88教案网

你的位置: 教案 > 高中教案 > 导航 > 垂直关系的性质

小学健康的教案

发表时间:2020-11-19

垂直关系的性质。

一位优秀的教师不打无准备之仗,会提前做好准备,作为高中教师就要在上课前做好适合自己的教案。教案可以让讲的知识能够轻松被学生吸收,帮助高中教师提高自己的教学质量。写好一份优质的高中教案要怎么做呢?下面是小编精心收集整理,为您带来的《垂直关系的性质》,供大家参考,希望能帮助到有需要的朋友。

1.6.2垂直关系的性质

一、学习目标:
1.理解并掌握直线与平面,平面与平面垂直及其与直线与直线垂直的关系,并会应用。
2.通过定理及性质的学习,学会解决有关垂直问题。
二.重点,难点
重点:垂直关系的判定及性质的应用。
难点:线面垂直在线线垂直与面面垂直关系间的转化。
三.知识链接

四.知识应用
例1.已知直线a//直线b,a平面,求证:b(A级)

例2.如图所示,P为ABC所在平面外一点,PAPB,PBPC,PCPA,PH平面ABC于H,求证:H是ABC的垂心。(B级)

四自测达标
1.如图,如果MC菱形ABCD所在平面,那么MA与BD的位置关系是(A级)()
A.平行B.垂直相交C.异面D.相交但不垂直
2.经过平面外一点和平面内一点与平面垂直的平面有(A级)()
A.0个B.1个C.无数个D.1个或无数个
3.已知ABC,直线mAC,mBC,则mAB(填“”或“不垂直”)(B级)

4.如图所示,四棱锥S-ABCD的底面是菱形,SA底面ABCD,E是SC上一点。
求证:平面EBD平面SAC(B级)

5.如图所示,在三棱锥P-ABC中,PA平面ABC,平面PAC平面PBC。
求证:BC平面PAC(C级)

扩展阅读

直线与平面垂直的性质


1.6.3直线与平面垂直的性质,平面与平面垂直的性质
一、教学目标
1、知识与技能:(1)使学生掌握直线与平面垂直,平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系。
2、过程与方法:(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;(2)性质定理的推理论证。
3、情态与价值:通过“直观感知、操作确认,推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力。
二、教学重点、难点:两个性质定理的证明。
三、学法与教法
1、学法:直观感知、操作确认,猜想与证明。2、教法:探究讨论法。
四、教学设计
(一)创设情景,揭示课题
问题:若一条直线与一个平面垂直,则可得到什么结论?若两条直线与同一个平面垂直呢?
让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。(自然进入课题内容)
(二)研探新知
1、操作确认:观察长方体模型中四条侧棱与同一个底面的位置关系。如图2.3—4,在长方体ABCD—A1B1C1D1中,棱AA1、BB1、CC1、DD1所在直线都垂直于平面ABCD,它们之间是有什么位置关系?(显然互相平行)然后进一步迁移活动:已知直线a⊥α、b⊥α、那么直线a、b一定平行吗?(一定)我们能否证明这一事实的正确性呢?

图2.3-4图2.3-5
2、推理证明
引导学生分析性质定理成立的条件,介绍证明性质定理成立的特殊方法——反证法,
然后师生互动共同完成该推理过程,最后归纳得出:垂直于同一个平面的两条直线平行。
(三)应用巩固
例子:课本P.74例4
做法:教师给出问题,学生思考探究、判断并说理由,教师最后评议。
(四)类比拓展,研探新知
类比上面定理:若在两个平面互相垂直的条件下,又会得出怎样的结论呢?例如:如何在黑板面上画一条与地面垂直的直线?
引导学生观察教室相邻两面墙的交线,容易发现该交线与地面垂直,这时,只要在黑板上画出一条与这交线平行的直线,则所画直线必与地面垂直。然后师生互动,共同完成性质定理的确认与证明,并归纳性质定理:
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
(五)巩固深化、发展思维
思考1、设平面α⊥平面β,点P在平面α内,过点P作平面β的垂线a,直线a与平面α具有什么位置关系?(答:直线a必在平面α内)
思考2、已知平面α、β和直线a,若α⊥β,a⊥β,aα,则直线a与平面α具有什么位置关系?
(六)归纳小结,课后巩固
小结:(1)请归纳一下本节学习了什么性质定理,其内容各是什么?
(2)类比两个性质定理,你发现它们之间有何联系?
作业:(1)求证:两条异面直线不能同时和一个平面垂直;
(2)求证:三个两两垂直的平面的交线两两垂直。
五、教后反思:

