88教案网

你的位置: 教案 > 高中教案 > 导航 > 简谐运动的回复力和能量

高中力的分解教案

发表时间:2020-11-13

简谐运动的回复力和能量。

经验告诉我们,成功是留给有准备的人。教师要准备好教案,这是教师工作中的一部分。教案可以让学生们能够在上课时充分理解所教内容,帮助教师掌握上课时的教学节奏。教案的内容要写些什么更好呢?为此,小编从网络上为大家精心整理了《简谐运动的回复力和能量》,大家不妨来参考。希望您能喜欢!jaB88.COM

11.3简谐运动的回复力和能量
【教学目标】
(一)知识与技能
1、理解简谐运动的运动规律,掌握在一次全振动过程中位移、回复力、加速度、速度变化的规律。
2、掌握简谐运动回复力的特征。
3、对水平的弹簧振子,能定量地说明弹性势能与动能的转化。
(二)过程与方法
1、通过对弹簧振子所做简谐运动的分析,得到有关简谐运动的一般规律性的结论,使学生知道从个别到一般的思维方法。
2、分析弹簧振子振动过程中能量的转化情况,提高学生分析和解决问题的能力。
(三)情感、态度与价值观
1、通过物体做简谐运动时的回复力和惯性之间关系的教学,使学生认识到回复力和惯性是矛盾的两个对立面,正是这一对立面能够使物体做简谐运动。
2、简谐运动过程中能量的相互转化情况,对学生进行物质世界遵循对立统一规律观点的渗透。
【教学重点】
1、简谐运动的回复力特征及相关物理量的变化规律。
2、对简谐运动中能量转化和守恒的具体分析。
【教学难点】
1、物体做简谐运动过程中位移、回复力、加速度、速度等变化规律的分析总结。
2、关于简谐运动中能量的转化。
【教学方法】实验演示、讨论与归纳、推导与列表对比、多媒体模拟展示
【教学用具】CAI课件、水平弹簧振子
【教学过程】
(一)引入新课
教师:前面两节课我们从运动学的角度研究了简谐运动的规律,不涉及它所受的力。
我们已知道:物体静止或匀速直线运动,所受合力为零;物体匀变速直线运动,所受合力为大小和方向都不变的恒力;物体匀速圆周运动,所受合力大小不变,方向总指向圆心。那么物体简谐运动时,所受合力有何特点呢?
这节课我们就来学习简谐运动的动力学特征。
(二)进行新课
1.简谐运动的回复力
(1)振动形成的原因(以水平弹簧振子为例)
问题:(如图所示)当把振子从它静止的位置O拉开一小段距离到A再放开后,它为什么会在A-O-A'之间振动呢?
分析:物体做机械振动时,一定受到指向中心位置的力,这个力的作用总能使物体回到中心位置,这个力叫回复力。回复力是根据力的效果命名的,对于水平方向的弹簧振子,它是弹力。
①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。
回复力是根据力的作用效果命名的,不是什么新的性质的力,可以是重力、弹力或摩擦力,或几个力的合力,或某个力的分力等。
振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。
②形成原因:振子离开平衡位置后,回复力的作用使振子回到平衡位置,振子的惯性使振子离开平衡位置。
(2)简谐运动的力学特征
问题:弹簧振子振动时,回复力与位移是什么关系?
分析:由振动过程的分析可知,振子的位移总是相对于平衡位置而言的,即初位置是平衡位置,位移可以用振子的位置坐标x来表示,方向始终从平衡位置指向外侧。回复力的方向始终指向平衡位置,因而回复力的方向与振子的位移方向始终相反。
对水平方向的弹簧振子来说,回复力就是弹簧的弹力。在弹簧发生弹性形变时,弹簧振子的回复力F跟振子偏离平衡位置的位移x成正比,即
F=-kx
式中F为回复力,x为偏离平衡位置的位移,k是劲度系数,负号表示回复力与位移的方向总相反。
理论研究表明,如果质点所受的力与它偏离平衡位置的位移大小成正比,并且总指向平衡位置,质点的运动就是简谐运动。
做简谐运动的质点,回复力总满足F=-kx的形式。式中k是比例常数。这就是简谐运动的动力学特征。
2.简谐运动的能量
振动具有周期性和重复性,在振动过程中,相关物理量的变化情况分析,只需分析一个循环即可。
(用CAI课件模拟弹簧振子的振动,分别显示分析x、F、a、v、Ek、Ep、E的变化情况)
观察振子从A→O→A'→O→A的一个循环,这一循环可分为四个阶段:A→O、O→A'、A'→O、O→A,分析在这四个阶段中上述各物理量的变化,并将定性分析的结论填入表格中。
分析:弹簧振子由A→O的变化情况
分步讨论弹簧振子在从A→O运动过程中的位移、回复力、加速度、速度、动能、势能和总能量的变化规律。
①从A到O运动中,位移的方向如何?大小如何变化?
由A到O运动过程中,位移方向由O→A,随着振子不断地向O靠近,位移越来越小。
②从A到O运动过程中,小球所受的回复力有什么特点?
小球共受三个力:弹簧的拉力、杆的支持力和小球的重力,而重力和支持力已相互平衡,所以回复力由弹簧弹力提供。
所以从A→O过程中,据胡克定律得到:物体所受的合力变小,方向指向平衡位置。
③从A到O运动过程中,振子的加速度方向如何?大小如何变?
据牛顿第二定律得,小球从A到O运动过程中,加速度变小,方向指向平衡位置。
