88教案网

你的位置: 教案 > 高中教案 > 导航 > 高考数学理科一轮复习正弦定理和余弦定理应用举例学案

高中生物一轮复习教案

发表时间:2020-12-01

高考数学理科一轮复习正弦定理和余弦定理应用举例学案。

一名优秀的教师就要对每一课堂负责,作为教师就要在上课前做好适合自己的教案。教案可以让学生们能够更好的找到学习的乐趣,帮助教师提前熟悉所教学的内容。关于好的教案要怎么样去写呢?以下是小编收集整理的“高考数学理科一轮复习正弦定理和余弦定理应用举例学案”,希望对您的工作和生活有所帮助。

学案24正弦定理和余弦定理应用举例
导学目标:能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.
自主梳理

1.仰角和俯角
与目标视线同在一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角.(如图所示)
2.方位角
一般指北方向线顺时针到目标方向线的水平角,如方位角45°,是指北偏东45°,即东北方向.
3.方向角:相对于某一正方向的水平角.(如图所示)
①北偏东α°即由指北方向顺时针旋转α°到达目标方向.
②北偏西α°即由指北方向逆时针旋转α°到达目标方向.
③南偏西等其他方向角类似.
4.坡角
坡面与水平面的夹角.(如图所示)
5.坡比
坡面的铅直高度与水平宽度之比,即i=hl=tanα(i为坡比,α为坡角).
6.解题的基本思路
运用正、余弦定理处理实际测量中的距离、高度、角度等问题,实质是数学知识在生活中的应用,要解决好,就要把握如何把实际问题数学化,也就是如何把握一个抽象、概括的问题,即建立数学模型.
自我检测
1.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β之间的关系是()
A.αβB.α=β
C.α+β=90°D.α+β=180°
2.(2011承德模拟)如图所示,已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东60°,则灯塔A在灯塔B的
()
A.北偏东10°B.北偏西10°
C.南偏东10°D.南偏西10°
3.如图所示,为了测量某障碍物两侧A、B间的距离,给定下列四组数据,不能确定A、B间距离的是()
A.α,a,bB.α,β,a
C.a,b,γD.α,β,b
4.在200m高的山顶上,测得山下一塔的塔顶与塔底的俯角分别是30°、60°,则塔高为________m.
5.(2010全国Ⅱ)△ABC中,D为边BC上的一点,BD=33,sinB=513,cos∠ADC=35,求AD.

探究点一与距离有关的问题
例1(2010陕西)如图,A,B是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D点需要多长时间?

变式迁移1某观测站C在目标A的南偏西25°方向,从A出发有一条南偏东35°走向的公路,在C处测得与C相距31千米的公路上B处有一人正沿此公路向A走去,走20千米到达D,此时测得CD为21千米,求此人在D处距A还有多少千米?

探究点二测量高度问题
例2如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.

变式迁移2某人在塔的正东沿着南偏西60°的方向前进40米后,望见塔在东北方向,若沿途测得塔的最大仰角为30°,求塔高.

探究点三三角形中最值问题
例3(2010江苏)某兴趣小组要测量电视塔AE的高度H(单位:m),示意图如图所示,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.
(1)该小组已测得一组α、β的值,算出了tanα=1.24,tanβ=1.20,请据此算出H的值;
(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精度.若电视塔实际高度为125m,试问d为多少时,α-β最大?

变式迁移3(2011宜昌模拟)如图所示,已知半圆的直径AB=2,点C在AB的延长线上,BC=1,点P为半圆上的一个动点,以DC为边作等边△PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC面积的最大值.

1.解三角形的一般步骤
(1)分析题意,准确理解题意.
分清已知与所求,尤其要理解应用题中的有关名词、术语,如坡度、仰角、俯角、方位角等.
(2)根据题意画出示意图.
(3)将需求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解.演算过程中,要算法简练,计算正确,并作答.
(4)检验解出的答案是否具有实际意义,对解进行取舍.
2.应用举例中常见几种题型
测量距离问题、测量高度问题、测量角度问题、计算面积问题、航海问题、物理问题等.
(满分:75分)
一、选择题(每小题5分,共25分)
1.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为()
A.518B.34
C.32D.78
2.(2011揭阳模拟)如图,设A、B两点在河的两岸,一测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点的距离为()
A.502mB.503m
C.252mD.2522m
3.△ABC的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为()
A.922B.924
C.928D.92
4.(2011沧州模拟)某人向正东方向走xkm后,向右转150°,然后朝新方向走3km,结果他离出发点恰好是3km,那么x的值为()
A.3B.23
C.3或23D.3
5.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向,另一灯塔在船的南偏西75°方向,则这只船的速度是每小时()
A.5海里B.53海里
C.10海里D.103海里
题号12345
答案
二、填空题(每小题4分,共12分)
6.一船以每小时15km的速度向东航行,船在A处看到一个灯塔M在北偏东60°方向,行驶4h后,船到B处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________.
7.(2011台州模拟)某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度为15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上.若国歌长度约为50秒,升旗手应以________米/秒的速度匀速升旗.
8.(2011宜昌模拟)线段AB外有一点C,∠ABC=60°,AB=200km,汽车以80km/h的速度由A向B行驶,同时摩托车以50km/h的速度由B向C行驶,则运动开始________h后,两车的距离最小.
三、解答题(共38分)
9.(12分)(2009辽宁)如图,A、B、C、D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°、30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B、D的距离(计算结果精确到0.01km,2≈1.414,6≈2.449).