平面与平面垂直关系的判定


一、学习目标:
1.掌握直线与平面垂直的判定定理,并会应用。
2.通过定理的学习,培养和发展学生的空间想象能力,推理论证能力,运用图形语言进行交流的能力,几何直观感知能力
二.重点知识(课前自学完成)
1.何谓直线与平面垂直(定义):
在如图所示的长方体中,有哪些棱所在的直线与面ADD1A1垂直:
2.直线与平面垂直的判定定理:
文字描述:
图形呈现:
符号表示:
三、知识应用
1.判断下列命题的真假:(A级)

(1)如果直线和一个平面内的无数条直线都垂直,那么这条直线和这个平面垂直;()
(2)如果一条直线和一个平面内的任何直线都垂直,那么这条直线和这个平面垂直;()
(3)在空间中,有三个角为直角的四边形一定是矩形;()

2.已知:如图P为ABC所在平面外一点,AP=AC,BP=BC,D为PC的中点,
求证:PC平面ABD(B级)

3.如图,ABCD-A1B1C1D1为正方体,判断直线B1C与平面ABC1D1的位置关系,并说明理由。(B级)
4如图,ABCD-A1B1C1D1为正方体中,
求证:(1)AC平面B1D1DB;
(2)BD平面ACB1;(B级)

《直线与平面垂直的判定与性质》教学设计


《直线与平面垂直的判定与性质》教学设计

【教学目标】

1、知识与技能目标:

掌握直线和平面垂直的定义及判定定理、性质定理;掌握判定直线和平面垂直的方法;掌握直线和平面垂直的性质。培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。

2、过程与方法目标:

感受直线和平面垂直的定义的形成过程;探究判定直线与平面垂直的方法。

3、情感态度与价值观目标:

培养学生学会从“感性认识”到“理性认识”过程中获取新知。

【教学重点】直线与平面垂直的定义和判定定理。

【教学难点】直线与平面垂直的定义和判定定理的探究。

【教学方法】实践操作、师生互动、共同探究的方法

【教学手段】多媒体辅助课堂教学

【课时安排】1课时

教学过程

(一)创设情景,揭示课题

举例:旗杆与地面,大桥的桥柱和水面等的位置关系。
模型演示:直棱柱的侧棱与底面的位置关系。

【设计意图】生活中处处有数学的存在.学生对一些实例虽然熟悉,但往往知其然,不知其所然,用这样的实例导入,学生必然有要探个究竟的心理.激发出了学生探究的兴趣和主动性。

(二)研探新知

1、直线与平面垂直的定义:直线l与平面内α的任意一条直线都垂直。记作:l⊥α。

直线l叫做平面α的垂线,平面α叫做直线l的垂面,垂线与平面的交点P叫做垂足。

2、直线与平面垂直的判定:

(1)探究:准备一块三角形纸片。

过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)。

①折痕AD与桌面所在平面α垂直吗?

②如何翻折才能使折痕AD与桌面所在平面α垂直?(AD是BC边上的高)

(2)思考:

①有人说,折痕AD所在直线已桌面所在平面α上的一条直线垂直,就可以判断AD垂直平面α,你同意他的说法吗?