④从A→O过程中,速度方向如何?大小如何变化?
因为物体的速度方向与运动方向一致,从A到O运动过程中,速度方向是从A→O。随着振子不断地向O靠近,弹簧势能转化为动能,所以小球的速度越来越大。
(⑤从A→O过程中,动量方向如何?大小如何变化?
动量方向与速度的方向相同,大小与速度大小成正比,因此从A到O运动过程中,动量方向是从A→O。大小变化是越来越大。)
⑥从A→O过程中,动能大小如何变化?
动能是标量,从A→O,大小变化是越来越大。
⑦从A→O过程中,势能大小如何变化?
势能是标量,从A→O,大小变化是越来越小。
⑧从A→O过程中,总能量大小如何变化?
因不考虑各种阻力,因而振动系统的总能量守恒。
(让学生讨论分析振子从O→A′,从A′→O,从O→A的运动情况,要求学生填写表格,并检查所填内容是否正确)
振子的运动A→OO→A′A′→OO→A
对O点位移的方向怎样?大小如何变化?向右
减小向左
增大向左
减小向右
增大
回复力的方向怎样?大小如何变化?向左
减小向右
增大向右
减小向左
增大
加速度的方向怎样?大小如何变化?向左
减小向右
增大向右
减小向左
增大
速度的方向怎样?大小如何变化?向左
增大向左
减小向右
增大向右
减小
振子的动能增大减小增大减小
弹簧的势能减小增大减小增大
系统总能量不变不变不变不变
总结:
回复力的方向始终指向平衡位置,加速度的方向与回复力的方向相同,也始终指向平衡位置。
回复力与加速度的方向总是与位移方向相反。
速度方向与位移方向有时一致,有时相反;速度方向与回复力、加速度的方向也是有时一致,有时相反。因而速度的方向与其它各物理量的方向间没有必然联系。
在四个阶段中,x、F、a、v、Ek、Ep、E的大小变化可分为两组,x、F、a、Ep为一组,v、Ek为另一组,每组中各量的变化步调一致,两组间的变化步调相反。整个过程中总能量保持不变。
当物体向着平衡位置运动时,a、v同向,振子做变加速运动,此时
x↓F↓a↓Ep↓v↑Ek↑
当物体远离平衡位置运动时,a、v反向,振子做变减速运动,此时
x↑F↑a↑Ep↑v↓Ek↓
在平衡位置的两侧,距平衡位置等距离的点,各量的大小对应相等,振子的运动具有对称性。
在上述各量中矢量变化的周期是标量变化周期的两倍。
特别说明:以上分析是在忽略摩擦等阻力的条件下进行的。实际的运动都具有一定的能量损耗,
巩固练习
1、做简谐运动的质点通过平衡位置时,具有最大值的物理量是_________。
A.加速度B.速度C.位移D.动能E.回复力F.势能
(参考答案:BD)
2、下列说法中正确的是(A)
A.弹簧振子的运动是简谐运动B.简谐运动就是指弹簧振子的运动
C.简谐运动是匀变速直线运动D.简谐运动是机械运动中最基本最简单的一种
3、关于做简谐运动物体的说法正确的是(CD)
A.加速度与位移方向有时相同,有时相反
B.速度方向与加速度有时相同,有时相反
C.速度方向与位移方向有时相同,有时相反
D.加速度方向总是与位移方向相反
4、做简谐运动的物体,当位移为负值时,以下说法正确的是(B)
A.速度一定为正值,加速度一定为正值
B.速度不一定为正值,但加速度一定为正值
C.速度一定为负值,加速度一定为正值
D.速度不一定为负值,加速度一定为负值
5、在简谐运动中,振子每次经过同一位置时,下列各组中描述振动的物理量总是相同的是(B)
A.速度、加速度、动量和动能
B.加速度、动能、回复力和位移
C.加速度、动量、动能和位移
D.位移、动能、动量和回复力
6、当一弹簧振子在竖直方向上做简谐运动时,下列说法正确的是(CD)
A.振子在振动过程中,速度相同时,弹簧的长度一定相等
B.振子从最低点向平衡位置运动过程中,弹簧弹力始终做负功
C.振子在振动过程中的回复力由弹簧的弹力和振子的重力的合力提供
D.振子在振动过程中,系统的机械能一定守恒
7、关于弹簧振子做简谐运动时的能量,下列说法正确的有(ABC)
A.等于在平衡位置时振子的动能
B.等于在最大位移时弹簧的弹性势能
C.等于任意时刻振子动能与弹簧弹性势能之和
D.位移越大振动能量也越大
(三)课堂总结、点评
本节课学习了简谐运动的动力学特征和简谐运动的能量。
简谐运动是在与位移大小成正比,并且方向总指向平衡位置的回复力作用下的振动。做简谐运动的质点,回复力总满足F=-kx的形式。式中k是比例常数。
简谐运动系统的动能和势能相互转化,机械能守恒。
(四)课余作业
完成P13“问题与练习”的题目。
附:教材分析
本节学习的重点是使学生掌握简谐运动的回复力特征及相关物理量的变化规律。回复力的特征是形成加速度、速度、位移等物理量周期性变化的原因。弹簧振子振动形成的原因,一是回复力的特点(总指向平衡位置),二是振子的惯性,这是分析问题的关键。
对于竖直的弹簧振子,涉及弹性势能、重力势能、动能三者的变化,不要求从能量的角度对它进行分析。
简谐运动是一种理想化模型,实际中发生的振动都要受到阻尼的作用,如果阻尼很小,振动物体受到的回复力大小与位移成正比,方向与位移相反,则物体的运动可以看作是简谐运动,这种将实际问题理想化的方法,应注意让学生体会。