10.(12分)如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的南偏西75°方向的B1处,此时两船相距20海里.当甲船航行20分钟到达A2处时,乙船航行到甲船的南偏西60°方向的B2处,此时两船相距102海里.问乙船每小时航行多少海里?

11.(14分)(2009福建)如图,
某市拟在长为8km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asinωx(A0,ω0),x∈[0,4]的图象,且图象的最高点为S(3,23);赛道的后一部分为折线段MNP,为保证参赛运动员的安全,限定∠MNP=120°.
(1)求A,ω的值和M,P两点间的距离;
(2)应如何设计,才能使折线段赛道MNP最长?

答案自我检测
1.B2.B3.A
4.4003
5.解由cos∠ADC=35>0知B<π2,
由已知得cosB=1213,sin∠ADC=45,
从而sin∠BAD=sin(∠ADC-B)
=sin∠ADCcosB-cos∠ADCsinB
=45×1213-35×513=3365.
由正弦定理得,ADsinB=BDsin∠BAD,
所以AD=BDsinBsin∠BAD=33×5133365=25.
课堂活动区
例1解题导引这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解.注意:①基线的选取要恰当准确;②选取的三角形及正、余弦定理要恰当.
解由题意知AB=5(3+3)海里,∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,
∴∠ADB=180°-(45°+30°)=105°.
在△DAB中,由正弦定理,得DBsin∠DAB=ABsin∠ADB,
∴DB=ABsin∠DABsin∠ADB=53+3sin45°sin105°
=53+3sin45°sin45°cos60°+cos45°sin60°=103(海里).
又∠DBC=∠DBA+∠ABC=30°+(90°-60°)=60°,BC=203(海里),
在△DBC中,由余弦定理,得CD2=BD2+BC2-2BDBCcos∠DBC=300+1200-2×103×203×12
=900,∴CD=30(海里),
∴需要的时间t=3030=1(小时).
故救援船到达D点需要1小时.
变式迁移1


如图所示,易知∠CAD=25°+35°=60°,在△BCD中,
cosB=312+202-2122×31×20=2331,
所以sinB=12331.
在△ABC中,AC=BCsinBsinA=24,
由BC2=AC2+AB2-2ACABcosA,
得AB2-24AB-385=0,
解得AB=35,AB=-11(舍),
所以AD=AB-BD=15.
故此人在D处距A还有15千米.
例2解题导引在测量高度时,要正确理解仰角、俯角的概念,画出准确的示意图,恰当地选取相关的三角形和正、余弦定理逐步进行求解.注意综合应用方程和平面几何、立体几何等知识.
解在△BCD中,∠CBD=π-α-β.
由正弦定理得BCsin∠BDC=CDsin∠CBD,
所以BC=CDsin∠BDCsin∠CBD=ssinβsinα+β,
在Rt△ABC中,
AB=BCtan∠ACB=stanθsinβsinα+β.
变式迁移2

由题意可知,在△BCD中,CD=40,
∠BCD=30°,∠DBC=135°,
由正弦定理得,CDsin∠DBC
=BDsin∠BCD,
∴BD=40sin30°sin135°=202.
过B作BE⊥CD于E,显然当人在E处时,
测得塔的仰角最大,有∠BEA=30°.
在Rt△BED中,
又∵∠BDE=180°-135°-30°=15°.
∴BE=DBsin15°=202×6-24=10(3-1).
在Rt△ABE中,
AB=BEtan30°=103(3-3)(米).
故所求的塔高为103(3-3)米.
例3解题导引平面几何图形中研究或求有关长度、角度、面积的最值、优化设计等问题.而这些几何问题通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之.若研究最值,常使用函数思想.

(1)由AB=Htanα,BD=htanβ,AD=Htanβ及AB+BD=AD,
得Htanα+htanβ=Htanβ,
解得H=htanαtanα-tanβ=4×1.241.24-1.20=124(m).
因此,算出的电视塔的高度H是124m.
(2)由题设知d=AB,得tanα=Hd.
由AB=AD-BD=Htanβ-htanβ,得tanβ=H-hd.
所以tan(α-β)=tanα-tanβ1+tanαtanβ
=hd+HH-hd≤h2HH-h,
当且仅当d=HH-hd,
即d=HH-h=125×125-4=555时,
上式取等号,所以当d=555时,tan(α-β)最大.
因为0βαπ2,则0α-βπ2,
所以当d=555时,α-β最大.
变式迁移3解设∠POB=θ,四边形面积为y,
则在△POC中,由余弦定理得
PC2=OP2+OC2-2OPOCcosθ=5-4cosθ.
∴y=S△OPC+S△PCD=12×1×2sinθ+34(5-4cosθ)
=2sin(θ-π3)+534.
∴当θ-π3=π2,即θ=5π6时,ymax=2+534.
所以四边形OPDC面积的最大值为2+534.
课后练习区
1.D2.A3.C4.C5.C
6.302km7.0.6
8.7043