②如图,由折痕AD⊥BC,翻折之后垂直关系不变,即AD⊥CD,AD⊥BD,由此你能得到什么结论?

【设计意图】通过实践活动,让学生经历观察、实践、猜测、验证、推理与交流等数学活动,发现折纸法可以验证直线和平面垂直的判定定理的原因,提高了学生的数学认识,激发了学生的数学情感,促进了学生数学水平的提高.有助于学生逐步形成对数学知识的理解和有效的学习策略.同时对比折纸探索的过程,体会思维实验和符号化的理性思维。

(3)归纳定理:(直线与平面垂直的判定定理)

一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

作用:由线线垂直得到线面垂直。(线不在多,相交就行。)

强调:①定理中的“两条相交直线”这一条件不可忽视;

②定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。

3、实际应用,巩固深化

例1:有一根旗杆AB高8米,它的顶端A挂有一条长10米的绳子,拉紧绳子并把它的下端放在地面上的两点(和旗杆脚不在同一条直线上)C、D,如果这两点都和旗杆脚B的距离是6米,那么旗杆就和地面升起垂直,为什么?

分析:AB⊥BC,AB⊥BD,且B、C、D三点不共线。

课堂练习:已知三角形ABC,直线l⊥AB,l⊥AC,求证l⊥BC。

【设计意图】由实例出发反映了直线与平面垂直的判定定理的广泛应用,强调了直线与平面垂直的判定定理的重要性。直线与平面垂直的判定定理求定积分是解决一些直线与平面位置关系的有力工具,是一种普遍性的方法。

例2:直线a、b和平面α有以下三种关系:(1)a//b,(2),(3),如果任意取其中两个作为前提,另一个作为结论构造命题,能构成几个命题?并判断其真假。如果是真命题,请予以证明;如果是假命题,请举一个反例。

命题1:如图,已知a//b,a⊥α,求证:b⊥α

证明:在平面α内作两条相交直线m,n,因为直线,根据直线与平面垂直的定义知,又因为a//b,所以,又因为,m,n是两条相交直线,所以。

归纳:两条互相平行的直线,如果有一条与一个平面垂直,则另一条也与这个平面垂直。

命题2:如图,已知直线a⊥α,b⊥α,那么a//b。

证明(反证法)假设a、b不平行,且,是经过点O与直线b平行的直线。直线b与确定平面β,设,则。因为a⊥α、b⊥α,所以a⊥c、b⊥c,又因为,所以。这样在平面β内,经过直线c上同一点O就有两条直线b,与c垂直,显然不可能,因此a//b。

【设计意图】归纳出直线与平面垂直的性质:垂直于同一平面的两条直线平行。同时可以由两条直线与一个平面垂直判定两条直线平行,性质定理揭示了“平行”与“垂直”之间的内在联系。

归纳性质:(直线与平面垂直的性质)垂直于同一平面的两条直线平行。

(三)课堂练习:课本P67,练习1、2。

1、如图,在三棱锥V—ABC中,VA=VC,AB=BC,求证:VB⊥AC。

2、过三角形ABC所在平面α外一点P,作PO⊥α,垂足为O,连接PA,PB,PC。

(1)若PA=PB=PC,∠C=90°,则点O是AB边的点。

(2)若PA=PB=PC,则点O是三角形ABC的心。

(3)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是三角形ABC的心。

【设计意图】通过练习,加深学生对直线与平面垂直的判定与性质的理解,培养学生数形结合的思想意识。

(四)归纳小结:

师:同学们,请问这节课你们学习了哪些知识?在应用过程中应该注意什么?你有什么收获?

想好后,可以站起来和大家一起分享

生:认真反思,对本节内容进行归纳小结。

师:(鼓励学生踊跃方言,并加以完善)

(1)获得直线与平面垂直的判定定理的基本过程。

(2)直线与平面垂直的判定定理的内容。

(强调:定理中的“两条相交直线”这一条件不可忽视。)

(3)直线与平面垂直的判定定理体现的数学思想方法是什么?

