88教案网

你的位置: 教案 > 高中教案 > 导航 > 高考数学理科一轮复习导数的概念及运算学案(含答案)

高中生物一轮复习教案

发表时间:2020-12-01

高考数学理科一轮复习导数的概念及运算学案(含答案)。

一名优秀的教师在教学时都会提前最好准备,教师要准备好教案,这是老师职责的一部分。教案可以让学生能够听懂教师所讲的内容,帮助教师缓解教学的压力,提高教学质量。我们要如何写好一份值得称赞的教案呢?下面是由小编为大家整理的“高考数学理科一轮复习导数的概念及运算学案(含答案)”,仅供参考,大家一起来看看吧。

第三章导数及其应用
学案13导数的概念及运算
导学目标:1.了解导数概念的实际背景,理解函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.2.能根据导数定义,求函数y=C(C为常数),y=x,y=x2,y=1x,y=x的导数.熟记基本初等函数的导数公式(c,xm(m为有理数),sinx,cosx,ex,ax,lnx,logax的导数),能利用基本初等函数的导数公式及导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b))的导数.
自主梳理
1.函数的平均变化率
一般地,已知函数y=f(x),x0,x1是其定义域内不同的两点,记Δx=x1-x0,Δy=y1-y0=f(x1)-f(x0)=f(x0+Δx)-f(x0),则当Δx≠0时,商________________________=ΔyΔx称作函数y=f(x)在区间[x0,x0+Δx](或[x0+Δx,x0])的平均变化率.
2.函数y=f(x)在x=x0处的导数
(1)定义
函数y=f(x)在点x0处的瞬时变化率______________通常称为f(x)在x=x0处的导数,并记作f′(x0),即______________________________.
(2)几何意义
函数f(x)在点x0处的导数f′(x0)的几何意义是过曲线y=f(x)上点(x0,f(x0))的____________.
导函数y=f′(x)的值域即为__________________.
3.函数f(x)的导函数
如果函数y=f(x)在开区间(a,b)内每一点都是可导的,就说f(x)在开区间(a,b)内可导,其导数也是开区间(a,b)内的函数,又称作f(x)的导函数,记作____________.
4.基本初等函数的导数公式表

原函数导函数
f(x)=Cf′(x)=______
f(x)=xα(α∈Q*)f′(x)=______(α∈Q*)
F(x)=sinxf′(x)=__________
F(x)=cosxf′(x)=____________
f(x)=ax(a0,a≠1)f′(x)=____________(a0,a≠1)
f(x)=exf′(x)=________
f(x)=logax(a0,a≠1,且x0)f′(x)=__________(a0,a≠1,且x0)
f(x)=lnxf′(x)=__________

5.导数运算法则
(1)[f(x)±g(x)]′=__________;
(2)[f(x)g(x)]′=______________;
(3)fxgx′=______________[g(x)≠0].
6.复合函数的求导法则:设函数u=φ(x)在点x处有导数ux′=φ′(x),函数y=f(u)在点x处的对应点u处有导数yu′=f′(u),则复合函数y=f(φ(x))在点x处有导数,且y′x=y′uu′x,或写作f′x(φ(x))=f′(u)φ′(x).
自我检测
1.在曲线y=x2+1的图象上取一点(1,2)及附近一点(1+Δx,2+Δy),则ΔyΔx为()
A.Δx+1Δx+2B.Δx-1Δx-2
C.Δx+2D.2+Δx-1Δx
2.设y=x2ex,则y′等于()
A.x2ex+2xB.2xex
C.(2x+x2)exD.(x+x2)ex
3.(2010全国Ⅱ)若曲线y=x-12在点(a,a-12)处的切线与两个坐标轴围成的三角形的面积为18,则a等于()
A.64B.32C.16D.8
4.(2011临汾模拟)若函数f(x)=ex+ae-x的导函数是奇函数,并且曲线y=f(x)的一条切线的斜率是32,则切点的横坐标是()
A.-ln22B.-ln2
C.ln22D.ln2
5.(2009湖北)已知函数f(x)=f′(π4)cosx+sinx,则f(π4)=________.
探究点一利用导数的定义求函数的导数
例1利用导数的定义求函数的导数:
(1)f(x)=1x在x=1处的导数;
(2)f(x)=1x+2.

变式迁移1求函数y=x2+1在x0到x0+Δx之间的平均变化率,并求出其导函数.

探究点二导数的运算
例2求下列函数的导数:
(1)y=(1-x)1+1x;(2)y=lnxx;
(3)y=xex;(4)y=tanx.

变式迁移2求下列函数的导数:
(1)y=x2sinx;(2)y=3xex-2x+e;(3)y=lnxx2+1.

探究点三求复合函数的导数
例3(2011莆田模拟)求下列函数的导数:
(1)y=(1+sinx)2;(2)y=11+x2;
(3)y=lnx2+1;(4)y=xe1-cosx.

变式迁移3求下列函数的导数:
(1)y=11-3x4;
(2)y=sin22x+π3;
(3)y=x1+x2.

探究点四导数的几何意义
例4已知曲线y=13x3+43.
(1)求曲线在点P(2,4)处的切线方程;
(2)求曲线过点P(2,4)的切线方程;
(3)求满足斜率为1的曲线的切线方程.

变式迁移4求曲线f(x)=x3-3x2+2x过原点的切线方程.

1.准确理解曲线的切线,需注意的两个方面:
(1)直线与曲线公共点的个数不是切线的本质特征,若直线与曲线只有一个公共点,则直线不一定是曲线的切线,同样,若直线是曲线的切线,则直线也可能与曲线有两个或两个以上的公共点.
(2)曲线未必在其切线的“同侧”,如曲线y=x3在其过(0,0)点的切线y=0的两侧.
2.曲线的切线的求法:
若已知曲线过点P(x0,y0),求曲线过点P的切线则需分点P(x0,y0)是切点和不是切点两种情况求解.
(1)点P(x0,y0)是切点的切线方程为y-y0=f′(x0)(x-x0).
(2)当点P(x0,y0)不是切点时可分以下几步完成:
第一步:设出切点坐标P′(x1,f(x1));
第二步:写出过P′(x1,f(x1))的切线方程为y-f(x1)=f′(x1)(x-x1);
第三步:将点P的坐标(x0,y0)代入切线方程求出x1;
第四步:将x1的值代入方程y-f(x1)=f′(x1)(x-x1)可得过点P(x0,y0)的切线方程.
3.求函数的导数要准确地把函数分割为基本初等函数的和、差、积、商及其复合运算,再利用运算法则求导数.在求导过程中,要仔细分析函数解析式的结构特征,紧扣法则,联系基本初等函数求导公式,对于不具备求导法则结构形式的要适当变形.
(满分:75分)

一、选择题(每小题5分,共25分)
1.已知函数f(x)=2ln(3x)+8x,则f1-2Δx-f1Δx的值为()
A.10B.-10C.-20D.20
2.(2011温州调研)如图是函数f(x)=x2+ax+b的部分图象,则函数g(x)=lnx+f′(x)的零点所在的区间是()
A.14,12B.(1,2)
C.12,1D.(2,3)
3.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为()
A.4x-y-3=0B.x+4y-5=0
C.4x-y+3=0D.x+4y+3=0
4.(2010辽宁)已知点P在曲线y=4ex+1上,α为曲线在点P处的切线的倾斜角,则α的取值范围是()
A.0,π4B.π4,π2C.π2,3π4D.3π4,π
5.(2011珠海模拟)在下列四个函数中,满足性质:“对于区间(1,2)上的任意x1,x2(x1≠x2),|f(x2)-f(x1)||x2-x1|恒成立”的只有()
A.f(x)=1xB.f(x)=|x|
C.f(x)=2xD.f(x)=x2
题号12345
答案
二、填空题(每小题4分,共12分)
6.一质点沿直线运动,如果由始点起经过t秒后的位移为s=13t3-32t2+2t,那么速度为零的时刻是__________.
7.若点P是曲线f(x)=x2-lnx上任意一点,则点P到直线y=x-2的最小距离为________.
8.设点P是曲线y=x33-x2-3x-3上的一个动点,则以P为切点的切线中,斜率取得最小值时的切线方程是__________________.
三、解答题(共38分)
9.(12分)求下列函数在x=x0处的导数.
(1)f(x)=ex1-x+ex1+x,x0=2;
(2)f(x)=x-x3+x2lnxx2,x0=1.

10.(12分)(2011保定模拟)有一个长度为5m的梯子贴靠在笔直的墙上,假设其下端沿地板以3m/s的速度离开墙脚滑动,求当其下端离开墙脚1.4m时,梯子上端下滑的速度.

11.(14分)(2011平顶山模拟)已知函数f(x)=12x2-alnx(a∈R).
(1)若函数f(x)的图象在x=2处的切线方程为y=x+b,求a,b的值;
(2)若函数f(x)在(1,+∞)上为增函数,求a的取值范围.

自主梳理
1.
2.(1)(2)切线的斜率切线斜率的取值范围
3.y′或f′(x)
4.0αxα-1cosx-sinxaxlnaex1xlna1x
5.(1)f′(x)±g′(x)(2)f′(x)g(x)+f(x)g′(x)
(3)f′xgx-fxg′x[gx]2
自我检测
1.C2.C3.A4.D
5.1
解析∵f′(x)=-f′(π4)sinx+cosx,
∴f′(π4)=2-1.
∴f(π4)=1.
课堂活动区
例1解题导引(1)用导数定义求函数导数必须把分式ΔyΔx中的分母Δx这一因式约掉才可能求出极限,所以目标就是分子中出现Δx,从而分子分母相约分.
(2)第(1)小题中用到的技巧是“分子有理化”.“有理化”是处理根式问题常用的方法,有时用“分母有理化”,有时用“分子有理化”.
(3)注意在某点处的导数与导数定义式的区别:


(4)用导数的定义求导的步骤为:
①求函数的增量Δy;②求平均变化率ΔyΔx;③化简取极限.
解(1)ΔyΔx=f1+Δx-f1Δx



=,

=-12.
(2)ΔyΔx=fx+Δx-fxΔx

=x+2-x+2+ΔxΔxx+2x+2+Δx
=-1x+2x+2+Δx,

=-1x+22.
变式迁移1解∵Δy=x0+Δx2+1-x20+1
=x0+Δx2+1-x20-1x0+Δx2+1+x20+1
=2x0Δx+Δx2x0+Δx2+1+x20+1,
∴ΔyΔx=2x0+Δxx0+Δx2+1+x20+1.