解析
如图所示:设th后,汽车由A行驶到D,摩托车由B行驶到E,则AD=80t,BE=50t.
因为AB=200,所以BD=200-80t,
问题就是求DE最小时t的值.
由余弦定理得,DE2=BD2+BE2-2BDBEcos60°
=(200-80t)2+2500t2-(200-80t)50t
=12900t2-42000t+40000.
∴当t=7043时,DE最小.
9.解在△ACD中,∠DAC=30°,
∠ADC=60°-∠DAC=30°,
所以CD=AC=0.1.………………………………………………………………………(2分)
又∠BCD=180°-60°-60°=60°,
所以△ABC≌△CBD,
所以BA=BD.……………………………………………………………………………(6分)
在△ABC中,ABsin∠BCA=ACsin∠ABC,
即AB=ACsin60°sin15°=32+620,…………………………………………………………(10分)
所以BD=32+620≈0.33(km).
故B、D的距离约为0.33km.……………………………………………………………(12分)
10.解
如图,连接A1B2,由题意知,
A1B1=20,A2B2=102,
A1A2=2060×302=102(海里).…………………………………………………………(2分)
又∵∠B2A2A1=180°-120°=60°,
∴△A1A2B2是等边三角形,
∠B1A1B2=105°-60°=45°.……………………………………………………………(6分)
在△A1B2B1中,由余弦定理得
B1B22=A1B21+A1B22-2A1B1A1B2cos45°
=202+(102)2-2×20×102×22=200,
∴B1B2=102(海里).…………………………………………………………………(10分)
因此乙船的速度大小为
10220×60=302(海里/小时).…………………………………………………………(12分)
11.解
方法一(1)依题意,有A=23,T4=3,
又T=2πω,∴ω=π6.∴y=23sinπ6x.(3分)
当x=4时,y=23sin2π3=3,∴M(4,3).
又P(8,0),∴MP=42+32=5.…………………………………………………………(5分)
(2)如图,连接MP,在△MNP中,∠MNP=120°,MP=5.
设∠PMN=θ,
则0°θ60°.
由正弦定理得MPsin120°=NPsinθ=MNsin60°-θ,
∴NP=1033sinθ,MN=1033sin(60°-θ),…………………………………………(8分)
∴NP+MN=1033sinθ+1033sin(60°-θ)
=103312sinθ+32cosθ=1033sin(θ+60°).…………………………………………(12分)
∵0°θ60°,∴当θ=30°时,折线段赛道MNP最长.
即将∠PMN设计为30°时,
折线段赛道MNP最长.…………………………………………………………………(14分)
方法二(1)同方法一.
(2)连结MP.在△MNP中,∠MNP=120°.MP=5,
由余弦定理得,MN2+NP2-2MNNPcos∠MNP=MP2.………………………………(8分)
即MN2+NP2+MNNP=25.
故(MN+NP)2-25=MNNP≤MN+NP22,
……………………………………………………………………………………………(10分)
从而34(MN+NP)2≤25,即MN+NP≤1033.
当且仅当MN=NP时等号成立.
即设计为MN=NP时,
折线段赛道MNP最长.…………………………………………………………………(14分)

扩展阅读

正弦定理、余弦定理的应用


1.1.3正弦定理、余弦定理的应用
教学目的:1进一步熟悉正、余弦定理内容;?
2能够应用正、余弦定理进行边角关系的相互转化;?
3能够利用正、余弦定理判断三角形的形状;?
4能够利用正、余弦定理证明三角形中的三角恒等式?
教学重点:利用正、余弦定理进行边角互换时的转化方向
教学难点:三角函数公式变形与正、余弦定理的联系?
教学方法:启发引导式?
1启发学生在证明三角形问题或者三角恒等式时,要注意正弦定理、余弦定理的适用题型与所证结论的联系,并注意特殊正、余弦关系的应用,比如互补角的正弦值相等,互补角的余弦值互为相反数等;?
2引导学生总结三角恒等式的证明或者三角形形状的判断,重在发挥正、余弦定理的边角互换作用
教学过程:一、复习引入:
正弦定理:
余弦定理:

二、讲解范例:例1在任一△ABC中求证:
证:左边=
==0=右边
例2在△ABC中,已知,,B=45求A、C及c
解一:由正弦定理得:
∵B=4590即ba∴A=60或120
当A=60时C=75
当A=120时C=15
解二:设c=x由余弦定理
将已知条件代入,整理:
解之:当时
从而A=60,C=75当时同理可求得:A=120,C=15
例3在△ABC中,BC=a,AC=b,a,b是方程的两个根,且
2cos(A+B)=1求(1)角C的度数(2)AB的长度(3)△ABC的面积
解:(1)cosC=cos[(A+B)]=cos(A+B)=∴C=120
(2)由题设:
∴AB2=AC2+BC22ACBCosC
即AB=
(3)S△ABC=
例4如图,在四边形ABCD中,已知ADCD,AD=10,AB=14,BDA=60,BCD=135求BC的长
解:在△ABD中,设BD=x