(强调:定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。)

【设计意图】通过小结,让学生在反思中整理知识,整理思维,从而获得解决问题的思想方法。体验成功的快乐,积累学习的经验。,

(五)课后作业:

1、正方体ABCD—A1B1C1D1中,求证:AC⊥BDD1B1。

2、如图,已知PA⊥平面ABC,AC⊥BC,O、D分别为AB、AC的中点,求证:OD⊥平面PAC。

3、如图,已知PA⊥矩形ABCD所在的平面,M、N分别是AB、PC的中点,求证:MN⊥CD。

【设计意图】进一步加深学生对直线与平面垂直的判定与性质的理解,体会“平行”与“垂直”之间的内在联系,以及“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。

高考数学(理科)一轮复习空间的垂直关系学案含答案


古人云,工欲善其事,必先利其器。作为高中教师就要早早地准备好适合的教案课件。教案可以让学生能够在教学期间跟着互动起来,让高中教师能够快速的解决各种教学问题。那么一篇好的高中教案要怎么才能写好呢?以下是小编为大家收集的“高考数学(理科)一轮复习空间的垂直关系学案含答案”希望对您的工作和生活有所帮助。

学案44空间的垂直关系

导学目标:1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.
自主梳理
1.直线与平面垂直
(1)判定直线和平面垂直的方法
①定义法.
②利用判定定理:一条直线和一个平面内的两条______直线都垂直,则该直线与此平面垂直.
③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也______这个平面.
(2)直线和平面垂直的性质
①直线垂直于平面,则垂直于平面内______直线.
②垂直于同一个平面的两条直线______.
③垂直于同一直线的两个平面________.
2.直线与平面所成的角
平面的一条斜线和它在平面内的________所成的锐角,叫做这条直线和这个平面所成的角.
一直线垂直于平面,说它们所成角为________;直线l∥α或lα,则它们成________角.
3.平面与平面垂直
(1)平面与平面垂直的判定方法
①定义法.
②利用判定定理:一个平面过另一个平面的__________,则这两个平面垂直.
(2)平面与平面垂直的性质
两个平面垂直,则一个平面内垂直于________的直线与另一个平面垂直.
4.二面角的平面角
以二面角棱上的任一点为端点,在两个半平面内分别作与棱________的射线,则两射线所成的角叫做二面角的平面角.
自我检测
1.平面α⊥平面β的一个充分条件是()
A.存在一条直线l,l⊥α,l⊥β
B.存在一个平面γ,γ∥α,γ∥β
C.存在一个平面γ,γ⊥α,γ⊥β
D.存在一条直线l,l⊥α,l∥β
2.(2010浙江)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()
A.若l⊥m,mα,则l⊥α
B.若l⊥α,l∥m,则m⊥α
C.若l∥α,mα,则l∥m
D.若l∥α,m∥α,则l∥m
3.(2011长沙模拟)对于不重合的两个平面α与β,给定下列条件:
①存在平面γ,使得α,β都垂直于γ;
②存在平面γ,使得α,β都平行于γ;
③存在直线lα,直线mβ,使得l∥m;
④存在异面直线l、m,使得l∥α,l∥β,m∥α,m∥β.
其中,可以判定α与β平行的条件有()
A.1个B.2个
C.3个D.4个
4.(2011十堰月考)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()
A.若m∥α,n∥α,则m∥n
B.若α⊥γ,β⊥γ,则α∥β
C.若m∥α,m∥β,则α∥β
D.若m⊥α,n⊥α,则m∥n
5.(2011大纲全国)已知点E、F分别在正方体ABCD-A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值为________.
探究点一线面垂直的判定与性质
例1Rt△ABC所在平面外一点S,且SA=SB=SC,D为斜边AC的中点.
(1)求证:SD⊥平面ABC;

(2)若AB=BC.求证:BD⊥平面SAC.