∴y=
=2x2x2+1=xx2+1.
例2解题导引求函数的导数要准确地把函数分割为基本函数的和、差、积、商及其复合运算,再利用运算法则求导数.在求导过程中,要仔细分析函数解析式的结构特征,紧扣求导法则,联系基本函数求导公式.对于不具备求导法则结构形式的要适当恒等变形.
解(1)∵y=(1-x)1+1x
=1x-x=,
∴y′=
=.
(2)y′=lnxx′=lnx′x-x′lnxx2
=.
(3)y′=x′ex+x(ex)′=ex+xex=ex(x+1).
(4)y′=sinxcosx′=sinx′cosx-sinxcosx′cos2x
=cosxcosx-sinx-sinxcos2x=1cos2x.
变式迁移2解(1)y′=(x2)′sinx+x2(sinx)′=2xsinx+x2cosx.
(2)y′=(3xex)′-(2x)′+(e)′
=(3x)′ex+3x(ex)′-(2x)′
=3xln3ex+3xex-2xln2
=(ln3+1)(3e)x-2xln2.
(3)y′=lnx′x2+1-lnxx2+1′x2+12
=1xx2+1-lnx2xx2+12=x2+1-2x2lnxxx2+12.
例3解题导引(1)求复合函数导数的思路流程为:
分解复合关系→分解复合关系→分层求导
(2)由复合函数的定义可知,中间变量的选择应是基本函数的结构,解这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外向内,一层一层地分析,把复合函数分解成若干个常见的基本函数,逐步确定复合过程.
解(1)y′=[(1+sinx)2]′
=2(1+sinx)(1+sinx)′
=2(1+sinx)cosx
=2cosx+sin2x.
(2)y′=′
(3)y′=(lnx2+1)′
=1x2+1(x2+1)′
=1x2+112(x2+1)-12(x2+1)′
=xx2+1.
变式迁移3解(1)设u=1-3x,y=u-4.
则yx′=yu′ux′=-4u-5(-3)
=121-3x5.
(2)设y=u2,u=sinv,v=2x+π3,
则yx′=yu′uv′vx′=2ucosv2
=4sin2x+π3cos2x+π3
=2sin4x+2π3.
(3)y′=(x1+x2)′
=x′1+x2+x(1+x2)′
=1+x2+x21+x2=1+2x21+x2.
例4解题导引(1)求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异;过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.
(2)求函数对应曲线在某一点处的切线的斜率,只要求函数在该点处的导数即可.
(3)解决“过某点的切线”问题,一般是设出切点坐标解决.
解(1)∵y′=x2,
∴在点P(2,4)处的切线的斜率k=y′|x=2=4.
∴曲线在点P(2,4)处的切线方程为
y-4=4(x-2),
即4x-y-4=0.
(2)设曲线y=13x3+43与过点P(2,4)的切线相切于点Ax0,13x30+43,则切线的斜率k=y′|x=x0=x20.
∴切线方程为y-13x30+43=x20(x-x0),
即y=x20x-23x30+43.
∵点P(2,4)在切线上,∴4=2x20-23x30+43,
即x30-3x20+4=0,∴x30+x20-4x20+4=0,
∴x20(x0+1)-4(x0+1)(x0-1)=0,
∴(x0+1)(x0-2)2=0,
解得x0=-1或x0=2,
故所求切线方程为4x-y-4=0或x-y+2=0.
(3)设切点为(x0,y0),则
切线的斜率为k=x20=1,解得x0=±1,
故切点为1,53,(-1,1).
故所求切线方程为y-53=x-1和y-1=x+1,
即3x-3y+2=0和x-y+2=0.
变式迁移4解f′(x)=3x2-6x+2.设切线的斜率为k.
(1)当切点是原点时k=f′(0)=2,所以所求曲线的切线方程为y=2x.
(2)当切点不是原点时,设切点是(x0,y0),则有y0=x30-3x20+2x0,k=f′(x0)=3x20-6x0+2,①
又k=y0x0=x20-3x0+2,②
由①②得x0=32,k=-14.
∴所求曲线的切线方程为y=-14x.
综上,曲线f(x)=x3-3x2+2x过原点的切线方程为
y=2x或y=-14x.
课后练习区
1.C2.C3.A4.D5.A
6.1秒或2秒末
7.2
8.12x+3y+8=0
9.解(1)∵f′(x)=2ex1-x′=2ex′1-x-2ex1-x′1-x2
=22-xex1-x2,∴f′(2)=0.………………………………………………………………(6分)
(2)∵f′(x)=(x-32)′-x′+(lnx)′
=-32x-52-1+1x,∴f′(1)=-32.……………………………………………………(12分)
10.解设经时间t秒梯子上端下滑s米,
则s=5-25-9t2,
当下端移开1.4m时,……………………………………………………………………(3分)
t0=1.43=715,……………………………………………………………………………(5分)
又s′=-12(25-9t2)-12(-92t)
=9t125-9t2,…………………………………………………………………………(10分)
所以s′(t0)=9×715125-9×7152
=0.875(m/s).
故所求的梯子上端下滑的速度为0.875m/s.……………………………………………(12分)
11.解(1)因为f′(x)=x-ax(x0),……………………………………………………(2分)
又f(x)在x=2处的切线方程为y=x+b,
所以2-aln2=2+b,2-a2=1,……………………………………………………………(5分)
解得a=2,b=-2ln2.……………………………………………………………………(7分)
(2)若函数f(x)在(1,+∞)上为增函数,
则f′(x)=x-ax≥0在(1,+∞)上恒成立,……………………………………………(10分)
即a≤x2在(1,+∞)上恒成立.
所以有a≤1.……………………………………………………………………………(14分)

相关推荐

高考数学理科一轮复习导数的综合应用学案(有答案)


一名合格的教师要充分考虑学习的趣味性,教师要准备好教案为之后的教学做准备。教案可以让讲的知识能够轻松被学生吸收,帮助教师更好的完成实现教学目标。教案的内容要写些什么更好呢?下面是由小编为大家整理的“高考数学理科一轮复习导数的综合应用学案(有答案)”,大家不妨来参考。希望您能喜欢!

学案15导数的综合应用
导学目标:1.应用导数讨论函数的单调性,并会根据函数的性质求参数范围.2.会利用导数解决某些实际问题.
自主梳理
1.函数的最值
(1)函数f(x)在[a,b]上必有最值的条件
如果函数y=f(x)的图象在区间[a,b]上________,那么它必有最大值和最小值.
(2)求函数y=f(x)在[a,b]上的最大值与最小值的步骤:
①求函数y=f(x)在(a,b)内的________;
②将函数y=f(x)的各极值与________比较,其中最大的一个是最大值,最小的一个是最小值.
2.实际应用问题:首先要充分理解题意,列出适当的函数关系式,再利用导数求出该函数的最大值或最小值,最后回到实际问题中,得出最优解.
自我检测
1.函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为()
A.0≤a1B.0a1
C.-1a1D.0a12
2.(2011汕头月考)设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不可能正确的是()
3.对于R上可导的任意函数f(x),若满足(x-1)f′(x)≥0,则必有()
A.f(0)+f(2)2f(1)B.f(0)+f(2)≤2f(1)
C.f(0)+f(2)≥2f(1)D.f(0)+f(2)2f(1)
4.(2011新乡模拟)函数f(x)=12ex(sinx+cosx)在区间0,π2上的值域为______________.
5.f(x)=x(x-c)2在x=2处有极大值,则常数c的值为________.
探究点一求含参数的函数的最值
例1已知函数f(x)=x2e-ax(a0),求函数在[1,2]上的最大值.

变式迁移1设a0,函数f(x)=alnxx.
(1)讨论f(x)的单调性;
(2)求f(x)在区间[a,2a]上的最小值.

探究点二用导数证明不等式
例2(2011张家口模拟)已知f(x)=12x2-alnx(a∈R),
(1)求函数f(x)的单调区间;
(2)求证:当x1时,12x2+lnx23x3.

变式迁移2(2010安徽)设a为实数,函数f(x)=ex-2x+2a,x∈R.
(1)求f(x)的单调区间与极值;
(2)求证:当aln2-1且x0时,exx2-2ax+1.

探究点三实际生活中的优化问题
例3(2011孝感月考)某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.
(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).

变式迁移3甲方是一农场,乙方是一工厂.由于乙方生产需占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付甲方的情况下,乙方的年利润x(元)与年产量t(吨)满足函数关系x=2000t.若乙方每生产一吨产品必须赔付甲方S元(以下称S为赔付价格).
(1)将乙方的年利润ω(元)表示为年产量t(吨)的函数,并求出乙方获得最大利润的年产量;
(2)甲方每年受乙方生产影响的经济损失金额y=0.002t2(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格S是多少?

转化与化归思想的应用
例(12分)(2010全国Ⅰ)已知函数f(x)=(x+1)lnx-x+1.
(1)若xf′(x)≤x2+ax+1,求a的取值范围;
(2)证明:(x-1)f(x)≥0.
【答题模板】
(1)解∵f′(x)=x+1x+lnx-1=lnx+1x,x0,
∴xf′(x)=xlnx+1.由xf′(x)≤x2+ax+1,
得a≥lnx-x,令g(x)=lnx-x,则g′(x)=1x-1,[2分]
当0x1时,g′(x)0;
当x1时,g′(x)0,[4分]
∴x=1是最大值点,g(x)max=g(1)=-1,∴a≥-1,
∴a的取值范围为[-1,+∞).[6分]
(2)证明由(1)知g(x)=lnx-x≤g(1)=-1,∴lnx-x+1≤0.(注:充分利用(1)是快速解决(2)的关键.)[8分]
当0x1时,x-10,f(x)=(x+1)lnx-x+1=xlnx+lnx-x+1≤0,
∴(x-1)f(x)≥0.
当x≥1时,x-10,f(x)=(x+1)lnx-x+1
=lnx+xlnx-x+1
=lnx-xln1x-1x+1≥0,
∴(x-1)f(x)≥0.[11分]
综上,(x-1)f(x)≥0.[12分]
【突破思维障碍】
本小题主要考查函数、导数、不等式证明等知识,通过运用导数知识解决函数、不等式问题,考查了考生综合运用数学知识解决问题的能力以及计算能力,同时也考查了函数与方程思想、化归与转化思想.通过转化,本题实质还是利用单调性求最值问题.
1.求极值、最值时,要求步骤规范,含参数时,要分类讨论参数的范围.若已知函数单调性求参数范围时,隐含恒成立思想.
2.利用导数解决生活中的优化问题的一般步骤:
(1)分析实际问题中各变量之间的关系,列出实际问题的数学模型,写出相应的函数关系式y=f(x);
(2)求函数的导数f′(x),解方程f′(x)=0;
(3)比较函数的区间端点对应的函数值和极值,确定最值;
(4)回到实际问题,作出解答.
(满分:75分)
一、选择题(每小题5分,共25分)
1.(2011皖南模拟)已知曲线C:y=2x2-x3,点P(0,-4),直线l过点P且与曲线C相切于点Q,则点Q的横坐标为()
A.-1B.1C.-2D.2
2.已知函数y=f(x),y=g(x)的导函数的图象如图所示,那么y=f(x),y=g(x)的图象可能是()
3.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是()
4.函数f(x)=-x3+x2+tx+t在(-1,1)上是增函数,则t的取值范围是()
A.t5B.t5
C.t≥5D.t≤5
5.(2011沧州模拟)若函数f(x)=sinxx,且0x1x21,设a=sinx1x1,b=sinx2x2,则a,b的大小关系是()
A.abB.ab
C.a=bD.a、b的大小不能确定
题号12345
答案
二、填空题(每小题4分,共12分)
6.在直径为d的圆木中,截取一个具有最大抗弯强度的长方体梁,则矩形面的长为________.(强度与bh2成正比,其中h为矩形的长,b为矩形的宽)
7.要建造一个长方体形状的仓库,其内部的高为3m,长和宽的和为20m,则仓库容积的最大值为_____________________________________________________________m3.
8.若函数f(x)=4xx2+1在区间(m,2m+1)上是单调递增函数,则实数m的取值范围为________.
三、解答题(共38分)
9.(12分)已知函数f(x)=12(1+x)2-ln(1+x).
(1)求f(x)的单调区间;
(2)若x∈[1e-1,e-1]时,f(x)m恒成立,求m的取值范围.