整理得:解之:(舍去)
由余弦定理:∴
例5△ABC中,若已知三边为连续正整数,最大角为钝角,1求最大角;
2求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积
解:1设三边且
∵C为钝角∴解得
∵∴或3但时不能构成三角形应舍去
当时
2设夹C角的两边为
S当时S最大=
例6在△ABC中,AB=5,AC=3,D为BC中点,且AD=4,求BC边长
分析:此题所给题设条件只有边长,应考虑在假设BC为x后,建立关于x的方程而正弦定理涉及到两个角,故不可用此时应注意余弦定理在建立方程时所发挥的作用因为D为BC中点,所以BD、DC可表示为,然用利用互补角的余弦互为相反数这一性质建立方程?
解:设BC边为x,则由D为BC中点,可得BD=DC=,
在△ADB中,cosADB=
在△ADC中,cosADC=
又∠ADB+∠ADC=180°
∴cosADB=cos(180°-∠ADC)=-cosADC?

解得,x=2?,所以,BC边长为2
评述:此题要启发学生注意余弦定理建立方程的功能,体会互补角的余弦值互为相反数这一性质的应用,并注意总结这一性质的适用题型?
另外,对于本节的例2,也可考虑上述性质的应用来求解sinA,思路如下:
由三角形内角平分线性质可得,设BD=5k,DC=3k,则由互补角∠ADC、∠ADB的余弦值互为相反数建立方程,求出BC后,再结合余弦定理求出cosA,再由同角平方关系求出sinA
三、课堂练习:
1半径为1的圆内接三角形的面积为0.25,求此三角形三边长的乘积?
解:设△ABC三边为a,b,c则S△ABC=

又,其中R为三角形外接圆半径
∴,∴abc=4RS△ABC=4×1×0.25=1
所以三角形三边长的乘积为1?
评述:由于题设条件有三角形外接圆半径,故联想正弦定理:
,其中R为三角形外接圆半径,与含有正弦的三角形面积公式S△ABC=发生联系,对abc进行整体求解
2在△ABC中,已知角B=45°,D是BC边上一点,AD=5,AC=7,DC=3,求
AB?
解:在△ADC中,
cosC=
又0<C<180°,∴sinC=
在△ABC中,∴AB=
评述:此题在求解过程中,先用余弦定理求角,再用正弦定理求边,要求学生注意正、余弦定理的综合运用
3在△ABC中,已知cosA=,sinB=,求cosC的值?
解:∵cosA=<=cos45°,0<A<π∴45°<A<90°,∴sinA=
∵sinB=<=sin30°,0<B<π∴0°<B<30°或150°<B<180°
若B>150°,则B+A>180°与题意不符∴0°<B<30°cosB=
∴cos(A+B)=cosAcosB-sinAsinB=
又C=180°-(A+B)?
∴cosC=cos[180°-(A+B)]=-cos(A+B)=-
评述:此题要求学生在利用同角的正、余弦平方关系时,应根据已知的三角函数值具体确定角的范围,以便对正负进行取舍,在确定角的范围时,通常是与已知角接近的特殊角的三角函数值进行比较?
四、小结通过本节学习,我们进一步熟悉了三角函数公式及三角形的有关性质,综合运用了正、余弦定理求解三角形的有关问题,要求大家注意常见解题方法与解题技巧的总结,不断提高三角形问题的求解能力
五、课后作业:
课后记:1正、余弦定理的综合运用余弦定理是解斜三角形中用到的主要定理,若将正弦定理代入得:sin2A=sin2B+sin2C-2sinBsinCcosA
这是只含有三角形三个角的一种关系式,利用这一定理解题,简捷明快,举例:
[例1]在△ABC中,已知sin2B-sin2C-sin2A=sinAsinC,求B的度数
解:由定理得sin2B=sin2A+sin2C-2sinAsinCcosB,?
∴-2sinAsinCcosB=sinAsinC
∵sinAsinC≠0?∴cosΒ=-∴B=150°
[例2]求sin210°+cos240°+sin10°cos40°的值
解:原式=sin210°+sin250°+sin10°sin50°
在sin2A=sin2B+sin2C-2sinBsinCcosA,令B=10°,C=50°,则A=120°
sin2120°=sin210°+sin250°-2sin10°sin50°cos120°
=sin210°+sin250°+sin10°sin50°=()2=
[例3]在△ABC中,已知2cosBsinC=sinA,试判定△ABC的形状?
解:在原等式两边同乘以sinA得:2cosBsinAsinC=sin2A,由定理得sin2A+sin2C-sin2Β=sin2A,∴sin2C=sin2B?∴B=C故△ABC是等腰三角形?
2一题多证:[例4]在△ABC中已知a=2bcosC,求证:△ABC为等腰三角形?
证法一:欲证△ABC为等腰三角形可证明其中有两角相等,因而在已知条件中化去边元素,使只剩含角的三角函数由正弦定理得a=
∴2bcosC=,即2cosCsinB=sinA=sin(B+C)=sinBcosC+cosBsinC
∴sinBcosC-cosBsinC=0即sin(B-C)=0,?∴B-C=nπ(n∈Z)
∵B、C是三角形的内角,?∴B=C,即三角形为等腰三角形?
证法二:根据射影定理,有a=bcosC+ccosB,
又∵a=2bcosC?∴2bcosC=bcosC+ccosB?∴bcosC=ccosB,即
又∵∴即tanB=tanC
∵B、C在△ABC中,?∴B=C?∴△ABC为等腰三角形?
证法三:∵cosC=∴
化简后得b2=c2?∴b=c∴△ABC是等腰三角形?

