小学三年级数学教案
发表时间:2020-04-30七年级数学下册《轴对称图形》学案分析湘教版。
七年级数学下册《轴对称图形》学案分析湘教版
轴对称图形
教学目标
1.通过具体实例认识轴对称图形、对称轴,能画出简单轴对称图形的对称轴.
2.探索轴对称图形的基本性质,理解“对称轴垂直平分连结两个对称点之间的线段”的性质.
3.会用对折的方法判断轴对称图形,理解作对称轴的方法.
4.通过丰富的情境,使学生体验丰富的文化价值与广泛的运用价值.
教学重点、难点
1.本节教学的重点是认识轴对称图形,会作对称轴.
2.轴对称图形的性质的得出需要一个比较复杂的探索过程,其中包括推理和表述,是本节教学的难点.
教学准备
学生:复习小学学过的轴对称图形,从现实生活中找4-5个轴对称图形.
教师:准备教学活动材料,收集轴对称图形.
教学过程
一、回顾交流,列举识别
1.怎样又快又好地剪出这个“王”宇.说明:让学生用纸、剪刀剪一剪.
2.这个“工”字有什么特征?
说明:对折后能够互相重合,具有这种特征的图形叫轴对称图形,这条折痕所在的直线叫做对称轴.
3.在小学时,我们已经学过轴对称图形,请例举一些数学、生活中的轴对称图形.
说明:让学生举例以回顾小学所学的知识,丰富学习情境,但要注意学生所举的例子会存在思路偏窄,教师要注意引导拓宽.
4.教师展示教学多媒体:指出下列图片中,哪些是轴对称图形.
说明:进一步丰富情境,体验轴对称的丰富的文化价值与广泛的运用价值.
二、合作探索,明晰性质
1.发给学生活动材料1
2.交流归纳,总结如下:
(1)可用对折的方法判断一个图形是否是轴对称图形;
(2)轴对称图形中互相对应的点称为对称点;
(3)对称轴垂直平分连结两个对称点之间的线段.
三、运用性质,内化方法
1.分发教学活动材料2,学生独立思考.
2.同伴交流.
同桌或小组交流各自的画法.
3.交流归纳,总结方法如下:
方法1:过线段AB,CD的中点画直线;
方法2:作线段AB的垂直平分线;
方法3:作线段CD的垂直平分线.
4.分发教学活动材料3,学生独立或小组合作完成.JAB88.com
说明:画一个点M关于对称轴l的对称点的方法是:作点M到对称轴l的垂线段MO并延长,在延长线上找一点N,使NO=MO,则点N就是已知点M的对称点.
四、总结提高,课内练习
(1)如果把一个图形沿着一条直线折起来,直线两侧的部分能够__________,那
么这个图形叫做轴对称图形,这条直线叫做_______________.
(2)轴对称图形的性质______________________________________
(3)作出一个轴对称图形的对称轴的常用方法:____________________________________
(4)举几个轴对称图形的实例,并指出对称轴.
相关知识
七年级数学简单的轴对称图形
北师大版实验教科书七年级下册
7.2简单的轴对称图形
教学目标:1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念
2、探索并了解角的平分线、线段垂直平分线的有关性质。
教学重点:1、角、线段是轴对称图形
2、角的平分线、线段垂直平分线的有关性质
教学难点:角的平分线、线段垂直平分线的有关性质
教学方法:动手实践、讨论。
教学工具:课件
准备活动:准备一个三角形、一张画好一条线段的纸张
教学过程:
先复习轴对称图形的知识,提问:角是不是轴对称图形呢?如果是,它的对称轴在哪里?引起学生思考并通过动手操作,寻找答案。
一、探索活动
教师示范:(按以下步骤折纸)
1、在准备好的三角形的每个顶点上标好字母;A、B、C。把角A对折,使得这个角的两边重合。
2、在折痕(即平分线)上任意找一点C,
3、过点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA的交点,即垂足。
4、将纸打开,新的折痕与OB边交点为E。
教师要引导学生思考:我们现在观察到的只是角的一部分。注意角的概念。
学生通过思考应该大部分都能明白角是轴对称图形这个结论。
问题2:在上述的操作过程中,你发现了哪些相等的线段?说明你的理由,在角平分线上在另找一点试一试。是否也有同样的发现?
学生应该很快就找到相等的线段。
下面用我们学过的知识证明发现:
如图,已知AO平分∠BAC,OE⊥AB,OD⊥AC。求证:OE=OD。
巩固练习:在Rt△ABC中,BD是角平分线,DE⊥AB,垂足为E,DE与DC相等吗?为什么?
(1)如图,OC是∠AOB的平分线,点P在OC上,PO⊥OA,PE⊥OB,垂足分别是D、E,PD=4cm,则PE=__________cm.
(2)如图,在△ABC中,,∠C=90°,AD平分∠BAC交BC于D,点D到AB的距离为5cm,则CD=_____cm.
内容二:线段是轴对称图形吗?