10.(12分)(2010湖北)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=k3x+5(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

11.(14分)设函数f(x)=lnx,g(x)=ax+bx,函数f(x)的图象与x轴的交点也在函数g(x)的图象上,且在此点有公共切线.
(1)求a、b的值;
(2)对任意x0,试比较f(x)与g(x)的大小.

答案自主梳理
1.(1)连续(2)①极值②端点值
自我检测
1.B2.D3.C
4.12,12eπ25.6
课堂活动区
例1解题导引求函数在闭区间上的最值,首先应判断函数在闭区间上的单调性,一般方法是令f′(x)=0,求出x值后,再判断函数在各区间上的单调性,在这里一般要用到分类讨论的思想,讨论的标准通常是极值点与区间端点的大小关系,确定单调性或具体情况.
解∵f(x)=x2e-ax(a0),
∴f′(x)=2xe-ax+x2(-a)e-ax=e-ax(-ax2+2x).
令f′(x)0,即e-ax(-ax2+2x)0,
得0x2a.
∴f(x)在(-∞,0),2a,+∞上是减函数,
在0,2a上是增函数.
①当02a1,即a2时,f(x)在[1,2]上是减函数,
∴f(x)max=f(1)=e-a.
②当1≤2a≤2,即1≤a≤2时,f(x)在1,2a上是增函数,在2a,2上是减函数,
∴f(x)max=f2a=4a-2e-2.
③当2a2,即0a1时,f(x)在[1,2]上是增函数,
∴f(x)max=f(2)=4e-2a.
综上所述,
当0a1时,f(x)的最大值为4e-2a;
当1≤a≤2时,f(x)的最大值为4a-2e-2;
当a2时,f(x)的最大值为e-a.
变式迁移1解(1)函数f(x)的定义域为(0,+∞),
f′(x)=a1-lnxx2(a0),
由f′(x)=a1-lnxx20,得0xe;
由f′(x)0,得xe.
故f(x)在(0,e)上单调递增,在(e,+∞)上单调递减.
(2)∵f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,
∴f(x)在[a,2a]上的最小值[f(x)]min=min{f(a),f(2a)}.∵f(a)-f(2a)=12lna2,
∴当0a≤2时,[f(x)]min=lna;
当a2时,[f(x)]min=ln2a2.
例2解题导引利用导数解决不等式问题的主要方法就是构造函数,通过研究函数的性质进而解决不等式问题.
(1)解f′(x)=x-ax=x2-ax(x0),
若a≤0时,f′(x)0恒成立,
∴函数f(x)的单调增区间为(0,+∞).
若a0时,令f′(x)0,得xa,
∴函数f(x)的单调增区间为(a,+∞),减区间为(0,a).
(2)证明设F(x)=23x3-(12x2+lnx),
故F′(x)=2x2-x-1x.
∴F′(x)=x-12x2+x+1x.
∵x1,∴F′(x)0.
∴F(x)在(1,+∞)上为增函数.
又F(x)在(1,+∞)上连续,F(1)=160,
∴F(x)16在(1,+∞)上恒成立.∴F(x)0.
∴当x1时,12x2+lnx23x3.
变式迁移2(1)解由f(x)=ex-2x+2a,x∈R,
知f′(x)=ex-2,x∈R.
令f′(x)=0,得x=ln2.于是当x变化时,
f′(x),f(x)的变化情况如下表:
x(-∞,ln2)ln2(ln2,+∞)
f′(x)-0+
f(x)?
极小值?

故f(x)的单调递减区间是(-∞,ln2),
单调递增区间是(ln2,+∞),
f(x)在x=ln2处取得极小值,极小值为
f(ln2)=eln2-2ln2+2a=2(1-ln2+a).
(2)证明设g(x)=ex-x2+2ax-1,x∈R.
于是g′(x)=ex-2x+2a,x∈R.
由(1)知当aln2-1时,
g′(x)最小值为g′(ln2)=2(1-ln2+a)0.
于是对任意x∈R,都有g′(x)0,
所以g(x)在R内单调递增,于是当aln2-1时,
对任意x∈(0,+∞),都有g(x)g(0).
而g(0)=0,从而对任意x∈(0,+∞),都有g(x)0,
即ex-x2+2ax-10,
故exx2-2ax+1.
例3解(1)分公司一年的利润L(万元)与售价x的函数关系式为L=(x-3-a)(12-x)2,x∈[9,11].
(2)L′(x)=(12-x)2-2(x-3-a)(12-x)
=(12-x)(18+2a-3x).
令L′=0,得x=6+23a或x=12(不合题意,舍去).
∵3≤a≤5,∴8≤6+23a≤283.
在x=6+23a两侧L′的值由正变负.
∴①当8≤6+23a9,即3≤a92时,
Lmax=L(9)=(9-3-a)(12-9)2=9(6-a).
②当9≤6+23a≤283,即92≤a≤5时,
Lmax=L(6+23a)=(6+23a-3-a)[12-(6+23a)]2
=4(3-13a)3.
所以Q(a)=96-a,3≤a92,43-13a3,92≤a≤5.
综上,若3≤a92,则当每件售价为9元时,分公司一年的利润L最大,最大值Q(a)=9(6-a)(万元);
若92≤a≤5,则当每件售价为(6+23a)元时,分公司一年的利润L最大,最大值Q(a)=4(3-13a)3(万元).
变式迁移3解(1)因为赔付价格为S元/吨,
所以乙方的实际年利润为ω=2000t-St.
由ω′=1000t-S=1000-Stt,
令ω′=0,得t=t0=(1000S)2.
当tt0时,ω′0;当tt0时,ω′0.
所以当t=t0时,ω取得最大值.
因此乙方获得最大利润的年产量为(1000S)2吨.
(2)设甲方净收入为v元,则v=St-0.002t2.
将t=(1000S)2代入上式,得到甲方净收入v与赔付价格S之间的函数关系式:
v=10002S-2×10003S4.
又v′=-10002S2+8×10003S5=10002×8000-S3S5,
令v′=0,得S=20.
当S20时,v′0;
当S20时,v′0,
所以S=20时,v取得最大值.
因此甲方向乙方要求赔付价格S=20元/吨时,可获得最大净收入.
课后练习区
1.A2.D3.C4.C5.A
6.63d
解析如图所示,为圆木的横截面,
由b2+h2=d2,
∴bh2=b(d2-b2).
设f(b)=b(d2-b2),
∴f′(b)=-3b2+d2.
令f′(b)=0,由b0,
∴b=33d,且在(0,33d)上f′(b)0,在[33d,d]上f′(b)0.
∴函数f(b)在b=33d处取极大值,也是最大值,即抗弯强度最大,此时长h=63d.
7.300
解析设长为xm,则宽为(20-x)m,仓库的容积为V,则V=x(20-x)3=-3x2+60x,V′=-6x+60,
令V′=0得x=10.
当0x10时,V′0;当x10时,V′0,
∴x=10时,V最大=300(m3).
8.(-1,0]
解析f′(x)=41-x2x2+12≥0,解得-1≤x≤1.
由已知得(m,2m+1)[-1,1],即m≥-12m+1≤1m2m+1,
解得-1m≤0.
9.解(1)∵f(x)=12(1+x)2-ln(1+x),
∴f′(x)=(1+x)-11+x=x2+x1+x(x-1).
……………………………………………………………………………………………(4分)
∴f(x)在(0,+∞)上单调递增,
在(-1,0)上单调递减.…………………………………………………………………(6分)
(2)令f′(x)=0,即x=0,则
x(1e-1,0)
0(0,e-1)
f′(x)-0+
f(x)?
极小值?