相关知识

简谐运动的能量阻尼振动教案


作为优秀的教学工作者,在教学时能够胸有成竹,作为高中教师就需要提前准备好适合自己的教案。教案可以让学生能够在教学期间跟着互动起来,帮助高中教师更好的完成实现教学目标。那么怎么才能写出优秀的高中教案呢?下面是小编为大家整理的“简谐运动的能量阻尼振动教案”,欢迎阅读,希望您能够喜欢并分享!

9.6简谐运动的能量阻尼振动
一、教学目标
1.知道振幅越大,振动的能量(总机械能)越大.?
2.对单摆,应能根据机械能守恒定律进行定量计算.
3.对水平的弹簧振子,应能定性地说明弹性势能与动能的转化.
4.知道什么是阻尼振动和阻尼振动中能量转化的情况.
5.知道在什么情况下可以把实际发生的振动看作简谐运动.
二、教学重点、难点分析
1.理解简谐运动的物体机械能守恒。
2.会分析简谐运动中各种能量之间的转化和相关计算。
三、教学方法:实验演示,计算机辅助教学
四、教具:弹簧振子演示器,单摆演示器,计算机,大屏幕,自制CAI课件
五、教学过程
(-)引入新课
上几节课讲了简谐运动,知道简谐运动中力与运动的变化关系,那么简谐运动中能量是如何变化的呢?
【板书】六简谐运动的能量阻尼振动
(二)进行新课
【演示1】弹簧振子演示器(图1)
把弹簧振子由平衡位置O拉到位置A后释放,让弹簧振子由A运动到O后,又由O运动到A’,使振子在A、A’间来回振动。
分析;弹簧拉到位置A时,弹簧发生的形变量最大,振动系统具有的弹性势能也最大;振子的速度为零,振动系统的动能为零。
当由位移最大位置A向平衡位置O运动时,振子位移逐渐减小,弹簧的形变也逐渐减小,振动系统的势能也逐渐减小;速度逐渐增大,动能逐渐增大;由于在运动过程中,只有弹簧的弹力做功,机械能守恒,振动系统的机械能总量保持不变。
在平衡位置O时,位移为零,弹簧没有形变,振动系统的势能也为零;速度达到最大,动能达到最大。
当由平衡位置O向位移最大位置A’运动时,弹簧的形变逐渐增大,振动系统的势能也逐渐增大;速度逐渐减小,动能也逐渐减小;由于在运动过程中,只有弹簧的弹力做功,机械能守恒,振动系统的机械能总量保持不变。
当振子在位移最大位置A’时,与振子在A点能量相同。当振子由位移最大位置A’回到平衡位置O时,与振子由A到O点能量变化相同,当振子由平衡位置O到达位移最大位置A时,与由平衡位置O到达位移最大位置A’能量变化相同,不再重复。
结论:振子在运动过程中,就是动能与势能间的一个转化过程,在平衡位置时,动能最大,势能最小;在位移最大位置时,势能最大,动能最小;在由平衡位置向位移最大位置运动时,动能减小,势能增大;在由位移最大位置向平衡位置运动时,势能减小,动能增大;机械能总量保持不变。
是否所有的简谐运动都具有这些特点呢?
【演示2】单摆的摆动(图2)
把摆长为L,质量为m的小球从平衡位置拉过θ角到达A点释放,由位移最大位置A运动到平衡位置O,又由平衡位置O运动到位移最大位置A’后,在A、A’间来回振动。
分析:(取位置O所在的平面为重力势能的参考面,设该平面势能为零。)
摆球在位置A时,由于摆球上升的高度h=L(1-cosθ)最大,振动系统具有的重力势能EP=mgL(1-cosθ)最大,摆球的速度为零,动能为零。
在由位移最大位置A向平衡位置O运动时,摆球高度逐渐减小,重力势能逐渐减小;速度逐渐增大,动能逐渐增大。由于只有重力做功,机械能守恒,振动系统机械能总量保持不变。
在平衡位置O时,摆球到达零势能面,重力势能为零;速度最大,动能最大。由机械能守恒得:该位置的动能为EK=mgL(1-cosθ),该位置的速度为v=.
在位移最大位置A’时,由于摆球上升的高度最大,振动系统的势能最大;速度最小,动能为零。由机械能守恒,A、A’两点机械能相等,得:h’=h=L(1-cosθ).