变式迁移1
在四棱锥V—ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.证明:AB⊥VD.

探究点二面面垂直的判定与性质

例2(2011邯郸月考)如图所示,已知四棱柱ABCD—A1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD内的射影是O.求证:平面O1DC⊥平面ABCD.
变式迁移2(2011江苏)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.
求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.

探究点三直线与平面,平面与平面所成的角
例3(2009湖北)如图,四棱锥S—ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=2a,点E是SD上的点,且DE=λa(0λ≤2).
(1)求证:对任意的λ∈(0,2],都有AC⊥BE;
(2)设二面角C—AE—D的大小为θ,直线BE与平面ABCD所成的角为φ,若tanθtanφ=1,求λ的值.

变式迁移3(2009北京)如图,在三棱锥P—ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.
(1)求证:BC⊥平面PAC.
(2)当D为PB的中点时,求AD与平面PAC所成角的正弦值.
(3)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.
转化与化归思想综合应用
例(12分)已知四棱锥P—ABCD,底面ABCD是∠A=60°的
菱形,又PD⊥底面ABCD,点M、N分别是棱AD、PC的中点.
(1)证明:DN∥平面PMB;
(2)证明:平面PMB⊥平面PAD.
多角度审题(1)在平面PMB内找到(或构造)一条直线与DN平行即可;(2)要证面PMB⊥面PAD,只需证明MB⊥面PAD即可.
【答题模板】
证明(1)
取PB中点Q,连接MQ、NQ,因为M、N分别是棱AD、PC的中点,所以QN∥BC∥MD,且QN=MD,故四边形QNDM是平行四边形,
于是DN∥MQ.
又∵MQ平面PMB,DN平面PMB
∴DN∥平面PMB.[6分]
(2)∵PD⊥平面ABCD,MB平面ABCD,∴PD⊥MB.
又因为底面ABCD是∠A=60°的菱形,且M为AD中点,
所以MB⊥AD.又AD∩PD=D,所以MB⊥平面PAD.
又∵MB平面PMB,∴平面PMB⊥平面PAD.[12分]
【突破思维障碍】
立体几何的证明问题充分体现线面关系的转化思想,其思路为:
1.证明线面垂直的方法:(1)线面垂直的定义:a与α内任何直线都垂直a⊥α;(2)判定定理1:m、nα,m∩n=Al⊥m,l⊥nl⊥α;(3)判定定理2:a∥b,a⊥αb⊥α;(4)面面平行的性质:α∥β,a⊥αa⊥β;(5)面面垂直的性质:α⊥β,α∩β=l,aα,a⊥la⊥β.
2.证明线线垂直的方法:(1)定义:两条直线的夹角为90°;(2)平面几何中证明线线垂直的方法;(3)线面垂直的性质:a⊥α,bαa⊥b;(4)线面垂直的性质:a⊥α,b∥αa⊥b.
3.证明面面垂直的方法:(1)利用定义:两个平面相交,所成的二面角是直二面角;(2)判定定理:aα,a⊥βα⊥β.
(满分:75分)