做一做:按下面步骤做:
1、用准备的线段AB,对折AB,使得点A、B重合,折痕与AB的交点为O。
2、在折痕上任取一点C,沿CA将纸折叠;
3、把纸展开,得到折痕CA和CB。
观察自己手中的图形,回答下列问题:
(1)CO与AB有什么样的位置关系?
(2)AO与OB相等吗?CA与CB呢?能说明你的理由吗?
在折痕上另取一点,再试一试,你又有什么发现?
学生会得到下面的结论:
(1)线段是轴对称图形。
(2)它的对称轴垂直于这条线段并且平分它。
(3)对称轴上的点到这条线段的距离相等。
应用:
(4)如图,AB是△ABC的一条边,,DE是AB的垂直平分线,垂足为E,并交BC于点D,已知AB=8cm,BD=6cm,那么EA=________,DA=____.
(5)如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于D,如果BC=10cm,那么△BCD的周长是_______cm.
小结:今天学习的内容是:
(1)角是轴对称图形。
(2)角平分线上的点到这个角的两边的距离相等。
(3)线段是轴对称图形。
(4)垂直并且平分线段的直线叫做这条线段的垂直平分线。简称中垂线。
(5)线段垂直平分线上的点到这条线段的两个端点距离相等。
作业:课本P193习题7.2:1、2、3。
教学后记:学生对这节课的内容比较难掌握,特别是对于“角平分线上的点到这个角的两边距离相等”这个性质,一时难于理解。的部分原因是学生忘记了点但直线的距离是什么一回事。而对于中垂线的理解较好。基本上能找到当中相等的线段,并且用学过的知识予以证明。内容较多,容量较大。课后还要加强理解和练习。
七年级数学轴对称现象
每个老师在上课前需要规划好教案课件,是时候写教案课件了。只有规划好新的教案课件工作,才能更好的在接下来的工作轻装上阵!你们会写适合教案课件的范文吗?为了让您在使用时更加简单方便,下面是小编整理的“七年级数学轴对称现象”,仅供参考,大家一起来看看吧。
北师大版实验教科书七年级上册
7、1轴对称现象
教学目标:
1.经历观察、分析现实生活实例和典型图案的过程,认识轴对称和轴对称图形培养学生探索知识的能力与分析问题、思考问题的习惯。
2.会找出简单对称图形的对称轴。了解轴对称和轴对称图形的联系与区别。
教学重点难点:本节课的重点是通过对现实生活实例和典型图案的观察与分析,认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴。找出简单轴对称图形的对称轴与理解轴对称和轴对称图形的联系与区别是难点。
教学方法:
教学用具:
活动准备:收集各类有关对称的图案和各种现实生活中有关对称的实例,作为教学时互相交流的资料。
教学过程:
一、看一看:
1.投影或演示各类具有轴对称特点的图案(如课本上所绘的图象或由学生课前收集的各类具有对称特点的图案)
3.分析各类图案的特点,让学生经历观察和分析,初步认识轴对称图形。
二、议一议
1.试举例说明现实生活中也具有轴对称特征的物体,发展学生想象能力。
2.让学生感到具有轴对称特征的物体,它们都是关于一条直线形成对称。
三、做一做
1.把具有轴对称特征的图形沿某一条直线对折,使直线两旁的部分能够互相重合
把具有轴对称特征的图形沿某一条直线对折,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
让学生说出以前学习过的轴对称图形,并找出它的对称轴
2.弄清楚轴对称与轴对称图形的区别
对于两个图形,如果沿一条直线对折后,它们能完全重合,那么这两个图形成轴对称,这条直线就是对称轴。
轴对称是指两个图形之间的形状和位置关系。而轴对称图形是对一个图形而言的,轴对称图形是一个具有特殊形状的图形。它们都有没某条直线对折使直线两旁的图形能重合的特征。
小结:今天我们经历观察和分析了现实生活实例和图案,了解了现实生活中存在许多有关对称的事例,认识了轴对称与轴对称图形,并能找出一些简单轴对称图形的对称轴。
教后记:
学生对于判断是否轴对称图形较清楚,但是对轴对称图形和两个图形成轴对称这两个概念较难掌握,在举例的过程中学生的积极性被完全调动起来,上课的气氛较好。七年级数学下册《旋转》学案分析湘教版
一般给学生们上课之前,老师就早早地准备好了教案课件,大家静下心来写教案课件了。必须要写好了教案课件计划,未来的工作就会做得更好!你们会写一段优秀的教案课件吗?考虑到您的需要,小编特地编辑了“七年级数学下册《旋转》学案分析湘教版”,相信能对大家有所帮助。
七年级数学下册《旋转》学案分析湘教版
教学目标
1.通过具体实例了解生活中图形的旋转及旋转变换的概念;理解旋转变换的性质并会按要求作出简单平面图形经旋转变换后所得的图像;能利用旋转中心、旋转的方向和度数来描述一个旋转变换。
2.经历对生活中与旋转现象有关的图形进行观察、分析、操作、抽象概括,经历探索旋转变换的性质,探求如何画一个图形经旋转变换后所得的像的方法等过程,体验“以局部带整体”的作图思想方法,进一步发展学生的空间观念。
3.通过对旋转图形的欣赏和探索,使学生体会旋转变换在现实生活的存在,激发学生的数学学习兴趣,增强审美观念,培养学生的科学探究精神。
教学重点、难点
教学重点:认识旋转变换的概念并理解其性质,探求简单图形经旋转变换后所得的像的画法,并掌握根据旋转中心、旋转的方向和度数三个条件作图。
教学难点:探求旋转变换的性质及探求如何作一个图形经旋转变换后所得的像。
教学过程
一、创设情境,引入新知
我们生活的世界,除了物体的平行移动外,还可以看到许多物体的旋转现象:
其中包含着丰富的数学知识。
1、探讨旋转变换的概念
请学生思考风车的叶子由A至B及钟表的钟摆由C至D的运动过程中,提出三个问题:
(1)哪些部位作旋转?其形状、大小是否发生改变?