正余弦定理应用举例导学案及练习题


一名优秀负责的教师就要对每一位学生尽职尽责,高中教师在教学前就要准备好教案,做好充分的准备。教案可以让上课时的教学氛围非常活跃,帮助高中教师营造一个良好的教学氛围。所以你在写高中教案时要注意些什么呢?为了让您在使用时更加简单方便,下面是小编整理的“正余弦定理应用举例导学案及练习题”,仅供参考,欢迎大家阅读。


【学习目标】
1.复习巩固正弦定理、余弦定理.
2.能够用正弦定理、余弦定理解决距离问题.
【学习重难点】
能够用正弦定理、余弦定理解决距离问题.
【复习巩固】(课前完成)
1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即asinA=______=csinC=2R(在△ABC中,a,b,c分别为角A,B,C的对边,R是△ABC的外接圆半径).
2.应用:利用正弦定理可以解决以下两类解三角形问题:
①已知两角与一边,解三角形;
②已知两边与其中一边的对角,解三角形.
做一做:在△ABC中,a=4,b=3,A=30°,则sinB等于()
A.1B.12C.38D.34
2.余弦定理:三角形中任何一边的______等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的____倍.即:在△ABC中,a2=b2+c2-2bccosA,b2=____________,c2=a2+b2-2abcosC.(2)推论:cosA=b2+c2-a22bc,cosB=______________,cosC=a2+b2-c22ab.
应用:利用余弦定理可以解决以下两类解三角形的问题:
①已知三边,解三角形;
②已知两边及其夹角,解三角形.
做一做:在△ABC中,AB=3,BC=13,AC=4,则A=__________.
【典例分析】
题型一测量从一个可到达的点到一个不可到达的点之间的距离问题
例题1:如图,在河岸边有一点A,河对岸有一点B,要测量A,B两点之间的距离,先在岸边取基线AC,测得AC=120m,∠BAC=45°,∠BCA=75°,求A,B两点间的距离.
题型二测量两个不可到达的点之间的距离问题
例题2:如图,隔河看到两个目标A,B,但不能到达,在岸边选取相距3km的C,D两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A,B,C,D在同一平面内),求两个目标A,B之间的距离.
【课堂达标】
1已知A,B两地相距10km,B,C两地相距20km,且∠ABC=120°,则A,C两地相距()
A.10kmB.C.D.
2设A,B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出A,C的距离是100m,∠BAC=60°,∠ACB=30°,则A,B两点的距离为__________m.
3(2011北京朝阳二模)如图,一艘船上午8:00在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午8:30到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距nmile,则此船的航行速度是__________nmile/h.

正、余弦定理的应用举例


作为优秀的教学工作者,在教学时能够胸有成竹,高中教师要准备好教案,这是每个高中教师都不可缺少的。教案可以让讲的知识能够轻松被学生吸收,帮助授课经验少的高中教师教学。你知道如何去写好一份优秀的高中教案呢?以下是小编为大家收集的“正、余弦定理的应用举例”欢迎您阅读和收藏,并分享给身边的朋友!

2.2.2正、余弦定理的应用举例(2)
知识梳理
2.解斜三角形的应用问题,通常需根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出所要求的量,从而得到实际问题的解,其中建立数学模型的方法是我们的归宿,用数学手段来解决实际问题,是学习数学的根本目的。
3.解题应根据已知合理选择正余弦定理,要求算法简洁、算式工整、计算准确。
典例剖析
题型一正、余弦定理在几何中的应用
例1如图所示,已知半圆的直径AB=2,点C在AB的延长线上,BC=1,点P为半圆上的一个动点,以DC为边作等边△PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC面积的最大值
解:设∠POB=θ,四边形面积为y,则在△POC中,由余弦定理得:?
PC2=OP2+OC2-2OPOCcosθ=5-4cosθ?
∴y=S△OPC+S△PCD=+(5-4cosθ)
=2sin(θ-)+
∴当θ-=即θ=时,ymax=2+
评述:本题中余弦定理为表示△PCD的面积,从而为表示四边形OPDC面积提供了可能,可见正、余弦定理不仅是解三角形的依据,一般地也是分析几何量之间关系的重要公式,要认识到这两个定理的重要性另外,在求三角函数最值时,涉及到两角和正弦公式
sin(α+β)=sinαcosβ+cosαsinβ的构造及逆用,应予以重视?
题型二正、余弦定理在函数中的应用
例2如图,有两条相交成角的直线、,交点是,甲、乙分别在、上,
起初甲离点千米,乙离点千米,后来两人同时用每小时千米的速度,甲沿方向,乙沿方向步行,
(1)起初,两人的距离是多少?
(2)用包含的式子表示小时后两人的距离;
(3)什么时候两人的距离最短?
解:(1)设甲、乙两人起初的位置是、,