一、选择题(每小题5分,共25分)
1.(2011滨州月考)已知直线a,b和平面α,β,且a⊥α,b⊥β,那么α⊥β是a⊥b的()
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
2.已知两个不同的平面α、β和两条不重合的直线m、n,有下列四个命题:
①若m∥n,m⊥α,则n⊥α;②若m⊥α,m⊥β,则α∥β;③若m⊥α,m∥n,nβ,则α⊥β;④若m∥α,α∩β=n,则m∥n.
其中正确命题的个数是()
A.0B.1C.2D.3
3.设α,β,γ是三个不重合的平面,l是直线,给出下列四个命题:
①若α⊥β,l⊥β,则l∥α;②若l⊥α,l∥β,则α⊥β;
③若l上有两点到α的距离相等,则l∥α;④若α⊥β,α∥γ,则γ⊥β.
其中正确命题的序号是()
A.①②B.①④C.②④D.③④
4.(2011浙江)下列命题中错误的是()
A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
B.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ
D.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β
5.平面α的斜线AB交α于点B,过定点A的动直线l与AB垂直,且交α于点C,则动点C的轨迹是()
A.一条直线B.一个圆
C.一个椭圆D.双曲线的一支
二、填空题(每小题4分,共12分)
6.如图所示,四棱锥P—ABCD的底面ABCD是边长为a的正方形,侧棱PA=a,PB=PD=2a,则它的5个面中,互相垂直的面有________对.
7.(2011金华模拟)如图所示,正方体ABCD—A1B1C1D1的棱长是1,过A点作平面A1BD的垂线,
垂足为点H,有下列三个命题:
①点H是△A1BD的中心;
②AH垂直于平面CB1D1;③AC1与B1C所成的角是90°.其中正确命题的序号是____________.
8.正四棱锥S-ABCD底面边长为2,高为2,E是边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为________.
三、解答题(共38分)
9.(12分)(2010山东)在如图所示的
几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.
(1)求证:平面EFG⊥平面PDC;
(2)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.