……………………………………………………………………………………………(9分)
又∵f(1e-1)=12e2+1,f(e-1)=12e2-112e2+1,
又f(x)m在x∈[1e-1,e-1]上恒成立,
∴m12e2-1.………………………………………………………………………………(12分)
10.解(1)设隔热层厚度为xcm,由题设,
每年能源消耗费用为C(x)=k3x+5,(2分)
再由C(0)=8,得k=40,因此C(x)=403x+5,…………………………………………(4分)
而建造费用为C1(x)=6x.…………………………………………………………………(5分)
最后得隔热层建造费用与20年的能源消耗费用之和为
f(x)=20C(x)+C1(x)=20×403x+5+6x
=8003x+5+6x(0≤x≤10).………………………………………………………………(6分)
(2)f′(x)=6-24003x+52,令f′(x)=0,
即24003x+52=6,解得x=5,x=-253(舍去).…………………………………………(8分)
当0x5时,f′(x)0,
当5x10时,f′(x)0,………………………………………………………………(10分)
故x=5是f(x)的最小值点,
对应的最小值为f(5)=6×5+80015+5=70.
当隔热层修建5cm厚时,总费用达到最小值70万元.
……………………………………………………………………………………………(12分)
11.解(1)f(x)=lnx的图象与x轴的交点坐标是(1,0),
依题意,得g(1)=a+b=0.①……………………………………………………………(2分)
又f′(x)=1x,g′(x)=a-bx2,
且f(x)与g(x)在点(1,0)处有公共切线,
∴g′(1)=f′(1)=1,即a-b=1.②……………………………………………………(4分)
由①②得a=12,b=-12.…………………………………………………………………(6分)
(2)令F(x)=f(x)-g(x),则
F(x)=lnx-(12x-12x)=lnx-12x+12x,
∴F′(x)=1x-12-12x2=-12(1x-1)2≤0.
∴F(x)在(0,+∞)上为减函数.………………………………………………………(10分)
当0x1时,F(x)F(1)=0,即f(x)g(x);
当x=1时,F(1)=0,即f(x)=g(x);
当x1时,F(x)F(1)=0,即f(x)g(x).
综上,0x1时,f(x)g(x);
x=1时,f(x)=g(x);
x1时f(x)g(x).…………………………………………………………………………(14分)

高考数学(理科)一轮复习平面向量及其线性运算学案含答案


学案25平面向量及其线性运算
导学目标:1.了解向量的实际背景.2.理解平面向量的概念、理解两个向量相等的含义.3.理解向量的几何表示.4.掌握向量加法、减法的运算,并理解其几何意义.5.掌握向量数乘的运算及其意义,理解两个向量共线的含义.6.了解向量线性运算的性质及其几何意义.
自主梳理
1.向量的有关概念
(1)向量的定义:既有______又有______的量叫做向量.
(2)表示方法:用来表示向量.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.用字母a,b,…或用AB→,BC→,…表示.
(3)模:向量的______叫向量的模,记作________或_______.
(4)零向量:长度为零的向量叫做零向量,记作0;零向量的方向是________.
(5)单位向量:长度为____单位长度的向量叫做单位向量.与a平行的单位向量e=____________.
(6)平行向量:方向______或______的______向量;平行向量又叫____________,任一组平行向量都可以移到同一直线上.规定:0与任一向量______.
(7)相等向量:长度______且方向______的向量.
2.向量的加法运算及其几何意义
(1)已知非零向量a,b,在平面内任取一点A,作AB→=a,BC→=b,则向量AC→叫做a与b的,记作,即=AB→+BC→=,这种求向量和的方法叫做向量加法的.?
(2)以同一点O为起点的两个已知向量a,b为邻边作OACB,则以O为起点的对角线OA→就是a与b的和,这种作两个向量和的方法叫做向量加法的.
(3)加法运算律
a+b=________(交换律);
(a+b)+c=____________(结合律).
3.向量的减法及其几何意义
(1)相反向量
与a____________、____________的向量,叫做a的相反向量,记作______.
(2)向量的减法
①定义a-b=a+________,即减去一个向量相当于加上这个向量的____________.
②如图,AB→=a,,AD→=b,则AC→=,DB→=____________.
4.向量数乘运算及其几何意义
(1)定义:实数λ与向量a的积是一个向量,记作______,它的长度与方向规定如下:
①|λa|=______;
②当λ0时,λa与a的方向______;当λ0时,λa与a的方向______;当λ=0时,λa=______.
(2)运算律
设λ,μ是两个实数,则
①λ(μa)=________.(结合律)
②(λ+μ)a=________.(第一分配律)
③λ(a+b)=__________.(第二分配律)
(3)两个向量共线定理:向量b与a(a≠0)共线的充要条件是存在唯一一个实数λ,使b=λa.
5.重要结论
PG→=13(PA→+PB→+PC→)G为△ABC的________;
PA→+PB→+PC→=0P为△ABC的________.
自我检测
1.(2010四川)设点M是线段BC的中点,点A在直线BC外,BC→=16,|,|则|AM→|等于()
A.8B.4C.2D.1
2.下列四个命题:
①对于实数m和向量a,b,恒有m(a-b)=ma-mb;
②对于实数m和向量a,b(m∈R),若ma=mb,则a=b;
③若ma=na(m,n∈R,a≠0),则m=n;
④若a=b,b=c,则a=c,
其中正确命题的个数为()
A.1B.2C.3D.4
3.在ABCD中,AB→=a,AD→=b,AN→=3NC→,M为BC的中点,则MN→等于()
A.-14a+14bB.-12a+12b
C.a+12bD.-34a+34b
4.(2010湖北)已知△ABC和点M满足MA→+MB→+MC→=0.若存在实数m使得AB→+AC→=m,成立,则m等于()
A.2B.3C.4D.5
5.(2009安徽)在平行四边形ABCD中,E和F分别是边CD和BC的中点,若AC→=λAE→+μAF→,其中λ、μ∈R,则λ+μ=______.
探究点一平面向量的有关概念辨析
例1①有向线段就是向量,向量就是有向线段;
②向量a与向量b平行,则a与b的方向相同或相反;
③向量AB→与向量CD→共线,则A、B、C、D四点共线;
④如果a∥b,b∥c,那么a∥c.
以上命题中正确的个数为()
A.1B.2C.3D.0
变式迁移1下列命题中正确的有________(填写所有正确命题的序号).
①|a|=|b|a=b;
②若a=b,b=c,则a=c;
③|a|=0a=0;
④若A、B、C、D是不共线的四点,则AB→=DC→四边形ABCD是平行四边形.
探究点二向量的线性运算
例2(2011开封模拟)已知任意平面四边形ABCD中,E、F分别是AD、BC的中点.求证:EF→=12(AB→+DC→).

变式迁移2(2011深圳模拟)如图所示,若四边形ABCD是一个等腰梯形,AB∥DC,M、N分别是DC、AB的中点,已知AB→=a,AD→=b,DC→=c,试用a、b、c表示BC→,MN→,DN→+CN→.

探究点三共线向量问题
例3如图所示,平行四边形ABCD中,AD→=b,AB→=a,M为AB中点,N为BD靠近B的三等分点,求证:M、N、C三点共线.

变式迁移3设两个非零向量e1和e2不共线.
(1)如果AB→=e1-e2,BC→=3e1+2e2,CD→=-8e1-2e2,求证:A、C、D三点共线;
(2)如果AB→=e1+e2,BC→=2e1-3e2,CD→=2e1-ke2,且A、C、D三点共线,求k的值.

1.若点P为线段AB的中点,O为平面内的任意一点,则OP→=12(OA→+OB→).如图所示.
2.证明三点共线问题,可用向量共线来解决,但应注意向量与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.
3.三点共线的性质定理:
(1)若平面上三点A、B、C共线,则AB→=λBC→.
(2)若平面上三点A、B、C共线,O为不同于A、B、C的任意一点,则OC→=λOA→+μOB→,且λ+μ=1.
(满分:75分)
一、选择题(每小题5分,共25分)
1.若O、E、F是不共线的任意三点,则以下各式中成立的是()
A.EF→=OF→+OE→B.EF→=OF→-OE→
C.EF→=-OF→+OE→D.EF→=-OF→-OE→
2.设a,b为不共线向量,AB→=a+2b,BC→=-4a-b,CD→=-5a-3b,则下列关系式中正确的是()
A.AD→=BC→B.AD→=2BC→
C.AD→=-BC→D.AD→=-2BC→
3.(2011杭州模拟)设a,b是任意的两个向量,λ∈R,给出下面四个结论:
①若a与b共线,则b=λa;
②若b=-λa,则a与b共线;
③若a=λb,则a与b共线;
④当b≠0时,a与b共线的充要条件是有且只有一个实数λ=λ1,使得a=λ1b.
其中正确的结论有()
A.①②B.①③C.①③④D.②③④
4.在△ABC中,AB→=c,AC→=b,若点D满足BD→=2DC→,则AD→等于()
A.23b+13cB.53c-23b
C.23b-13cD.13b+23c
5.(2010广东中山高三六校联考)在△ABC中,已知D是AB边上一点,AD→=2DB→,CD→=13CA→+λCB→,则λ等于()
A.23B.13C.-13D.-23
题号12345
答案
二、填空题(每小题4分,共12分)
6.(2009湖南)如下图,两块斜边长相等的直角三角板拼在一起,若AD→=xAB→+yAC→,则x=______,y=__________.
7.已知=a,OP2→=b,P1P2→=λPP2→,则OP→=_________.
8.(2011青岛模拟)O是平面上一点,A,B,C是平面上不共线三点,动点P满足OP→=OA→+λ(AB→+AC→),λ=12时,则PA→(PB→+PC→)的值为________.
三、解答题(共38分)
9.(12分)若a,b是两个不共线的非零向量,a与b起点相同,则当t为何值时,a,tb,13(a+b)三向量的终点在同一条直线上?

10.(12分)在△ABC中,BE与CD交于点P,且AB→=a,AC→=b,用a,b表示AP→.

11.(14分)(2011黄山模拟)已知点G是△ABO的重心,M是AB边的中点.
(1)求GA→+GB→+GO→;
(2)若PQ过△ABO的重心G,且,OA→=a,OB→=b,OP→=ma,OQ→=nb,求证:1m+1n=3.

答案自主梳理
1.(1)大小方向(2)有向线段(3)长度|a|?|
(4)任意的(5)1个±a|a|(6)相同相反非零共线向量平行(7)相等相同2.(1)和a+ba+bAC→三角形法则(2)平行四边形法则(3)b+aa+(b+c)3.(1)长度相等方向相反-a(2)①(-b)相反向量②a+ba-b4.(1)λa①|λ||a|②相同相反0(2)①(λμ)a②λa+μa③λa+λb5.(1)重心(2)重心
自我检测
1.