当振子由位移最大位置A’回到平衡位置O时,与振子由A到O点能量变化相同。当振子由平衡位置O回到位移最大位置A时,与由平衡位置O到达位移最大位置A’能量变化相同,不再重复。
通过对弹簧振子和单摆的分析,得出下面的规律:
【板书】1、简谐运动的能量
(1)动能、势能的变化(投影下表)
振子的运动AA→OOO→A’A’A’→OOO→A
能量的转化动能最小增加最大减小最小增加最大减小
势能最大减小最小增加最大减小最小增加
机械能不变不变不变不变不变不变不变不变
从上表可看到振子在做简谐运动时,动能和势能在不断转化,总能量保持不变,那么总能量和什么因素有关呢?
当把摆球拉高一些让摆球开始振动,由于摆球升高,振幅增大,振动系统的重力势能增加,总能量变大。
当把弹簧振子拉长一些让振子开始振动,由于振幅增大,弹簧的形变增大,振动系统弹性势能增加,总能量变大。
【板书】(2)简谐运动中的能量跟振幅有关;振幅越大,能量越多
对简谐运动来说,一旦外界供给振动系统一定的能量,使它开始振动,系统中的动能和势能相互转化,机械能总量保持不变,它就以一定的振幅永不停息地振动下去。在日常生活中常见的振动与上述所讲有所不同。小孩坐在秋千斗里,妈妈把秋千推起来后,不再推秋千,秋千的振幅会随时间逐渐减小,最后直到停止;用锤敲锣时,锣面振动,发出响声,但一会锣就停止振动了,这是什么因素引起的呢?由于振动系统要受到外界的摩擦和阻力作用(即阻尼作用),系统要克服摩擦和阻力做功,使系统的机械能转化为其他形式能,由于系统的机械能减少,振幅也就逐渐减小,最后当机械能耗尽的时候,振幅就变为零,振子就停止振动。这样的振动叫阻尼振动。
【板书】2、阻尼振动
(1)定义:振幅逐渐减小的振动
课本上图9-27画出了阻尼振动随时间变化的关系图象,从图象看,若振子受的阻尼作用小,振幅减小得慢,当阻尼很小时,在一段不太长的时间里看不出振幅有明显的变化,此时可以认为是简谐运动,简谐运动是一种理想化的运动,若振子受的阻尼作用大,振幅减小得快,在较短的时间里,振子就停止振动,如上面讲的用锤敲锣的例子,由此可得:
【板书】(2)振幅减小得快慢跟所受阻尼有关;阻尼越大,振幅减小得越快。
课件演示
通过课件演示,再现本课内容,形象直观,激发学生学习兴趣,达到知识巩固,理论升华的教学目的。
巩固练习
1.自由摆动的秋千,摆的振幅越来越小,这是因为
A.机械能守恒B.能量正在消失C.总能量守恒,机械能减少D.只有动能和势能的相互转化
2.图3为一单摆的简谐运动图象,在1s末、2s末,摆球的速度为多少?
作业:把练习六(课本P36)(1)、(2)、(3)题做课本上。
参考题
1、如图4所示,弹簧振子做简谐运动,O为平衡位置,那么
A.从B到O,弹性势能减小,动能减小
B.从O到C,弹性势能增大,动能增大
C.从C到O,弹性势能减小,动能增大
D.从O到B,弹性势能增大,动能增大
2、在巩固练习2中,若摆球摆过的最大角度增为原最大角度的2倍时,求:1s末、2s末振子的速度为多少?
说明:?
1.在复习机械能守恒知识的基础上,应向学生说明:在位移最大时,即动能为零时,单摆的振幅最大,重力势能最大;水平弹簧振子的振幅越大,弹性势能越大.因此,振幅越大,振动的能量越大.
2.竖直的弹簧振子,涉及弹性势能、重力势能、动能三者的转化,不要求从能量的角度对它进行分析.?
3.简谐运动是一种理想化模型,实际中发生的振动都要受到阻尼的作用.如果阻尼很小,振动物体受到的回复力大小与位移成正比,方向与位移相反,则物体的运动可以看作是简谐运动.这种将实际问题理想化的方法,应注意让学生领会.