10.(12分)(2009天津)如图,
在四棱锥P—ABCD中,PD⊥平面ABCD,AD⊥CD,DB平分∠ADC,E为PC的中点,AD=CD=1,DB=22.
(1)证明:PA∥平面BDE;
(2)证明:AC⊥平面PBD;
(3)求直线BC与平面PBD所成的角的正切值.
11.(14分)(2011杭州调研)如图所示,已知正方体ABCD-A1B1C1D1中,E为AB的中点.
(1)求直线B1C与DE所成角的余弦值;
(2)求证:平面EB1D⊥平面B1CD;
(3)求二面角E-B1C-D的余弦值.
学案44空间的垂直关系
自主梳理
1.(1)②相交③垂直(2)①任意②平行③平行
2.射影直角0°3.(1)②一条垂线(2)交线4.垂直
自我检测
1.D2.B3.B4.D5.23
课堂活动区
例1解题导引线面垂直的判断方法是:证明直线垂直平面内的两条相交直线.即从“线线垂直”到“线面垂直”.
证明
(1)取AB中点E,连接SE,DE,在Rt△ABC中,D、E分别为AC、AB的中点,
故DE∥BC,且DE⊥AB,
∵SA=SB,
∴△SAB为等腰三角形,∴SE⊥AB.
∵SE⊥AB,DE⊥AB,SE∩DE=E,
∴AB⊥面SDE.而SD面SDE,∴AB⊥SD.
在△SAC中,SA=SC,D为AC的中点,∴SD⊥AC.
∵SD⊥AC,SD⊥AB,AC∩AB=A,
∴SD⊥平面ABC.
(2)若AB=BC,则BD⊥AC,
由(1)可知,SD⊥面ABC,而BD面ABC,
∴SD⊥BD.
∵SD⊥BD,BD⊥AC,SD∩AC=D,
∴BD⊥平面SAC.
变式迁移1证明∵平面VAD⊥平面ABCD,
AB⊥AD,AB平面ABCD,
AD=平面VAD∩平面ABCD,
∴AB⊥平面VAD.
∵VD平面VAD,∴AB⊥VD.
例2解题导引证明面面垂直,可先证线面垂直,即设法先找到其中一个平面的一条垂线,再证明这条垂线在另一个平面内或与另一个平面内的一条直线平行.
证明如图所示,连接AC,BD,A1C1,则O为AC,BD的交点,O1为A1C1,B1D1的交点.
由棱柱的性质知:
A1O1∥OC,且A1O1=OC,
∴四边形A1OCO1为平行四边形,
∴A1O∥O1C,
又A1O⊥平面ABCD,∴O1C⊥平面ABCD,
又O1C平面O1DC,
∴平面O1DC⊥平面ABCD.
变式迁移2
证明(1)如图,在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF平面PCD,PD平面PCD,
所以直线EF∥平面PCD.
(2)连接BD.因为AB=AD,∠BAD=60°,所以△ABD为正三角形.
因为F是AD的中点,所以BF⊥AD.
因为平面PAD⊥平面ABCD,BF平面ABCD,
平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.
又因为BF平面BEF,所以平面BEF⊥平面PAD.
例3解题导引高考中对直线与平面所成的角及二面角的考查是热点之一.有时在客观题中考查,更多的是在解答题中考查.
求这两种空间角的步骤:(几何法).
根据线面角的定义或二面角的平面角的定义,作(找)出该角,再解三角形求出该角,步骤是作(找)→认(指)→求.
(1)证明如图所示,连接BD,由底面ABCD是正方形可得AC⊥BD.
∵SD⊥平面ABCD,∴BD是BE在平面ABCD上的射影,∴AC⊥BE.
(2)解如图所示,由SD⊥平面ABCD,CD平面ABCD,
∴SD⊥CD.
又底面ABCD是正方形,
∴CD⊥AD.又SD∩AD=D,
∴CD⊥平面SAD.
过点D在平面SAD内作DF⊥AE于F,连接CF,则CF⊥AE,故∠CFD是二面角C—AE—D的平面角,即∠CFD=θ.
在Rt△BDE中,∵BD=2a,DE=λa,
∴tanφ=DEBD=λ2.
在Rt△ADE中,∵AD=2a=CD,DE=λa,
∴AE=aλ2+2,
从而DF=ADDEAE=2λaλ2+2.
在Rt△CDF中,tanθ=CDDF=λ2+2λ,
由tanθtanφ=1,得
λ2+2λλ2=1λ2+2=2λ2=2.
由λ∈(0,2],解得λ=2,即为所求.
变式迁移3(1)证明∵PA⊥底面ABC,∴PA⊥BC.
又∠BCA=90°,∴AC⊥BC.又AC∩PA=A,
∴BC⊥平面PAC.
(2)解∵D为PB的中点,DE∥BC,∴DE=12BC.
又由(1)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角.
∵PA⊥底面ABC,∴PA⊥AB.
又PA=AB,∴△ABP为等腰直角三角形.
∴AD=22AB.
在Rt△ABC中,∠ABC=60°,∴BC=12AB.