∴起初,两人的距离是.
(2)设甲、乙两人小时后的位置分别是,
则,,
当时,;
当时,,
所以,.
(3),
∴当时,即在第分钟末,最短。
答:在第分钟末,两人的距离最短。
评析:(2)中,分0t和t两种情况进行讨论,但对两种情形的结果进行比较后发现,目标函数有统一的表达式,从而(3)中求最值是对这个统一的表达式进行运算的。
备选题正、余弦定理的综合应用
例3如图,已知△ABC是边长为1的正三角形,M、N分别是边AB、AC上的点,线段MN经过△ABC的中心G,设MGA=()
(1)试将△AGM、△AGN的面积(分别记为S1与S2);表示为的函数,
(2)求y=的最大值与最小值。
解析:(1)因为G是边长为1的正三角形ABC的中心,
所以AG=,MAG=,由正弦定理
得,
则S1=GMGAsin=。同理可求得S2=。
(2)y===72(3+cot2)
因为,
所以当=或=时,y取得最大值ymax=240,当=时,y取得最小值ymin=216。
点评:三角函数有着广泛的应用,本题就是一个典型的范例。通过引入角度,将图形的语言转化为三角的符号语言,再通过局部的换元,又将问题转化为我们熟知的函数,这些解题思维的拐点。
点击双基
1.在△ABC中,,则△ABC的面积为()
A.B.C.D.1
解:S==4sin10sin50sin70=4cos20cos40cos80
====
答案:C

2.如图所示:在一幢20m高的楼顶A测得对面一塔顶C的仰角为60,塔基D的俯角为45,则这座塔的高是()
A.20mB.10mC.(10+10)mD.(20+20)m
解:可知BAD=45,AE=20,AB=20,BAC=60,
CB=ABtan60=20所以这座塔的高CD=(20+20)m
答案:D
3.在△ABC中,根据下列条件解三角形,则其中有两个解的是()
A.b=10,A=45°,B=70°B.a=60,c=48,B=100°
C.a=7,b=5,A=80°D.a=14,b=16,A=45°
解:A,B可根据余弦定理求解,只有一解,选项C中,A为锐角,且ab,只有一解.
选项D中所以有两个解。
答案:D
4.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西600,另一灯塔在船的南偏西750,则这艘船是每小时航行____。
解:10海里
5.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离与第二辆车与第三辆车的距离之间的关系为()
A.B.
C.D.不能确定大小
解:依题意知BC=,CD=,BAC=CAD.
△ABC中,
△ACD中,
BCCD,即
答案:C
课后作业
1.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长()
A.1公里B.sin10°公里C.cos10°公里D.cos20°公里
答案:A
2.边长分别为5,7,8的三角形的最大角与最小角的和是()
A.90B.120C.135D.150
解:用余弦定理算出中间的角为60.
答案:B
3.下列条件中,△ABC是锐角三角形的是()
A.sinA+cosA=B.>0C.tanA+tanB+tanC>0D.b=3,c=3,B=30°
解:由sinA+cosA=得2sinAcosA=-<0,∴A为钝角.
由>0,得<0,∴cos〈,〉<0.∴B为钝角.
由tanA+tanB+tanC>0,得tan(A+B)(1-tanAtanB)+tanC>0.
∴tanAtanBtanC>0,A、B、C都为锐角.
由=,得sinC=,∴C=或.
答案:C
4、已知锐角三角形的边长分别为1,3,a,则a的范围是()
A.B.C.D.
解:a
答案:B
5.某市在“旧城改造”中计划内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()
A.450a元B.225a元C.150a元D.300a元
解:S==150购买这种草皮至少要150a元
答案:C
6.甲船在岛B的正南方A处,AB=10千米,甲船以每小时4千米的速度向正北航行,同时乙船自B出发以每小时6千米的速度向北偏东60°的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是()
A.分钟B.分钟C.21.5分钟D.2.15分钟
解:设航行时间为t小时,则两船相距
=
t=-小时=分钟
答案:A
7.飞机沿水平方向飞行,在A处测得正前下方地面目标C得俯角为30°,向前飞行10000米,到达B处,此时测得目标C的俯角为60°,这时飞机与地面目标的水平距离为()
A.5000米B.5000米C.4000米D.米

解:=30°,DBC=60°,AB=1000.CB=10000.BD=5000
答案:A
8如图,△ABC是简易遮阳棚,A、B是南北方向上两个定点,正东方向射出的太阳光线与地面成40°角,为了使遮阴影面ABD面积最大,遮阳棚ABC与地面所成的角为
A75°B60°C50°D45°
解:作CE⊥平面ABD于E,则∠CDE是太阳光线与地面所成的角,即∠CDE=40°,延长DE交直线AB于F,连结CF,则∠CFD是遮阳棚与地面所成的角,设为α要使S△ABD最大,只需DF最大
在△CFD中,=
∴DF=
∵CF为定值,∴当α=50°时,DF最大
答案:C
二.填空题
9.某船在海面A处测得灯塔C与A相距海里,且在北偏东方向;测得灯塔B与A相距海里,且在北偏西方向。船由向正北方向航行到D处,测得灯塔B在南偏西方向。这时灯塔C与D相距海里
答案:
10.在△ABC中,已知60°,如果△ABC两组解,则x的取值范围是
解:asinBba,即xsin602x
答案:
11.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东,行驶4h后,船到达C处,看到这个灯塔在北偏东,这时船与灯塔的距离为
km
答案:
三.解答题
12.某人在M汽车站的北偏西20的方向上的A处,观察到点C处有一辆汽车沿公路向M站行驶。公路的走向是M站的北偏东40。开始时,汽车到A的距离为31千米,汽车前进20千米后,到A的距离缩短了10千米。问汽车还需行驶多远,才能到达M汽车站?