(2)旋转的部位,其物体各部分旋转有什么共同特征?(从方向和角度考虑)
通过学生与学生,学生与教师共同交流、感知并形成共识,指出这些运动过程中蕴涵了另一种图形的变换(揭示课题)——旋转变换。
2、想一想:通过以上讨论:
(1)你能举出实际生活中旋转运动的例子吗?
(2)从哪几个方面来说明物体运动是旋转变换?(从三个方面来说明:旋转中心,旋转方向和旋转角度)
在学生的讨论基础上师生共同概括出旋转变换的概念:
将一个图形改变为另一个图形,在改变的过程中,原图形上的所有点都绕一个固定点,按同一个方向,转动同一个角度,这样的图形改变叫做旋转(rotation),这个固定点叫做旋转中心(centreofrotation)。
做一做:及时巩固旋转变换的概念。叙述旋转变换必须有三个要素:旋转中心,旋转方向和旋转角度。
二、师生合作,探索新知
1、探求旋转变换的性质。
继续探索旋转变换的性质。观察右图并思考?
(1)旋转过程中旋转中心是什么?旋转后形状、大小是否发生改变?
(2)经过旋转,点A、B、C分别移动到什么位置?
(3)AO与DO的长有什么关系?BO与EO,OC与OF呢?
(4)∠AOD、∠BOE、∠COF有什么大小关系?
2、学生交流总结得出旋转变换性质:
(1)旋转变换不改变形状、大小。
(2)对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角都是旋转的角度。
教师追问:旋转变换不改变图形的形状、大小,这意味着旋转前后两图形具有怎样的图形关系?
(3)探求图形经旋转变换后的图形的作法。
想一想:以点O为旋转中心,将点A顺时针方向旋转50度,作出对应点A’。
学生经过相互讨论和交流,可提供作图方案,教师可与学生共同整理。
作法:1、连结OA,以O为顶点,作∠AOB=50o
2、在边OB取点A’,使OA=OA’。A’就是作出A对应点。
通过作图,可使学生了解到利用旋转变换的性质就可以完成简单图形的旋转作图。也可借助尺规及量角器完成作图。在此基础上进一步对例题讲解。
3、例题讲解:如图,O是△ABC外一点,以点O为旋转中心,将△ABC按逆时针方向旋转80度,作出经旋转变换后的像。
教师以几个问题引导学生分析作图思路并总结作图步骤:
思考并回答:
(1)组成一个三角形需几个关键点?
(2)作此三角形经旋转变换后的像的问题能否转化为先找此三角形的3个顶点的对应点的问题?
(3)确定了图形的旋转的方向和角度,能否确定图形上点旋转的方向和角度?
(4)确定了点的旋转的方向和角度,如何作出的共对应点呢?
(5)找出各顶点的对应点后如何得出原图形经旋转后的像呢?为什么你能肯定所作图形为所求的像?
学生解决了以上的各问也就能总结出作图步骤。具体作图教师板演示范,学生也动手进行操作:
解:
(1)以点O为旋转中心,分别把A、B、C按逆时针方向旋转80度,得点A’、B’、C’.
(2)连结A’B’、B’C’、C’A’.
△A’B’C’就是所求作的旋转变换后的像。
三、练习反馈,巩固新知
完成课本课内练习
四、梳理知识,形成结构
1、请学生谈自己学习了本节课的收获。
2、在交流中师生可共同梳理知识点:
(1)认识旋转变换。
(2)理解和掌握旋转变换的性质。
(3)会画出某图形经旋转变换后的像。
(4)不论是作图还是描述一个旋转变换都需要知道三个要素:旋转中心,旋转方向和旋转角度。
3、比较轴对称变换、平移变换、旋转变换区别及联系
变换特征形状大小方向轴对称变换不变不变改变平移变换不变不变不变旋转变换不变不变改变