生完全非弹性碰撞,由动量守恒定律得
代入数据解得
此时AB的运动方向与C相同
若AB与C发生弹性碰撞,由动量守恒和能量守恒得
联立以上两式解得
代入数据解得
此时AB的运动方向与C相反
若AB与C发生碰撞后AB的速度为0,由动量守恒定律得
代入数据解得
总上所述得当时,AB的运动方向与C相同
当时,AB的速度为0
当时,AB的运动方向与C相反
9.(09广东物理20)如图20所示,绝缘长方体B置于水平面上,两端固定一对平行带电极板,极板间形成匀强电场E。长方体B的上表面光滑,下表面与水平面的动摩擦因数=0.05(设最大静摩擦力与滑动摩擦力相同)。B与极板的总质量=1.0kg.带正电的小滑块A质量=0.60kg,其受到的电场力大小F=1.2N.假设A所带的电量不影响极板间的电场分布。t=0时刻,小滑块A从B表面上的a点以相对地面的速度=1.6m/s向左运动,同时,B(连同极板)以相对地面的速度=0.40m/s向右运动。问(g取10m/s2)

(1)A和B刚开始运动时的加速度大小分别为多少?
(2)若A最远能到达b点,a、b的距离L应为多少?从t=0时刻至A运动到b点时,摩擦力对B做的功为多少?
解析:⑴由牛顿第二定律有
A刚开始运动时的加速度大小方向水平向右
B刚开始运动时受电场力和摩擦力作用
由牛顿第三定律得电场力
摩擦力
B刚开始运动时的加速度大小方向水平向左
⑵设B从开始匀减速到零的时间为t1,则有
此时间内B运动的位移
t1时刻A的速度,故此过程A一直匀减速运动。
此t1时间内A运动的位移
此t1时间内A相对B运动的位移
此t1时间内摩擦力对B做的功为
t1后,由于,B开始向右作匀加速运动,A继续作匀减速运动,当它们速度相等时A、B相距最远,设此过程运动时间为t2,它们速度为v,则有
对A速度
对B加速度
速度
联立以上各式并代入数据解得
此t2时间内A运动的位移
此t2时间内B运动的位移
此t2时间内A相对B运动的位移
此t2时间内摩擦力对B做的功为
所以A最远能到达b点a、b的距离L为
从t=0时刻到A运动到b点时,摩擦力对B做的功为

10.(09宁夏24)冰壶比赛是在水平冰面上进行的体育项目,比赛场地示意如图。比赛时,运动员从起滑架处推着冰壶出发,在投掷线AB处放手让冰壶以一定的速度滑出,使冰壶的停止位置尽量靠近圆心O.为使冰壶滑行得更远,运动员可以用毛刷擦冰壶运行前方的冰面,使冰壶与冰面间的动摩擦因数减小。设冰壶与冰面间的动摩擦因数为=0.008,用毛刷擦冰面后动摩擦因数减少至=0.004.在某次比赛中,运动员使冰壶C在投掷线中点处以2m/s的速度沿虚线滑出。为使冰壶C能够沿虚线恰好到达圆心O点,运动员用毛刷擦冰面的长度应为多少?(g取10m/s2)
解析:

设冰壶在未被毛刷擦过的冰面上滑行的距离为,所受摩擦力的大小为:在被毛刷擦过的冰面上滑行的距离为,所受摩擦力的大小为。则有
+=S①
式中S为投掷线到圆心O的距离。


