88教案网

你的位置: 教案 > 初中教案 > 导航 > 用坐标表示轴对称导学案

小学对称教案

发表时间:2020-12-08

用坐标表示轴对称导学案。

13.2.2用坐标表示轴对称

一、学习目标
1、能够经过探索利用坐标来表示轴对称;
2、掌握关于轴、轴对称的点的坐标特点。
二、温故知新
如图:(1)观察图(1)中两个圆脸有什么关系?
(2)若已知图(1)中圆脸右眼的坐标为(4,3),左眼
的坐标为(2,3),嘴角两个端点,右端点的坐标为(4,1),
左端点的坐标为(2,1).你能根据轴对称的性质写出左边圆
脸上左眼,右眼及嘴角两端点的坐标吗?
三、自主探究合作展示
探究(一)
1、在如图(2)所示平面直角坐标系内画出下列已知点以及对称点,并把坐标填在表格中,你能发现坐标间有什么规律?
已知点A(2,-3)B(-1,2)C(-6,-5)D(0.5,1)E(4,0)
关于轴对称的点()()()()()
关于轴对称的点()()()()()

2、归纳:点(,)关于轴对称的点的坐标是;
点(,)关于轴对称的点的坐标是

探究(二)
例题:
如图(3),四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别作出四边形ABCD关于轴和轴对称的图形。
例题反思:

四、双基检测
1、分别写出下列各点关于轴和轴对称的点的坐标。

(3,6)(-7,9)(-3,-5)(6,-1)(0,10)
关于轴对称的点
关于轴对称的点

2、已知点(2a+b,-3a)与点(8,b+2).(1)若点与点关于轴对称,则a=_____;b=_______.
(2)若点与点关于轴对称,则a=_____;b=_______.
3、如图(4),△OBC关于轴对称,点A的坐标为(1,-2),标出点B的坐标.

3、如图(5),利用关于坐标轴对称的点的坐标的特点,分别作出与△ABC关于轴和轴对称的图形.
五、学习反思

延伸阅读

12.2.2用坐标表示轴对称(一课时)学案


12.2.2用坐标表示轴对称(一课时)

学习目标:1、能够经过探索利用坐标来表示轴对称。

2、掌握关于x轴、y轴对称的点的坐标特点。

学习重点:关于x轴、y轴对称的点的坐标特点。

学习难点:用坐标表示轴对称的应用。

学习过程:

(一)创设情境,感受新知

一关于x轴、y轴对称的点的坐标特点

探究1:如图,在平面直角坐标系中你能画出点A(2,3)关于x轴的对称点吗?它的坐标是______.

再画B(-4,-1)点关于X轴对称点B’().

观察每对对称点横坐标、纵坐标各有什么关系?

总结:关于归纳:关于x轴对称的点的坐标的特点是:

**横坐标_____,纵坐标_____________.

探究2:如右图,在平面直角坐标系中你能画出点A(2,4)关于y轴的对称点吗?它的坐标是______.

再画B(-4,-3)点关于y轴对称点B’().

观察每对对称点横坐标、纵坐标各有什么关系?

总结:关于归纳:关于y轴对称的点的坐标的特点是:

**横坐标_____,纵坐标_____________.

探究3

已知点A(2,-3)B(-1,2)C(-6,-5)D(0.5,1)E(4,0)

关于x轴对称的点A’()B’()C’()D’()E’()

关于y轴对称的点A’’()B’’()C’’()D’’()E’’()

归纳:点(x,y)关于x轴对称的点的作标是;

点(x,y)关于y轴对称的点的作标是

已知点P(2a+b,-3a)与点P’(8,b+2).

若点p与点p’关于x轴对称,则a=_____b=_______.

若点p与点p’关于y轴对称,则a=_____b=_______.

(二)拓展延伸,运用新知

1、点P(-5,6)与点Q关于x轴对称,则点Q的坐标为__________.

2、点M(a,-5)与点N(-2,b)关于x轴对称,则a=_____,b=_____.