2.C[①根据实数与向量积的运算可判断其正确;②当m=0时,ma=mb=0,但a与b不一定相等,故②错误;③正确;④由于向量相等具有传递性,故④正确.]
3.A[由AN→=3NC→得4AN→=3AC→=3(a+b),
又AM→=a+12b,所以MN→=34(a+b)-a+12b
=-14a+14b.]
4.B[由题目条件可知,M为△ABC的重心,连接AM并延长交BC于D,
则AM→=23AD→,①
因为AD为中线,AB→+AC→=2AD→=mAM→,
即2AD→=mAM→,②
联立①②可得m=3.]
5.43
解析设AB→=a,AD→=b,
那么AE→=a+b,AF→=a+12b,又∵AC→=a+b,
AC→=23(AE→+AF→),即λ=μ=23,
∴λ+μ=43.
课堂活动区
例1D[①不正确,向量可以用有向线段表示,但向量不是有向线段;
②不正确,若a与b中有一个为零向量时也互相平行,但零向量的方向是不确定的,故两向量方向不一定相同或相反;
③不正确,共线向量所在的直线可以重合,也可以平行;
④不正确,如果b=0时,则a与c不一定平行.
所以应选D.]
变式迁移1②③④
解析①模相同,方向不一定相同,
故①不正确;
②两向量相等,要满足模相等且方向相同,故向量相等具备传递性,②正确;
③只有零向量的模才为0,故③正确;
④AB→=DC→,即模相等且方向相同,即平行四边形对边平行且相等.故④正确.
故应选②③④.
例2证明方法一如图所示,
在四边形CDEF中,EF→+FC→+CD→+DE→=0.①
在四边形ABFE中,EF→+FB→+BA→+AE→=0.②
①+②得
(EF→+EF→)+(FC→+FB→)+(CD→+BA→)+(DE→+AE→)=0.
∵E、F分别是AD、BC的中点,
∴FC→+FB→=0,DE→+AE→=0.
∴2EF→=-CD→-BA→=AB→+DC→,
即EF→=(AB→+DC→).
方法二取以A为起点的向量,应用三角形法则求证.
∵E为AD的中点,∴AE→=12AD→.
∵F是BC的中点,∴AF→=12(AB→+AC→).
又AC→=AD→+DC→,
∴AF→=12(AB→+AD→+DC→)=12(AB→+DC→)+12AD→
=12(AB→+DC→)+AE→
∴EF→=AF→-AE→=12(AB→+DC→).
即EF→=12(AB→+DC→).
变式迁移2解BC→=BA→+AD→+DC→
例3解题导引(1)在平面几何中,向量之间的关系一般通过两个指定的向量来表示,向量共线应存在实数λ使两向量能互相表示.
(2)向量共线的判断(或证明)是把两向量用共同的已知向量来表示,进而互相表示,从而判断共线.
证明在△ABD中BD→=AD→-AB→.
因为AB→=a,AD→=b,所以BD→=b-a.
由共线向量定理知:CM→∥CN→,
又∵CM→与CN→有公共点C,∴M、N、C三点共线.
变式迁移3(1)证明∵AB→=e1-e2,BC→=3e1+2e2,CD→=-8e1-2e2,
∴AC→=AB→+BC→=e1-e2+3e1+2e2
=4e1+e2=(-8e1-2e2)=CD→.
∴AC→与CD→共线.
又∵AC→与CD→有公共点C,∴A、C、D三点共线.
(2)AC→=AB→+BC→=(e1+e2)+(2e1-3e2)=3e1-2e2,∵A、C、D三点共线,∴AC→与CD→共线.
从而存在实数λ使得AC→=λCD→
即3e1-2e2=λ(2e1-ke2).
由平面向量的基本定理得3=2λ,-2=-λk.
解之,得λ=32,k=43.∴k的值为43.
课后练习区
1.B[由减法的三角形法则知EF→=OF→-OE→.]
3.D[题目考查两向量共线的充要条件,此定理应把握好两点:(1)与λ相乘的向量为非零向量,(2)λ存在且唯一.故②③④正确.]
5.
6.1+3232
解析
作DF⊥AB交AB的延长线于F,设AB=AC=1BC=DE=2,∵∠DEB=60°,∴BD=62.
由∠DBF=45°,
得DF=BF=62×22=32,
所以BF→=32AB→FD→=32AC→,
所以AD→=AB→+BF→+FD→=()AB→+32AC→.
7.1λa+λ-1λb
=a+λ-1λ(b-a)=1λa+λ-1λb.
8.0
解析由OP→=OA→+λ(AB→+AC→),λ=12,得AP→-(AB→+AC→),即点P为△ABC中BC边的中点,
∴PB→+PC→=0.
∴PA→(PB→+PC→)=PA→0=0.
9.解设OA→=a,OB→=tb,OC→=13(a+b),
∴AC→=OC→-OA→=-23a+13b,……………………………………………………………(4分)
AB→=OB→-OA→=tb-a.……………………………………………………………………(6分)
要使A、B、C三点共线,只需AC→=λAB→,
即-23a+13b=λtb-λa,……………………………………………………………………(8分)
∴-23=-λ,13=λt.∴λ=23,t=12.……………………………………………………(11分)
∴当t=12时,三向量终点在同一直线上.……………………………………………(12分)
10.解
取AE的三等分点M,
使|AM|=13|AE|,连结DM.
设|AM|=t,则|ME|=2t.
又|AE|=14|AC|,
∴|AC|=12t,|EC|=9t,
|AD||AB|=|AM||AE|=13,…………………………………………………………………………(4分)
∴DM∥BE,∴|PC||DC|=|PE||DM|=|EC||MC|=911.
∴|DP|=211|DC|.…………………………………………………………………………(8分)
∴AP→=AD→+DP→=AD→+211DC→=13AB→+211(DA→+AC→)
=13AB→+211-13AB→+AC→
=311AB→+211AC→=311a+211b.……………………………………………………………(12分)
11.(1)解∵点G是△ABO的重心,
∴GA→+GB→+GO→=0.……………………………………………………………………(2分)
(2)证明∵M是AB边的中点,∴OM→=12(a+b).
∵G是△ABO的重心,∴OG→=23OM→=13(a+b).
∵P、G、Q三点共线,∴PG→∥GQ→,
且有且只有一个实数λ,使PG→=λGQ→.…………………………………………………(5分)

∴(13-m)a+13b=λ[-13a+(n-13)b].…………………………………………………(8分)
又因为a、b不共线,所以
13-m=-13λ13=λn-13,……………………………………………………………………(10分)
消去λ,整理得3mn=m+n,故1m+1n=3.……………………………………………(14分)

高考数学(理科)一轮复习空间向量及其运算学案附答案


作为优秀的教学工作者,在教学时能够胸有成竹,教师要准备好教案,这是教师的任务之一。教案可以让学生能够在课堂积极的参与互动,帮助授课经验少的教师教学。那么一篇好的教案要怎么才能写好呢?以下是小编为大家精心整理的“高考数学(理科)一轮复习空间向量及其运算学案附答案”,欢迎大家阅读,希望对大家有所帮助。

学案45空间向量及其运算

导学目标:1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.
自主梳理
1.空间向量的有关概念
(1)空间向量:在空间中,具有______和______的量叫做空间向量.
(2)相等向量:方向______且模______的向量.
(3)共线向量定理
对空间任意两个向量a,b(b≠0),a∥b的充要条件是______________________________.

推论如图所示,点P在l上的充要条件是:OP→=OA→+ta①
其中a叫直线l的方向向量,t∈R,在l上取AB→=a,则①可化为OP→=___________________或OP→=(1-t)OA→+tOB→.
(4)共面向量定理
如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在惟一的有序实数对(x,y),使p=xa+yb,推论的表达式为MP→=xMA→+yMB→或对空间任意一点O有,OP→=__________________或OP→=xOA→+yOB→+zOM→,其中x+y+z=____.
2.空间向量基本定理
如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=____________________________,把{a,b,c}叫做空间的一个基底.
3.空间向量的数量积及运算律
(1)数量积及相关概念
①两向量的夹角
已知两个非零向量a,b,在空间任取一点O,作OA→=a,OB→=b,则________叫做向量a与b的夹角,记作________,其范围是________________,若〈a,b〉=π2,则称a与b______________,记作a⊥b.
②两向量的数量积
已知两个非零向量a,b,则______________________叫做向量a,b的数量积,记作________,即______________________________.
(2)空间向量数量积的运算律
①结合律:(λa)b=____________________;
②交换律:ab=________;
③分配律:a(b+c)=________________.
4.空间向量的坐标表示及应用
(1)数量积的坐标运算
若a=(a1,a2,a3),b=(b1,b2,b3),
则ab=____________________.
(2)共线与垂直的坐标表示
设a=(a1,a2,a3),b=(b1,b2,b3),
则a∥b(b≠0)____________________,__________,________________,
a⊥b_________________________________________(a,b均为非零向量).
(3)模、夹角和距离公式
设a=(a1,a2,a3),b=(b1,b2,b3),
则|a|=aa=_____________________________________________________________,
cos〈a,b〉=ab|a||b|=_________________________________________________________.
若A(a1,b1,c1),B(a2,b2,c2),
则|AB→|=__________________________________________________________________.
自我检测
1.若a=(2x,1,3),b=(1,-2y,9),且a∥b,则()
A.x=1,y=1B.x=12,y=-12
C.x=16,y=-32D.x=-16,y=32
2.(2011青岛月考)
如图所示,在平行六面体ABCD—A1B1C1D1中,M为AC与BD的交点,若A1B1→=a,A1D1→=b,A1A→=c,则下列向量中与B1M→相等的向量是()
A.-12a+12b+cB.12a+12b+c
C.12a-12b+cD.-12a-12b+c
3.(2011广州调研)在平行六面体ABCD—A′B′C′D′中,已知∠BAD=∠A′AB=∠A′AD=60°,AB=3,AD=4,AA′=5,则|AC′→|=________.
4.有下列4个命题:
①若p=xa+yb,则p与a、b共面;
②若p与a、b共面,则p=xa+yb;
③若MP→=xMA→+yMB→,则P、M、A、B共面;
④若P、M、A、B共面,则MP→=xMA→+yMB→.
其中真命题的个数是()
A.1B.2C.3D.4
5.A(1,0,1),B(4,4,6),C(2,2,3),D(10,14,17)这四个点________(填共面或不共面).
探究点一空间基向量的应用
例1已知空间四边形OABC中,M为BC的中点,N为AC的中点,P为OA的中点,Q为OB的中点,若AB=OC,求证:PM⊥QN.

变式迁移1
如图,在正四面体ABCD中,E、F分别为棱AD、BC的中点,则异面直线AF和CE所成角的余弦值为________.

探究点二利用向量法判断平行或垂直
例2(2011合肥调研)两个边长为1的正方形ABCD与正方形ABEF相交于AB,∠EBC=90°,点M、N分别在BD、AE上,且AN=DM.
(1)求证:MN∥平面EBC;(2)求MN长度的最小值.

变式迁移2
如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.
求证:(1)AM∥平面BDE;(2)AM⊥面BDF.

探究点三利用向量法解探索性问题
例3(2011泉州月考)如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别
为PA,PB,AC的中点,AC=16,PA=PC=10.
(1)设G是OC的中点,证明FG∥平面BOE;
(2)在△AOB内是否存在一点M,使FM⊥平面BOE?若存在,求出点M到OA,OB的距离;若不存在,说明理由.