解:由题设,画出示意图,设汽车前进20千米后到达B处。在ABC中,AC=31,BC=20,AB=21,由余弦定理得
cosC==,
则sinC=1-cosC=,
sinC=,
所以sinMAC=sin(120-C)=sin120cosC-cos120sinC=
在MAC中,由正弦定理得MC===35
从而有MB=MC-BC=15
答:汽车还需要行驶15千米才能到达M汽车站。
13.如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C三点进行测量,已知,,于A处测得水深,于B处测得水深,于C处测得水深,求∠DEF的余弦值。
解:作交BE于N,交CF于M.



在中,由余弦定理,

14.在中,角A、B、C的对边分别为、、,
,又的面积为.(1)求角C的大小;(2)求的值.
解:(1)由已知得,所以,;
(2)因为,所以,
又因为,所以
所以,===5
●思悟小结
1.三角形中的边角问题的求解,或三角形的形状的判定,及其与三角形有关的问题的求解,通常是利用正弦定理、余弦定理、面积公式以及三角恒等变形去解决。
2.判断三角形的形状,一般是从题设条件出发,根据正弦定理、余弦定理及三角变换将已知的边角关系全转化为边的关系或全转化为角的关系,导出边或角的某种特殊关系,然后判定三角形的形状。注意变换过程中等式两边的公因式不要约掉,要移项提取公因式,否则会有漏掉一种形状的可能。
3.正确理解实际问题中的仰角、俯角、方位角、坡脚、坡比等名词术语。

《正弦定理和余弦定理》复习课教学设计


《正弦定理和余弦定理》复习课教学设计
教材分析这是高三一轮复习,内容是必修5第一章解三角形。本章内容准备复习两课时。本节课是第一课时。标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后应落实在解三角形的应用上。通过本节学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理解三角形.(2)能够运用正弦定理、余弦定理等知识和方法判断三角形形状的问题。本章内容与三角函数、向量联系密切。
作为复习课一方面将本章知识作一个梳理,另一方面通过整理归纳帮助学生进一步达到相应的学习目标。
学情分析学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。
教学目标知识目标:
(1)学生通过对任意三角形边长和角度关系的探索,掌握正弦、余弦定理的内容及其证明方法;会运用正、余弦定理与三角形内角和定理,面积公式解斜三角形的两类基本问题。
(2)学生学会分析问题,合理选用定理解决三角形综合问题。
能力目标:
培养学生提出问题、正确分析问题、独立解决问题的能力,培养学生在方程思想指导下处理解三角形问题的运算能力,培养学生合情推理探索数学规律的数学思维能力。
情感目标:
通过生活实例探究回顾三角函数、正余弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值,在教学过程中激发学生的探索精神。
教学方法探究式教学、讲练结合
重点难点1、正、余弦定理的对于解解三角形的合理选择;
2、正、余弦定理与三角形的有关性质的综合运用。
教学策略1、重视多种教学方法有效整合;
2、重视提出问题、解决问题策略的指导。
3、重视加强前后知识的密切联系。
4、重视加强数学实践能力的培养。
5、注意避免过于繁琐的形式化训练
6、教学过程体现“实践→认识→实践”。
设计意图:
学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。作为复习课一方面要将本章知识作一个梳理,另一方面要通过整理归纳帮助学生学会分析问题,合理选用并熟练运用正弦定理、余弦定理等知识和方法解决三角形综合问题和实际应用问题。
数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。虽然是复习课,但我们不能一味的讲题,在教学中应体现以下教学思想:
⑴重视教学各环节的合理安排:

在生活实践中提出问题,再引导学生带着问题对新知进行探究,然后引导学生回顾旧知识与方法,引出课题。激发学生继续学习新知的欲望,使学生的知识结构呈一个螺旋上升的状态,符合学生的认知规律。
⑵重视多种教学方法有效整合,以讲练结合法、分析引导法、变式训练法等多种方法贯穿整个教学过程。
⑶重视提出问题、解决问题策略的指导。
⑷重视加强前后知识的密切联系。对于新知识的探究,必须增加足够的预备知识,做好衔接。要对学生已有的知识进行分析、整理和筛选,把对学生后继学习中有需要的知识选择出来,在新知识介绍之前进行复习。
⑸注意避免过于繁琐的形式化训练。从数学教学的传统上看解三角形内容有不少高度技巧化、形式化的问题,我们在教学过程中应该注意尽量避免这一类问题的出现。
二、实施教学过程