3、点P(-5,6)与点Q关于y轴对称,则点Q的坐标为__________.

4、点M(a,-5)与点N(-2,b)关于y轴对称,则a=_____,b=_____.

5如图,利用关于坐标轴对称的点的坐标的特点,分别作出与△ABC关于x轴和y轴对称的图形

6、如下图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别作出四边形ABCD关于y轴和x轴对称的图形

(三)本节课收获

《用坐标表示平移》导学案


每个老师为了上好课需要写教案课件,大家在认真写教案课件了。我们要写好教案课件计划,这对我们接下来发展有着重要的意义!你们会写多少教案课件范文呢?以下是小编收集整理的“《用坐标表示平移》导学案”,欢迎您阅读和收藏,并分享给身边的朋友!

七年级年级数学学科导学案
《用坐标表示平移》导学案
班级小组名姓名小组评价教师评价

学习目标1、掌握点的坐标轴变化与点的左右或上下平移间的关系。
2、掌握图形各个点的坐标变化与图形平移的关系并解决与平移有关的问题。教学流程
学习重点掌握坐标变化与图形平移的关系。

学习难点利用坐标变化与图形平移的关系解决实际问题。
一、预习导学(教材P51~52)
1、(1)在平面直角坐标系中,将点(x,y)向右或左平移a个长度,可以得到点的对应点是(x+a,y)或(,);将点(x,y)向上或下平移b个长度,可以得到对应点是(x,y+b)或(,).
(2)在平面直角坐标系中,如果把一个图形的各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向(或向)平移
个单位长度;如果把一个图形的各纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向(或向)平移个单位长度。
规律总结:

2、将点P(-4,3)先向左平移2个单位,再向下平移2个单位得点P′,则点
P′的坐标为()
A、(-2,5)B、(-6,1)C、(-6,5)D、(-2,1)
3、在平面直角坐标系中,将三角形各点的横坐标都加上3,纵坐标保持不变,所得图形与原图形相比()
A、向右平移了3个单位B、向左平移了3个单位
C、向上平移了3个单位D、向下平移了3个单位
二、合作研讨
例:如图1,三角形ABC的三个顶点的坐标分别为A(1,1),B(3,1),C(4,3),把三角形ABC向左(或向上)平移3个单位后,三角形A′B′C′顶点A′、B′、C′的坐标分别为多少?(2)求三角形ABC的面积。(3)三角形A′B′C′与三角形ABC的大小、形状有什么关系?
三、当堂检测
1、在平面直角坐标系中,把M(0,2)向上平移4个单位长度,得到M1();把M(-1,-3)向右平移4个单位,得到M2().
2、已知点A(-1,-3),将点A向右平移4个单位长度,再向下平移2个单位长度后得到点B,则点B在()
A、第一象限B、第二象限C、第三象限D、第四象限
3、将三角形各顶点的纵坐标分别加3,横坐标不变,连接三个点所成的三角形是原图形()
A、向左平移3个单位得到B、向右平移3个单位得到
C、向上平移3个单位得到D、向下平移3个单位得到
4、已知点P(m,n)经过平移后变为(m+3,n),则点P需()
A、向左平移3个单位得到B、向右平移3个单位得到
C、向上平移3个单位得到D、向下平移3个单位得到
5、已知点A(2,-2),如果把点A向上平移4个单位长度,再向左平移4个单位得到点C,那么C点的坐标是()
A、(2,2)B、(-2,2)C、(-1,-1)D、(-2,-2)
6、将点P(-3,y)向下平移三个单位,向左平移2个单位后得到点Q(x,-1),则xy=。
7、三角形ABC中,三个顶点的坐标分别为A(-5,0),B(4,0),C(2,5),将三角形ABC沿X轴正方向平移2个单位长度,再沿Y轴负方向平移1个单位长度得到三角形EFG。
(1)求三角形EFG的三个顶点的坐标。
(2)求三角形EFG的面积。
课后反思