变式迁移3已知在直三棱柱ABC—A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角的余弦值;
(2)在线段AA1上是否存在点F,使CF⊥平面B1DF?若存在,求出AF;若不存在,请说明理由.
1.向量法解立体几何问题有两种基本思路:一种是利用基向量表示几何量,简称基向量法;另一种是建立空间直角坐标系,利用坐标法表示几何量,简称坐标法.
2.利用坐标法解几何问题的基本步骤是:(1)建立适当的空间直角坐标系,用坐标准确表示涉及到的几何量.(2)通过向量的坐标运算,研究点、线、面之间的位置关系.(3)根据运算结果解释相关几何问题.
(满分:75分)

一、选择题(每小题5分,共25分)
1.下列命题:
①若A、B、C、D是空间任意四点,则有AB→+BC→+CD→+DA→=0;
②|a|-|b|=|a+b|是a、b共线的充要条件;
③若a、b共线,则a与b所在直线平行;
④对空间任意一点O与不共线的三点A、B、C,若OP→=xOA→+yOB→+zOC→(其中x、y、z∈R)则P、A、B、C四点共面.其中假命题的个数是()
A.1B.2C.3D.4
2.
如图所示,在正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM()
A.既垂直于AC,又垂直于MN
B.垂直于AC,但不垂直于MN
C.垂直于MN,但不垂直于AC
D.与AC、MN都不垂直
3.(2011绍兴月考)
如图所示,在三棱柱ABC—A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角是()
A.45°B.60°
C.90°D.120°
4.设点C(2a+1,a+1,2)在点P(2,0,0)、A(1,-3,2)、B(8,-1,4)确定的平面上,则a等于()
A.16B.4C.2D.8
5.在直角坐标系中,A(-2,3),B(3,-2),沿x轴把直角坐标系折成120°的二面角,则AB的长度为()
A.2B.211C.32D.42
二、填空题(每小题4分,共12分)
6.
(2011信阳模拟)如图所示,已知空间四边形ABCD,F为BC的中点,E为AD的中点,若EF→=λ(AB→+DC→),则λ=________.
7.(2011铜川模拟)在正方体ABCD—A1B1C1D1中,给出以下向量表达式:
①(A1D1→-A1A→)-AB→;②(BC→+BB1→)-D1C1→;
③(AD→-AB→)-2DD1→;④(B1D1→+A1A→)+DD1→.
其中能够化简为向量BD1→的是________.(填所有正确的序号)
8.(2011丽水模拟)
如图所示,PD垂直于正方形ABCD所在平面,AB=2,E为PB的中点,cos〈DP→,AE→〉=33,若以DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,则点E的坐标为________.
三、解答题(共38分)
9.(12分)
如图所示,已知ABCD—A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1.
(1)求证:E、B、F、D1四点共面;
(2)若点G在BC上,BG=23,点M在BB1上,GM⊥BF,垂足为H,求证:EM⊥平面BCC1B1.

10.(12分)(2009福建)如图,
四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为BC的中点.
(1)求异面直线NE与AM所成角的余弦值;
(2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.

11.(14分)(2011汕头月考)
如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.
(1)求证:MN⊥AB,MN⊥CD;
(2)求MN的长;
(3)求异面直线AN与CM所成角的余弦值.

学案45空间向量及其运算
自主梳理
1.(1)大小方向(2)相同相等(3)存在实数λ,使得a=λbOA→+tAB→(4)OM→+xMA→+yMB→12.xa+yb+zc3.(1)①∠AOB〈a,b〉0≤〈a,b〉≤π互相垂直②|a||b|cos〈a,b〉abab=|a||b|cos〈a,b〉
(2)①λ(ab)②ba③ab+ac4.(1)a1b1+a2b2+a3b3(2)a=λba1=λb1a2=λb2a3=λb3(λ∈R)ab=0a1b1+a2b2+a3b3=0(3)a21+a22+a23
a1b1+a2b2+a3b3a21+a22+a23b21+b22+b23a2-a12+b2-b12+c2-c12
自我检测
1.C[∵a∥b,∴2x1=1-2y=39,
∴x=16,y=-32.]
2.A[B1M→=B1A1→+A1A→+AM→
=-A1B1→+A1A→+12AB→+12AD→
=-a+c+12(a+b)=-12a+12b+c.]
3.97
解析∵AC′→=AB→+BC→+CC′→=AB→+AD→+AA′→,
∴|AC′→|2=AB→2+AD→2+AA′→2+2AB→AD→+2AD→AA′→+2AA′→AB→=32+42+52+2×3×4×cos60°+2×4×5×cos60°+2×3×5×cos60°=97,
∴|AC′→|=97.
4.B[①正确.②中若a、b共线,p与a不共线,则p=xa+yb就不成立.③正确.④中若M、A、B共线,点P不在此直线上,则MP→=xMA→+yMB→不正确.]
5.共面
解析AB→=(3,4,5),AC→=(1,2,2),AD→=(9,14,16),设AD→=xAB→+yAC→,
即(9,14,16)=(3x+y,4x+2y,5x+2y).
∴x=2y=3,从而A、B、C、D四点共面.
课堂活动区
例1解题导引欲证a⊥b,只要把a、b用相同的几个向量表示,然后利用向量的数量积证明ab=0即可,这是基向量证明线线垂直的基本方法.
证明如图所示
.
设OA→=a,OB→=b,OC→=c.
∵OM→=12(OB→+OC→)=12(b+c),
ON→=12(OA→+OC→)=12(a+c),
∴PM→=PO→+OM→=-12a+12(b+c)
=12(b+c-a),
QN→=QO→+ON→=-12b+12(a+c)=12(a+c-b).
∴PM→QN→=14[c-(a-b)][c+(a-b)]
=14[c2-(a-b)2]=14(|OC→|2-|BA→|2)
∵|AB→|=|OC→|,∴PM→QN→=0.
即PM→⊥QN→,故PM⊥QN.
变式迁移123
解析设{AB→,AC→,AD→}为空间一组基底,
则AF→=12AB→+12AC→,
CE→=12CA→+12CD→=12CA→+12(AD→-AC→)
=-AC→+12AD→.
∴AF→CE→=12AB→+12AC→-AC→+12AD→
=-12AB→AC→-12AC→2+14AB→AD→+14AC→AD→
=-14AB→2-12AC→2+18AB→2+18AC→2
=-12AC→2.
又|AF→|=|CE→|=32|AC→|,∴|AF→||CE→|=34|AC→|2.
∴cos〈AF→,CE→〉=AF→CE→|AF→||CE→|=-12AC→234|AC→|2=-23.
∴异面直线AF与CE所成角的余弦值为23.
例2解题导引
如图所示,建立坐标系后,要证MN平行于平面EBC,只要证MN→的横坐标为0即可.
(1)证明如图所示,以BA→、BC→、BE→为单位正交基底建立空间直角坐标系,
则A(1,0,0),D(1,1,0),E(0,0,1),B(0,0,0),
设ANAE=DMDB=λ,则MN→=MD→+DA→+AN→=λBD→+DA→+λAE→
=λ(1,1,0)+(0,-1,0)+λ(-1,0,1)=(0,λ-1,λ).
∵0λ1,∴λ-1≠0,λ≠0,且MN→的横坐标为0.
∴MN→平行于平面yBz,即MN∥平面EBC.
(2)解由(1)知|MN→|=λ-12+λ2=2λ2-2λ+1
=2λ-122+12,
∴当λ=12时,MN取得长度的最小值为22.
变式迁移2证明(1)建立如图所示的空间直角坐标系,
设AC∩BD=N,连接NE.
则点N、E的坐标分别为
22,22,0、(0,0,1).
∴NE→=-22,-22,1.
又点A、M的坐标分别为(2,2,0)、22,22,1,
∴AM→=-22,-22,1.
∴NE→=AM→且NE与AM不共线.
∴NE∥AM.
又∵NE平面BDE,AM平面BDE,
∴AM∥平面BDE.
(2)由(1)得,AM→=-22,-22,1,
∵D(2,0,0),F(2,2,1),B(0,2,0),
∴DF→=(0,2,1),BF→=(2,0,1).
∴AM→DF→=0,AM→BF→=0.∴AM→⊥DF→,AM→⊥BF→,
即AM⊥DF,AM⊥BF.
又DF∩BF=F,
∴AM⊥平面BDF.
例3解题导引建立适当的空间直角坐标系后,写出各点坐标.第(1)题证明FG→与平面BOE的法向量n垂直,即FG→n=0即可.第(2)题设出点M的坐标,利用MF→∥n即可解出,然后检验解的合理性.
(1)证明
如图,连接OP,以点O为坐标原点,分别以OB,OC,OP所在直线为x轴,y轴,z轴,建立空间直角坐标系O—xyz.
则O(0,0,0),A(0,-8,0),
B(8,0,0),C(0,8,0),P(0,0,6),E(0,-4,3),F(4,0,3).
由题意,得G(0,4,0).
因为OB→=(8,0,0),OE→=(0,-4,3),
所以平面BOE的法向量n=(0,3,4).
由FG→=(-4,4,-3),得nFG→=0.
又直线FG不在平面BOE内,所以FG∥平面BOE.
(2)解设点M的坐标为(x0,y0,0),
则FM→=(x0-4,y0,-3).
因为FM⊥平面BOE,所以FM→∥n,
因此x0=4,y0=-94,
即点M的坐标是4,-94,0.
在平面直角坐标系xOy中,△AOB的内部区域可表示为不等式组x0,y0,x-y8.
经检验,点M的坐标满足上述不等式组.
所以,在△AOB内存在一点M,使PM⊥平面BOE.
由点M的坐标,得点M到OA,OB的距离分别为4,94.
变式迁移3解
(1)以点B为原点,以BA、BC、BB1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,则B(0,0,0),B1(0,0,3a),
∵△ABC为等腰直角三角形,
∴AB=BC=22AC=2a,
∴A(2a,0,0),C(0,2a,0),C1(0,2a,3a),
E0,22a,32a,A1(2a,0,3a),
∴BE→=0,22a,32a,A1C→=(-2a,2a,-3a),
cos〈BE→,A1C→〉=BE→A1C→|BE→||A1C→|=-72a2112a×13a=-7143143.
∴直线BE与A1C所成的角的余弦值为7143143.
(2)假设存在点F,使CF⊥平面B1DF,
并设AF→=λAA1→=λ(0,0,3a)=(0,0,3λa)(0λ1),
∵D为A1C1的中点,∴D22a,22a,3a,
B1D→=22a,22a,3a-(0,0,3a)=22a,22a,0,
B1F→=B1B→+BA→+AF→=(0,0,-3a)+(2a,0,0)+(0,0,3λa)=(2a,0,3a(λ-1)),
CF→=CA→+AF→=(2a,-2a,0)+(0,0,3λa)
=(2a,-2a,3λa).
∵CF⊥平面B1DF,∴CF→⊥B1D→,CF→⊥B1F→,
CF→B1D→=0CF→B1F→=0,即3λa×0=09λ2-9λ+2=0,
解得λ=23或λ=13
∴存在点F使CF⊥面B1DF,且
当λ=13时,|AF→|=13|AA1→|=a,
当λ=23时,|AF→|=23|AA1→|=2a.
课后练习区
1.C[②③④均不正确.]
2.A[以D为坐标原点,以DA为x轴,DC为y轴,DD1为z轴建系,设棱长为2,则M(0,0,1),N(0,1,2),O(1,1,0),A(2,0,0),C(0,2,0),
∴AC→=(-2,2,0),MN→=(0,1,1),OM→=(-1,-1,1),
∴OM→AC→=0,OM→MN→=0,
∴OM⊥AC,OM⊥MN.]
3.B[
如图建立坐标系,设AB=BC=AA1=2,则E(0,1,0),F(0,0,1),C1(2,0,2),
∴EF→=(0,-1,1),BC1→=(2,0,2),
∴cos〈EF→,BC1→〉=228=12.
∵〈EF→,BC1→〉∈[0°,180°]
∴EF与BC1所成的角是60°.]
4.A[由PC→=λ1PA→+λ2PB→得:
(2a-1,a+1,2)=λ1(-1,-3,2)+λ2(6,-1,4),
∴-λ1+6λ2=2a-1-3λ1-λ2=a+1,2λ1+4λ2=2解得a=16.]
5.B[
过A、B分别作AA1⊥x轴,BB1⊥x轴,垂足分别为A1和B1,则AA1=3,A1B1=5,BB1=2,
∵AB→=AA1→+A1B1→+B1B→,
∴AB→2=AA1→2+A1B1→2+B1B→2+2AA1→B1B→=32+52+22+2×3×2×cos60°=44.∴|AB→|=211.]
6.12
解析∵EF→=EA→+AB→+BF→,
又EF→=ED→+DC→+CF→,
∴2EF→=AB→+DC→,∴EF→=12(AB→+DC→),∴λ=12.
7.①②
解析①(A1D1→-A1A→)-AB→=AD1→-AB→=BD1→;
②(BC→+BB1→)-D1C1→=BC1→-D1C1→=BD1→;
③(AD→-AB→)-2DD1→=BD→-2DD1→≠BD1→;
④(B1D1→+A1A→)+DD1→=B1D1→+(A1A→+DD1→)=B1D1→≠BD1→.
8.(1,1,1)
解析设DP=y0,则A(2,0,0),B(2,2,0),P(0,0,y),E1,1,y2,DP→=(0,0,y),AE→=-1,1,y2.
∴cos〈DP→,AE→〉=DP→AE→|DP→||AE→|=12y2y2+y24=y8+y2=33.
解得y=2,∴E(1,1,1).
9.证明(1)
建立如图所示的空间直角坐标系,
则BE→=(3,0,1),BF→=(0,3,2),
BD1→=(3,3,3).(2分)
所以BD1→=BE→+BF→.
故BD1→、BE→、BF→共面.
又它们有公共点B,∴E、B、F、D1四点共面.(6分)
(2)设M(0,0,z),则GM→=0,-23,z.
而BF→=(0,3,2),
由题设,得GM→BF→=-23×3+z2=0,得z=1.(8分)
∴M(0,0,1),E(3,0,1),∴ME→=(3,0,0).
又BB1→=(0,0,3),BC→=(0,3,0),∴ME→BB1→=0,
∴ME→BC→=0,从而ME⊥BB1,ME⊥BC.
又∵BB1∩BC=B,∴ME⊥平面BCC1B1.(12分)
10.
解(1)如图所示,以点D为坐标原点,建立空间直角坐标系D—xyz.
依题意,得D(0,0,0),
A(1,0,0),M(0,0,1),C(0,1,0),B(1,1,0),N(1,1,1),
E12,1,0.(2分)
∴NE→=-12,0,-1,
AM→=(-1,0,1).
∵cos〈NE→,AM→〉=NE→AM→|NE→||AM→|=-1252×2=-1010,
∴异面直线NE与AM所成角的余弦值为1010.
(6分)
(2)假设在线段AN上存在点S,使得ES⊥平面AMN.
∵AN→=(0,1,1),可设AS→=λAN→=(0,λ,λ),
又EA→=12,-1,0,
∴ES→=EA→+AS→=12,λ-1,λ.(8分)
由ES⊥平面AMN,
得ES→AM→=0,ES→AN→=0,即-12+λ=0,λ-1+λ=0.(10分)
故λ=12,此时AS→=0,12,12,|AS→|=22.
经检验,当AS=22时,ES⊥平面AMN.
故线段AN上存在点S,
使得ES⊥平面AMN,此时AS=22.(12分)
11.(1)证明设AB→=p,AC→=q,AD→=r.
由题意可知:|p|=|q|=|r|=a,且p、q、r三向量两两夹角均为60°.
MN→=AN→-AM→=12(AC→+AD→)-12AB→
=12(q+r-p),(2分)
∴MN→AB→=12(q+r-p)p
=12(qp+rp-p2)
=12(a2cos60°+a2cos60°-a2)=0.
∴MN⊥AB
又∵CD→=AD→-AC→=r-q,
∴MN→CD→=12(q+r-p)(r-q)
=12(qr-q2+r2-qr-pr+pq)
=12(a2cos60°-a2+a2-a2cos60°-a2cos60°+a2cos60°)
=0,∴MN⊥CD.(4分)
(2)解由(1)可知MN→=12(q+r-p),
∴|MN→|2=MN→2=14(q+r-p)2
=14[q2+r2+p2+2(qr-pq-rp)]
=14a2+a2+a2+2a22-a22-a22
=14×2a2=a22.
∴|MN→|=22a,∴MN的长为22a.(9分)
(3)解设向量AN→与MC→的夹角为θ.
∵AN→=12(AC→+AD→)=12(q+r),
MC→=AC→-AM→=q-12p,
∴AN→MC→=12(q+r)q-12p
=12q2-12qp+rq-12rp
=12a2-12a2cos60°+a2cos60°-12a2cos60°
=12a2-a24+a22-a24=a22.(12分)
又∵|AN→|=|MC→|=32a,
∴AN→MC→=|AN→||MC→|cosθ
即32a32acosθ=a22.
∴cosθ=23,(13分)
∴向量AN→与MC→的夹角的余弦值为23,从而异面直线AN与CM所成角的余弦值为23.(14分)