设冰壶的初速度为,由功能关系,得

联立以上各式,解得

代入数据得

【考点模拟演练】
1.已知货物的质量为m,在某段时间内起重机将货物以a的加速度加速升高h,则在这段时间内,下列叙述正确的是(重力加速度为g)()
A.货物的动能一定增加mah-mgh
B.货物的机械能一定增加mah
C.货物的重力势能一定增加mah
D.货物的机械能一定增加mah+mgh
【答案】选D.
【详解】根据动能定理可知,货物动能的增加量等于货物合外力做的功mah,A错误;根据功能关系,货物机械能的增量等于除重力以外的力做的功而不等于合外力做的功,B错误;由功能关系知,重力势能的增量对应货物重力做的负功的大小mgh,C错误;由功能关系,货物机械能的增量为起重机拉力做的功m(g+a)h,D正确.
2.(20xx福州模拟)重物m系在上端固定的轻弹簧下端,用手托起重物,使弹簧处于竖直方向,弹簧的长度等于原长时,突然松手,重物下落的过程中,对于重物、弹簧和地球组成的系统来说,正确的是(弹簧始终在弹性限度内变化)()
A.重物的动能最大时,重力势能和弹性势能的总和最小
B.重物的重力势能最小时,动能最大
C.弹簧的弹性势能最大时,重物的动能最小
D.重物的重力势能最小时,弹簧的弹性势能最大
【答案】选A、C、D.
【详解】重物下落过程中,只发生动能、重力势能和弹性势能的相互转化,所以当动能最大时,重力势能和弹性势能的总和最小,A正确;当重物的重力势能最小时,重物应下落到最低点,其速度为零,动能最小,此时弹簧伸长量最大,弹性势能最大,故B错误,C、D正确.
3.如图(甲)所示,质量不计的弹簧竖立固定在水平面上,t=0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F随时间t变化的图象如图(乙)所示,则()
A.t1时刻小球动能最大
B.t2时刻小球动能最大
C.t2~t3这段时间内,小球的动能先增加后减少
D.t2~t3这段时间内,小球增加的动能等于弹簧减少的弹性势能
【答案】选C.
【详解】小球在未碰弹簧前先做自由落体运动,碰后先做加速度减小的加速运动直到加速度为零,即重力等于弹簧的弹力时速度最大,而后做加速度增大的减速运动,上升过程恰好与下降过程互逆,在整个过程中小球的动能、势能及弹簧的弹性势能总和不变,由(乙)图可知t1时刻小球开始接触弹簧,t2时刻小球运动到最低点,动能最小,t3时刻小球恰好离开弹簧上升,t2~t3这段时间内小球从最低点向上运动的过程中先加速到速度最大然后做减速运动,小球动能先增加后减少,弹簧减少的弹性势能转化为小球的动能和重力势能,故选C.
4.(20xx吉林模拟)如图所示,小球从A点以初速度v0沿粗糙斜面向上运动,到达最高点B后返回A,C为AB的中点.下列说法中正确的是()
A.小球从A出发到返回A的过程中,位移为零,外力做功为零
B.小球从A到C过程与从C到B过程,减少的动能相等
C.小球从A到C过程与从C到B过程,速度的变化量相等
D.小球从A到C过程与从C到B过程,损失的机械能相等
【答案】选B、D.
【详解】小球从A出发到返回A的过程中,重力做功为零,摩擦力做负功,A错误;小球从A到C过程与从C到B过程中,合外力做功相等,动能的增量相等,但速度的变化量不等,B正确,C错误;小球从A到C过程与从C到B过程,损失的机械能等于克服摩擦力做的功,而克服摩擦力做的功相等,故D正确.
5.节日燃放礼花弹时,要先将礼花弹放入一个竖直的炮筒中,然后点燃礼花弹的发射部分,通过火药剧烈燃烧产生的高压燃气,将礼花弹由炮筒底部射向空中.若礼花弹在由炮筒底部出发至炮筒口的过程中,克服重力做功W1,克服炮筒阻力及空气阻力做功W2,高压燃气对礼花弹做功W3,则礼花弹在炮筒内运动的过程中(设礼花弹发射过程中质量不变)
()
A.礼花弹的动能变化量为W3+W2+W1
B.礼花弹的动能变化量为W3-W2-W1
C.礼花弹的机械能变化量为W3-W2
D.礼花弹的机械能变化量为W3-W1
【答案】BC
【详解】由动能定理,动能变化量等于合外力做的功,即W3-W2-W1,B正确.除重力之外的力的功对应机械能的变化,即W3-W2,C正确.
6.飞船返回时高速进入大气层后,受到空气阻力的作用,接近地面时,减速伞打开,在距地面几米处,制动发动机点火制动,飞船迅速减速,安全着陆.下列说法正确的是
()
A.制动发动机点火制动后,飞船的重力势能减少,动能减小
B.制动发动机工作时,由于化学能转化为机械能,飞船的机械能增加
C.重力始终对飞船做正功,使飞船的机械能增加
D.重力对飞船做正功,阻力对飞船做负功,飞船的机械能不变
【答案】A
【详解】制动发动机点火制动后,飞船迅速减速下落,动能、重力势能均变小,机械能减小,A正确,B错误;飞船进入大气层后,空气阻力做负功,机械能一定减小,故C、D均错误.