2017八上数学13.2画轴对称图形第2课时用坐标表示轴对称学案


老师会对课本中的主要教学内容整理到教案课件中,大家在认真准备自己的教案课件了吧。只有写好教案课件计划,才能够使以后的工作更有目标性!你们到底知道多少优秀的教案课件呢?下面是小编精心收集整理,为您带来的《2017八上数学13.2画轴对称图形第2课时用坐标表示轴对称学案》,希望能为您提供更多的参考。

第2课时用坐标表示轴对称
1.探索关于x轴、y轴对称的每对对称点的规律.
2.利用关于x轴、y轴对称的点的坐标的规律,能作出关于x轴、y轴对称的图形.
阅读教材P69~70“思考、归纳及例2”,完成预习内容.
知识探究
(1)如图,在坐标系中作出B、C两点关于x轴对称的点;
思考:点(x,y)关于x轴的对称点是________;
归纳:关于x轴对称的点的坐标的特点:横坐标________,纵坐标互为________.
第(1)题图第(2)题图

(2)如图,在坐标系中作出B、C两点关于y轴对称的点;
思考:点(x,y)关于y轴的对称点是________;
归纳:关于y轴对称的点的坐标的特点:纵坐标________,横坐标互为________.
自学反馈
1.点P(-5,6)关于x轴的对称点为Q,则点Q的坐标为________.
2.点P(-5,6)关于y轴的对称点为M,则点M的坐标为________.
3.课本P70~71练习第1、2、3题.
课本练习第3题,作对称图形其关键点就是先找出各顶点的对称点,再顺次连接.
活动1小组讨论
例1已知点A(-3,2),且点A与点B,点B与点C,点C与点D分别关于x轴、y轴、x轴对称.
(1)写出B、C、D的坐标.
(2)问四边形ABCD是什么四边形?
(3)试求四边形ABCD的面积.
解:(1)点B(-3,-2),点C(3,-2),点D(3,2).
(2)四边形ABCD是矩形.
(3)S矩形ABCD=BCAB=4×6=24.
例2如图,已知△ABC的三个顶点的坐标分别是(-1,5),(-5,3),(-3,-1);作出△ABC关于x轴、y轴的对称图形.
解:如图所示,△A1B1C1和△A2B2C2即为所求作的图形.
可先写出各对称点的坐标,再描点画图.
活动2跟踪训练
1.点P(3,-4)关于x轴对称的点的坐标是()
A.(-4,3)B.(-3,4)
C.(-3,-4)D.(3,4)
2.点A(2,-3)向上平移6个单位后的点关于x轴对称的点的坐标是________.
3.点P(3,4)关于y轴对称的点的坐标是P′(a,b),则a-b=________.
4.若点M(a,-5)与点N(-2,b)关于x轴对称,则a=________,b=________;若这两点关于y轴对称,则a=________,b=________.
5.由(-1,3)→(-1,-3)经过了____________变换;由(-5,-6)→(-5,-2)经过了________________变换.
6.已知点P(x+1,2x-1)关于x轴对称的点在第一象限,试化简x+2-1-x.
7.如图,已知点A(4,-1),B(2,-4),C(5,-5).
(1)作出△ABC以直线y=1为对称轴的对称图形△A1B1C1;
(2)写出A、C关于直线x=-2的对称点A2、C2的坐标及四边形ACC2A2的面积.
活动3课堂小结
解题时紧紧抓住点关于x轴、y轴和图形关于x轴、y轴对称的规律,弄清规律后就可以轻松解题了.
【预习导学】
知识探究
(1)(x,-y)相同相反数(2)(-x,y)相同相反数
自学反馈
1.(-5,-6)2.(5,6)
【合作探究】
活动2跟踪训练
1.D2.(2,-3)3.-74.-252-55.x轴作轴对称向上平移4个单位长度6.2x+1.7.(1)略.
(2)A2(-8,-1),C2(-9,-5),S四边形ACC2A2=52.