高考数学理科一轮复习三角函数的图象与性质学案(含答案)


学案19三角函数的图象与性质
导学目标:1.能画出y=sinx,y=cosx,y=tanx的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x轴的交点等),理解正切函数在区间-π2,π2内的单调性.
自主梳理
1.三角函数的图象和性质
函数y=sinxy=cosxy=tanx
图象

定义域
值域
周期性
奇偶性
单调性在______________________上增,在__________________________________上减在__________________________上增,在______________________________上减在定义域的每一个区间________________________________内是增函数
2.正弦函数y=sinx
当x=____________________________________时,取最大值1;
当x=____________________________________时,取最小值-1.
3.余弦函数y=cosx
当x=__________________________时,取最大值1;
当x=__________________________时,取最小值-1.
4.y=sinx、y=cosx、y=tanx的对称中心分别为____________、___________、______________.
5.y=sinx、y=cosx的对称轴分别为______________和____________,y=tanx没有对称轴.
自我检测
1.(2010十堰月考)函数y=Asin(ωx+φ)(A,ω,φ为常数,A0,ω0)在闭区间[-π,0]上的图象如图所示,则ω为()
A.1B.2C.3D.4
2.函数y=sin2x+π3图象的对称轴方程可能是()
A.x=-π6B.x=-π12
C.x=π6D.x=π12
3.(2010湖北)函数f(x)=3sinx2-π4,x∈R的最小正周期为()
A.π2B.πC.2πD.4π
4.(2010北京海淀高三上学期期中考试)函数f(x)=(sinx+cosx)2+cos2x的最小正周期为()
A.4πB.3πC.2πD.π
5.如果函数y=3cos(2x+φ)的图象关于点4π3,0中心对称,那么|φ|的最小值为()
A.π6B.π4C.π3D.π2
探究点一求三角函数的定义域
例1(2011衡水月考)求函数y=2+log12x+tanx的定义域.

变式迁移1函数y=1-2cosx+lg(2sinx-1)的定义域为________________________.
探究点二三角函数的单调性
例2求函数y=2sinπ4-x的单调区间.

变式迁移2(2011南平月考)(1)求函数y=sinπ3-2x,x∈[-π,π]的单调递减区间;
(2)求函数y=3tanπ6-x4的周期及单调区间.

探究点三三角函数的值域与最值
例3已知函数f(x)=2asin(2x-π3)+b的定义域为[0,π2],函数的最大值为1,最小值为-5,求a和b的值.
变式迁移3设函数f(x)=acosx+b的最大值是1,最小值是-3,试确定g(x)=bsin(ax+π3)的周期.

转化与化归思想的应用
例(12分)求下列函数的值域:
(1)y=-2sin2x+2cosx+2;
(2)y=3cosx-3sinx,x∈[0,π2];
(3)y=sinx+cosx+sinxcosx.
【答题模板】
解(1)y=-2sin2x+2cosx+2=2cos2x+2cosx
=2(cosx+12)2-12,cosx∈[-1,1].
当cosx=1时,ymax=4,
当cosx=-12时,ymin=-12,故函数值域为[-12,4].[4分]
(2)y=3cosx-3sinx=23cos(x+π6)
∵x∈[0,π2],∴π6≤x+π6≤2π3,
∵y=cosx在[π6,2π3]上单调递减,
∴-12≤cos(x+π6)≤32
∴-3≤y≤3,故函数值域为[-3,3].[8分]
(3)令t=sinx+cosx,则sinxcosx=t2-12,且|t|≤2.
∴y=t+t2-12=12(t+1)2-1,∴当t=-1时,ymin=-1;
当t=2时,ymax=12+2.
∴函数值域为[-1,12+2].[12分]
【突破思维障碍】
1.对于形如f(x)=Asin(ωx+φ),x∈[a,b]的函数在求值域时,需先确定ωx+φ的范围,再求值域.同时,对于形
如y=asinωx+bcosωx+c的函数,可借助辅助角公式,将函数化为y=a2+b2sin(ωx+φ)+c的形式,从而求得函数的最值.
2.关于y=acos2x+bcosx+c(或y=asin2x+bsinx+c)型或可以为此型的函数求值域,一般可化为二次函数在闭区间上的值域问题.
提醒:不论用什么方法,切忌忽略函数的定义域.
1.熟练掌握正弦函数、余弦函数、正切函数的定义、图象和性质是研究三角问题的基础,三角函数的定义域是研究其他一切性质的前提,求三角函数的定义域实质上就是解最简单的三角不等式(组).
2.三角函数的值域问题,实质上是含有三角函数的复合函数的值域问题.
3.函数y=Asin(ωx+φ)(A0,ω0)的单调区间的确定,基本思想是把ωx+φ看作一个整体,利用y=sinx的单调区间来求.
(满分:75分)