(一)创设情境、揭示提出课题
引例:要测量南北两岸A、B两个建筑物之间的距离,在南岸选取相距A点km的C点,并通过经纬仪测的,你能计算出A、B之间的距离吗?若人在南岸要测量对岸B、D两个建筑物之间的距离,该如何进行?
(二)复习回顾、知识梳理
1.正弦定理:
正弦定理的变形:
(1)
(2);;
利用正弦定理,可以解决以下两类有关三角形的问题.
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角.(从而进一步求出其他的边和角)
2.余弦定理:
a2=b2+c2-2bccosA;
b2=c2+a2-2cacosB;
c2=a2+b2-2abcosC.
cosA=;
cosB=;
cosC=.
利用余弦定理,可以解决以下两类有关三角形的问题:
(1)已知三边,求三个角;
(2)已知两边和它们的夹角,求第三边和其他两个角.
3.三角形面积公式:
(三)自主检测、知识巩固
1.;
2.
3.
(四)典例导航、知识拓展
【例1】△ABC的三个内角A、B、C的对边分别是a、b、c,如果a2=b(b+c),求证:A=2B.
剖析:研究三角形问题一般有两种思路.一是边化角,二是角化边.
证明:用正弦定理,a=2RsinA,b=2RsinB,c=2RsinC,代入a2=b(b+c)中,得sin2A=sinB(sinB+sinC)sin2A-sin2B=sinBsinC

因为A、B、C为三角形的三内角,所以sin(A+B)≠0.所以sin(A-B)=sinB.所以只能有A-B=B,即A=2B.
评述:利用正弦定理,将命题中边的关系转化为角间关系,从而全部利用三角公式变换求解.
思考讨论:该题若用余弦定理如何解决?

【例2】已知a、b、c分别是△ABC的三个内角A、B、C所对的边,
(1)若△ABC的面积为,c=2,A=600,求边a,b的值;
(2)若a=ccosB,且b=csinA,试判断△ABC的形状。
(五)变式训练、归纳整理
【例3】已知a、b、c分别是△ABC的三个内角A、B、C所对的边,若bcosC=(2a-c)cosB
(1)求角B
(2)设,求a+c的值。
剖析:同样知道三角形中边角关系,利用正余弦定理边化角或角化边,从而解决问题,此题所变化的是与向量相结合,利用向量的模与数量积反映三角形的边角关系,把本质看清了,问题与例2类似解决。
此题分析后由学生自己作答,利用实物投影集体评价,再做归纳整理。
(解答略)
课时小结(由学生归纳总结,教师补充)
1.解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理
2.根据所给条件确定三角形的形状,主要有两种途径:①化边为角;②化角为边.并常用正余弦定理实施边角转化。
3.用正余弦定理解三角形问题可适当应用向量的数量积求三角形内角与应用向量的模求三角形的边长。
4.应用问题可利用图形将题意理解清楚,然后用数学模型解决问题。
5.正余弦定理与三角函数、向量、不等式等知识相结合,综合运用解决实际问题。
课后作业:
材料三级跳
创设情境,提出实际应用问题,揭示课题

学生在探究问题时发现是解三角形问题,通过问答将知识作一梳理。

学生通过课前预热1.2.3.的快速作答,对正余弦定理的基本运用有了一定的回顾

学生探讨

知识的关联与拓展

正余弦定理与三角形内角和定理,面积公式的综合运用对学生来说也是难点,尤其是根据条件判断三角形形状。此处列举例2让学生进一步体会如何选择定理进行边角互化。

本课是在学生学习了三角函数、平面几何、平面向量、正弦和余弦定理的基础上而设置的复习内容,因此本课的教学有较多的处理办法。从解三角形的问题出发,对学过的知识进行分类,采用的例题是精心准备的,讲解也是至关重要的。一开始的复习回顾学生能够很好的回答正弦定理和余弦定理的基本内容,但对于两个定理的变形公式不知,也就是说对于公式的应用不熟练。设计中的自主检测帮助学生回顾记忆公式,对学生更有针对性的进行了训练。学生还是出现了问题,在遇到第一个正弦方程时,是只有一组解还是有两组解,这是难点。例1、例2是常规题,让学生应用数学知识求解问题,可用正弦定理,也可用余弦定理,帮助学生巩固正弦定理、余弦定理知识。
本节课授课对象为高三6班的学生,上课氛围非常活跃。考虑到这是一节复习课,学生已经知道了定理的内容,没有经历知识的发生与推导,所以兴趣不够,较沉闷。奥苏贝尔指出,影响学习的最重要因素是学生已经知道了什么,我们应当根据学生原有的知识状况去进行教学。因而,在教学中,教师了解学生的真实的思维活动是一切教学工作的实际出发点。教师应当接受和理解学生的真实思想,尽管它可能是错误的或幼稚的,但却具有一定的内在的合理性,教师不应简单否定,而应努力去理解这些思想的产生与性质等等,只有真正理解了学生思维的发生发展过程,才能有的放矢地采取适当的教学措施以便帮助学生不断改进并最终实现自己的目标。由于这种探究课型在平时的教学中还不够深入,有些学生往往以一种观赏者的身份参与其中,主动探究意识不强,思维水平没有达到足够的提升。这些都是不足之处,比较遗憾。但相信随着课改实验的深入,这种状况会逐步改善。毕竟轻松愉快的课堂是学生思维发展的天地,是合作交流、探索创新的主阵地,是思想教育的好场所。所以新课标下的课堂将会是学生和教师共同成长的舞台!