∴在Rt△ADE中,sin∠DAE=DEAD=BC2AD=24.
∴AD与平面PAC所成的角的正弦值为24.
(3)解∵DE∥BC,又由(1)知,BC⊥平面PAC,
∴DE⊥平面PAC.
又∵AE平面PAC,PE平面PAC,
∴DE⊥AE,DE⊥PE.
∴∠AEP为二面角A—DE—P的平面角.
∵PA⊥底面ABC,∴PA⊥AC,∴∠PAC=90°.
∴在棱PC上存在一点E,使得AE⊥PC.
这时,∠AEP=90°,
故存在点E使得二面角A—DE—P是直二面角.
课后练习区
1.C2.D3.C
4.D[两个平面α,β垂直时,设交线为l,则在平面α内与l平行的直线都平行于平面β,故A正确;如果平面α内存在直线垂直于平面β,那么由面面垂直的判定定理知α⊥β,故B正确;两个平面都与第三个平面垂直时,易证交线与第三个平面垂直,故C正确;两个平面α,β垂直时,平面α内与交线平行的直线与β平行,故D错误.]
5.A
6.5
解析面PAB⊥面PAD,
面PAB⊥面ABCD,面PAB⊥面PBC,
面PAD⊥面ABCD,面PAD⊥面PCD.
7.①②③
解析由于ABCD—A1B1C1D1是正方体,所以A—A1BD是一个正三棱锥,因此A点在平面A1BD上的射影H是三角形A1BD的中心,故①正确;又因为平面CB1D1与平面A1BD平行,所以AH⊥平面CB1D1,故②正确;从而可得AC1⊥平面CB1D1,即AC1与B1C垂直,所成的角等于90°.
8.6+2
解析如图取CD的中点F,SC的中点G,连接EF,GF,GE.
则AC⊥平面GEF,故动点P的轨迹是△EFG的三边.
又EF=12DB=2,
GE=GF=12SB=62,
∴EF+FG+GE=6+2.
9.(1)证明因为MA⊥平面ABCD,
PD∥MA,所以PD⊥平面ABCD.
又BC平面ABCD,所以PD⊥BC.(2分)
因为四边形ABCD为正方形,
所以BC⊥DC.
又PD∩DC=D,所以BC⊥平面PDC.(4分)
在△PBC中,因为G、F分别为PB、PC的中点,
所以GF∥BC,所以GF⊥平面PDC.又GF平面EFG,
所以平面EFG⊥平面PDC.(6分)
(2)解因为PD⊥平面ABCD,四边形ABCD为正方形,不妨设MA=1,
则PD=AD=2,
所以VP-ABCD=13S正方形ABCDPD=83.(8分)
由题意可知,DA⊥平面MAB,且PD∥MA,
所以DA即为点P到平面MAB的距离,
所以VP-MAB=13×12×1×2×2=23.(10分)
所以VP-MAB∶VP-ABCD=1∶4.(12分)
10.(1)证明
设AC∩BD=H,连接EH.在△ADC中,因为AD=CD,且DB平分∠ADC,所以H为AC的中点,又由题设,知E为PC的中点,故EH∥PA.又EH平面BDE,且PA平面BDE,
所以PA∥平面BDE.(4分)
(2)证明因为PD⊥平面ABCD,AC平面ABCD,所以PD⊥AC.由(Ⅰ)可得,DB⊥AC.又PD∩DB=D,
故AC⊥平面PBD.(8分)
(3)解由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,所以∠CBH为直线BC与平面PBD所成的角.
由AD⊥CD,AD=CD=1,DB=22,可得DH=CH=22,BH=322.
在Rt△BHC中,tan∠CBH=CHBH=13.
所以直线BC与平面PBD所成的角的正切值为13.
(12分)
11.(1)解连接A1D,则由A1D∥B1C知,B1C与DE所成角即为A1D与DE所成角.(2分)
连接A1E,可设正方体ABCD-A1B1C1D1的棱长为a,
则A1D=2a,
A1E=DE=52a,
∴cos∠A1DE=
A1D2+DE2-A1E22A1DDE=105.
∴直线B1C与DE所成角的余弦值是105.(6分)
(2)证明取B1C的中点F,B1D的中点G,
连接BF,EG,GF.∵CD⊥平面BCC1B1,
且BF平面BCC1B1,∴CD⊥BF.
又∵BF⊥B1C,CD∩B1C=C,
∴BF⊥平面B1CD.(8分)
又∵GF綊12CD,BE綊12CD,
∴GF綊BE,∴四边形BFGE是平行四边形,
∴BF∥GE,∴GE⊥平面B1CD.
∵GE平面EB1D,
∴平面EB1D⊥B1CD.(10分)
(3)解连接EF.
∵CD⊥B1C,GF∥CD,∴GF⊥B1C.
又∵GE⊥平面B1CD,∴GE⊥B1C.
又∵GE∩GF=G,∴B1C⊥平面GEF,∴EF⊥B1C,
∴∠EFG是二面角E-B1C-D的平面角.(12分)
设正方体的棱长为a,则在△EFG中,
GF=12a,EF=32a,GE⊥GF,∴cos∠EFG=GFEF=33,
∴二面角E-B1C-D的余弦值为33.(14分)