一、选择题(每小题5分,共25分)
1.(2011黄山月考)已知函数y=sinx的定义域为[a,b],值域为[-1,12],则b-a的值不可能是()
A.π3B.2π3C.πD.4π3
2.(2010安徽6校高三联考)已知函数y=tanωx(ω0)与直线y=a相交于A、B两点,且|AB|最小值为π,则函数f(x)=3sinωx-cosωx的单调增区间是()
A.2kπ-π6,2kπ+π6(k∈Z)
B.2kπ-π3,2kπ+2π3(k∈Z)
C.2kπ-2π3,2kπ+π3(k∈Z)
D.2kπ-π6,2kπ+5π6(k∈Z)
3.函数f(x)=tanωx(ω0)的图象的相邻的两支截直线y=π4所得线段长为π4,则fπ4的值是()
A.0B.1C.-1D.π4
4.函数y=-xcosx的部分图象是图中()
5.(2011三明模拟)若函数y=sinx+f(x)在[-π4,3π4]上单调递增,则函数f(x)可以是()
A.1B.cosx
C.sinxD.-cosx
题号12345
答案
二、填空题(每小题4分,共12分)
6.设点P是函数f(x)=sinωx的图象C的一个对称中心,若点P到图象C的对称轴的距离的最小值是π8,则f(x)的最小正周期是________.
7.函数f(x)=2sinx4对于任意的x∈R,都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值为________.
8.(2010江苏)定义在区间0,π2上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为________.
三、解答题(共38分)
9.(12分)(2011厦门月考)已知函数f(x)=2cos4x-3cos2x+1cos2x,求它的定义域和值域,并判断它的奇偶性.

10.(12分)(2010福建改编)已知函数f(x)=2sin(ωx+π6)+a(ω0)与g(x)=2cos(2x+φ)+1的图象的对称轴完全相同.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调递减区间;
(3)当x∈[0,π2]时,f(x)的最小值为-2,求a的值.

11.(14分)(2010安徽合肥高三二模)已知向量a=(sinx,23sinx),b=(2cosx,sinx),定义f(x)=ab-3.
(1)求函数y=f(x),x∈R的单调递减区间;
(2)若函数y=f(x+θ)(0θπ2)为偶函数,求θ的值.

答案自主梳理
1.RR{x|x≠kπ+π2,k∈Z}[-1,1][-1,1]R2π2ππ奇函数偶函数奇函数[2kπ-π2,2kπ+π2](k∈Z)[2kπ+π2,2kπ+32π](k∈Z)[2kπ-π,2kπ](k∈Z)[2kπ,2kπ+π](k∈Z)(kπ-π2,kπ+π2)(k∈Z)
2.2kπ+π2(k∈Z)2kπ-π2(k∈Z)3.2kπ(k∈Z)2kπ+π(k∈Z)4.(kπ,0)(k∈Z)kπ+π2,0(k∈Z)kπ2,0(k∈Z)5.x=kπ+π2(k∈Z)x=kπ(k∈Z)
自我检测
1.C2.D3.D4.D5.A
课堂活动区
例1解题导引求三角函数的定义域时,需要转化为三角不等式(组)求解,常常借助于三角函数的图象和周期解决,求交集时可以利用单位圆,对于周期相同的可以先求交集再加周期的整数倍即可.
解要使函数有意义,
则2+log12x≥0,x0,tanx≥0,x≠kπ+π2k∈Z,
得0x≤4,kπ≤xkπ+π2k∈Z.
所以函数的定义域为
x|0xπ2或π≤x≤4.
变式迁移1π3+2kπ,5π6+2kπ,k∈Z
解析由题意得
1-2cosx≥02sinx-10cosx≤12sinx12,
解得π3+2kπ≤x≤5π3+2kπ,k∈Zπ6+2kπx5π6+2kπ,k∈Z,
即x∈π3+2kπ,5π6+2kπ,k∈Z.
例2解题导引求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中A≠0,ω0)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“ωx+φ(ω0)”视为一个“整体”;②A0(A0)时,所列不等式的方向与y=sinx(x∈R),y=cosx(x∈R)的单调区间对应的不等式方向相同(反).
解y=2sinπ4-x可看作是由y=2sinu与u=π4-x复合而成的.
又∵u=π4-x为减函数,
∴由2kπ-π2≤u≤2kπ+π2(k∈Z),
即2kπ-π2≤π4-x≤2kπ+π2(k∈Z),
得-2kπ-π4≤x≤-2kπ+3π4(k∈Z),
即-2kπ-π4,-2kπ+3π4(k∈Z)为
y=2sinπ4-x的递减区间.
由2kπ+π2≤u≤2kπ+3π2(k∈Z),
即2kπ+π2≤π4-x≤2kπ+3π2(k∈Z),
得-2kπ-5π4≤x≤-2kπ-π4(k∈Z),
即-2kπ-5π4,-2kπ-π4(k∈Z)为
y=2sinπ4-x的递增区间.
综上可知,y=2sinπ4-x的递增区间为
-2kπ-5π4,-2kπ-π4(k∈Z);
递减区间为-2kπ-π4,-2kπ+3π4(k∈Z).
变式迁移2解(1)由y=sinπ3-2x,
得y=-sin2x-π3,
由-π2+2kπ≤2x-π3≤π2+2kπ,
得-π12+kπ≤x≤5π12+kπ,k∈Z,
又x∈[-π,π],
∴-π≤x≤-712π,-π12≤x≤512π,1112π≤x≤π.
∴函数y=sinπ3-2x,x∈[-π,π]的单调递减区间为-π,-712π,-π12,512π,1112π,π.
(2)函数y=3tanπ6-x4的周期
T=π-14=4π.
由y=3tanπ6-x4
得y=-3tanx4-π6,
由-π2+kπx4-π6π2+kπ得
-43π+4kπx83π+4kπ,k∈Z,
∴函数y=3tanπ6-x4的单调递减区间为-43π+4kπ,83π+4kπ(k∈Z).
例3解题导引解决此类问题,首先利用正弦函数、余弦函数的有界性或单调性求出y=Asin(ωx+φ)或y=Acos(ωx+φ)的最值,再由方程的思想解决问题.
解∵0≤x≤π2,∴-π3≤2x-π3≤23π,
∴-32≤sin(2x-π3)≤1,
若a0,则2a+b=1-3a+b=-5,解得a=12-63b=-23+123;
若a0,则2a+b=-5-3a+b=1,
解得a=-12+63b=19-123.
综上可知,a=12-63,b=-23+123
或a=-12+63,b=19-123.
变式迁移3解∵x∈R,
∴cosx∈[-1,1],
若a0,则a+b=1-a+b=-3,解得a=2b=-1;
若a0,则a+b=-3-a+b=1,解得a=-2b=-1.
所以g(x)=-sin(2x+π3)或g(x)=-sin(-2x+π3),周期为π.
课后练习区
1.A[画出函数y=sinx的草图(图略),分析知b-a的取值范围为[2π3,4π3],故选A.]
2.B[由题意知,函数的最小正周期为π,则ω=1,
故f(x)=3sinωx-cosωx
=2sinx-π6的单调增区间满足:
2kπ-π2≤x-π6≤2kπ+π2(k∈Z)
解得2kπ-π3≤x≤2kπ+2π3.]
3.A
4.D
5.D[因为y=sinx-cosx=2sin(x-π4),-π2≤x-π4≤π2,即-π4≤x≤3π4,满足题意,所以函数f(x)可以是-cosx.]
6.π2
解析依题意得T4=π8,所以最小正周期T=π2.
7.4π
解析由f(x1)≤f(x)≤f(x2)知,f(x1)、f(x2)分别为f(x)的最小值和最大值,而当x4=2kπ-π2,即x=8kπ-2π(k∈Z)时,f(x)取最小值;而x4=2kπ+π2,即x=8kπ+2π(k∈Z)时,f(x)取最大值,
∴|x1-x2|的最小值为4π.
8.23
解析线段P1P2的长即为sinx的值,且其中的x满足6cosx=5tanx,x∈0,π2,解得sinx=23.所以线段P1P2的长为23.
9.解由题意知cos2x≠0,得2x≠kπ+π2,
解得x≠kπ2+π4(k∈Z).
∴f(x)的定义域为{x|x∈R,且x≠kπ2+π4,k∈Z}.
……………………………………………………………………………………………(3分)
又f(x)=2cos4x-3cos2x+1cos2x
=2cos2x-1cos2x-12cos2x-1
=cos2x-1=-sin2x,……………………………………………………………………(6分)
又∵定义域关于原点对称,
∴f(x)是偶函数.…………………………………………………………………………(8分)
显然-sin2x∈[-1,0],
又∵x≠kπ2+π4,k∈Z,
∴-sin2x≠-12.
∴原函数的值域为
y|-1≤y-12或-12y≤0.……………………………………………………………(12分)
10.解(1)∵f(x)和g(x)的对称轴完全相同,
∴二者的周期相同,即ω=2,f(x)=2sin(2x+π6)+a(3分)
∴f(x)的最小正周期T=2π2=π.…………………………………………………………(4分)
(2)当2kπ+π2≤2x+π6≤2kπ+3π2,k∈Z,
即kπ+π6≤x≤kπ+2π3(k∈Z)时,函数f(x)单调递减,
故函数f(x)的单调递减区间为
[kπ+π6,kπ+2π3](k∈Z).…………………………………………………………………(8分)
(3)当x∈[0,π2]时,2x+π6∈[π6,7π6],…………………………………………………(10分)
∴2sin(2π2+π6)+a=-2,
∴a=-1.………………………………………………………………………………(12分)
11.解f(x)=2sinxcosx+23sin2x-3
=sin2x+231-cos2x2-3
=sin2x-3cos2x=2sin2x-π3.………………………………………………………(4分)
(1)令2kπ+π2≤2x-π3≤2kπ+3π2,k∈Z,
解得单调递减区间是kπ+5π12,kπ+11π12,k∈Z.
……………………………………………………………………………………………(8分)
(2)f(x+θ)=2sin2x+2θ-π3.
根据三角函数图象性质可知,
y=f(x+θ)0θπ2在x=0处取最值,
∴sin2θ-π3=±1,
∴2θ-π3=kπ+π2,θ=kπ2+5π12,k∈Z.……………………………………………………(12分)
又0θπ2,解得θ=5π12.…………………………………………………………………(14分)