7.如图所示,具有一定初速度的物块,沿倾角为30°的粗糙斜面向上运动的过程中,受一个恒定的沿斜面向上的拉力F作用,这时物块的加速度大小为4m/s2,方向沿斜面向下,那么,在物块向上运动过程中,正确的说法是()
A.物块的机械能一定增加
B.物块的机械能一定减小
C.物块的机械能可能不变
D.物块的机械能可能增加也可能减小
【答案】A
【详解】机械能变化的原因是非重力、弹簧弹力做功,本题亦即看成F与Fμ做功大小问题,由mgsinα+Fμ-F=ma,知F-Fμ=mgsin30°-ma0,即FFμ,故F做正功多于克服摩擦力做功,故机械能增大.
8.如图所示,分别用恒力F1、F2先后将质量为m的物体由静止开始沿同一粗糙的固定斜面由底端拉至顶端,两次所用时间相同,第一次力F1沿斜面向上,第二次力F2沿水平方向,则两个过程
()
A.合外力做的功相同
B.物体机械能变化量相同
C.F1做的功与F2做的功相同
D.F1做的功比F2做的功多
【答案】AB
【详解】两次物体运动的位移和时间相等,则两次的加速度相等,末速度也应相等,则物体的机械能变化量相等,合力做功也应相等.用F2拉物体时,摩擦力做功多些,两次重力做功相等,由动能定理知,用F2拉物体时拉力做功多.
9.一物体沿固定斜面从静止开始向下运动,经过时间t0滑至斜面底端.已知在物体运动过程中物体所受的摩擦力恒定.若用F、v、x和E分别表示该物体所受的合力、物体的速度、位移和机械能,则如下图所示的图象中可能正确的是
()
【答案】AD
【详解】物体在沿斜面向下滑动的过程中,受到重力、支持力、摩擦力的作用,其合力为恒力,A正确;而物体在此合力作用下做匀加速运动,v=at,x=12at2,所以B、C错;物体受摩擦力作用,总的机械能将减小,D正确.
10.如图所示,甲、乙两车用轻弹簧相连静止在光滑的水平面上,现在同时对甲、乙两车施加等大反向的水平恒力F1、F2,使甲、乙同时由静止开始运动,在整个过程中,对甲、乙两车及弹簧组成的系统(假定整个过程中弹簧均在弹性限度内),正确的说法是()
A.系统受到外力作用,动能不断增大
B.弹簧伸长到最长时,系统的机械能最大
C.恒力对系统一直做正功,系统的机械能不断增大
D.两车的速度减小到零时,弹簧的弹力大小大于外力F1、F2的大小
【答案】选B.
【详解】对甲、乙单独受力分析,两车都先加速后减速,故系统动能先增大后减小,A错误;弹簧最长时,外力对系统做正功最多,系统的机械能最大,B正确;弹簧达到最长后,甲、乙两车开始反向加速运动,F1、F2对系统做负功,系统机械能开始减小,C错;当两车第一次速度减小到零时,弹簧弹力大小大于F1、F2的大小,当返回第二次速度最大时,弹簧的弹力大小等于外力大小,当速度再次为零时,弹簧的弹力大小小于外力F1、F2的大小,D错误.
11.(16分)工厂流水线上采用弹射装置把物品转运,现简化其模型分析:如图所示,质量为m的滑块,放在光滑的水平平台上,平台右端B与水平传送带相接,传送带的运行速度为v0,长为L;现将滑块向左压缩固定在平台上的轻弹簧,到达某处时由静止释放,若滑块离开弹簧时的速度小于传送带的速度,当滑块滑到传送带右端C时,恰好与传送带速度相同,滑块与传送带间的动摩擦因数为μ.求:
(1)释放滑块时,弹簧具有的弹性势能;
(2)滑块在传送带上滑行的整个过程中产生的热量.
【答案】(1)12mv20-μmgL
(2)mv0(v0-v20-2μgL)-μmgL
【详解】(1)设滑块冲上传送带时的速度为v,在弹簧弹开过程中,
由机械能守恒Ep=12mv2
滑块在传送带上做匀加速运动
由动能定理μmgL=12mv20-12mv2
解得:Ep=12mv20-μmgL.
(2)设滑块在传送带上做匀加速运动的时间为t,则t时间内传送带的位移
s=v0t
v0=v+atμmg=ma
滑块相对传送带滑动的位移Δs=s-L
相对滑动生成的热量Q=μmgΔs
解得:Q=mv0(v0-v20-2μgL)-μmgL.
12.(17分)如图所示,一质量为m的滑块从高为h的光滑圆弧形槽的顶端A处无初速度地滑下,槽的底端B与水平传送带相接,传送带的运行速度恒为v0,两轮轴心间距为l,滑块滑到传送带上后做匀加速运动,滑到传送带右端C时,恰好加速到与传送带的速度相同,求:
(1)滑块到达底端B时的速度大小vB;
(2)滑块与传送带间的动摩擦因数μ;
(3)此过程中,由于克服摩擦力做功而产生的热量Q.
【答案】(1)2gh(2)v20-2gh2gl(3)mv0-2gh22
【详解】(1)滑块在由A到B的过程中机械能守恒,
可得:mgh=12mv2B.
解得:vB=2gh.
(2)滑块在由B到C的过程中,应用动能定理得:
μmgl=12mv20-12mv2B.
解得μ=v20-2gh2gl.
(3)Q=Ffl相对=μmgl相对
l相对=v0-vB22μg=v0-2gh22μg,
故Q=mv0-2gh22.