简谐运动


俗话说,凡事预则立,不预则废。作为教师就要好好准备好一份教案课件。教案可以让学生们能够在上课时充分理解所教内容,帮助教师在教学期间更好的掌握节奏。教案的内容要写些什么更好呢?为满足您的需求,小编特地编辑了“简谐运动”,仅供参考,大家一起来看看吧。

第1节简谐运动测试1
1.做简谐运动的质点,先后经过同一点时,下列物理量哪些是不同的()
A.速度B.加速度C.位移D.动能
2.某个弹簧振子在水平方向上做简谐运动,下列说法中正确的是()
A.该振子的加速度和位移大小成正比,方向相反
B.该振子的加速度和位移大小成正比,方向相同
C.该振子做非匀变速运动
D.该振子做匀变速运动
3.弹簧振子做简谐运动时,下列说法中正确的是()
A.若位移为负值,则速度一定为正值
B.振子通过平衡位置时,速度为零,加速度最大
C.振子每次通过平衡位置时,加速度相同,速度也相同
D.振子通过同一位置时,速度不一定相同,但加速度一定相同
4.如图,一水平弹簧振子,O为平衡位置,振子在B、C之间做简谐运动,设向右为正方向,则振子()

A.由C向O运动时,位移为正值,速度为正值,加速度为正值
B.由O向B运动时,位移为正值,速度为正值,加速度为负值
C.由B向O运动时,位移为负值,速度为正值,加速度为负值
D.由O向C运动时,位移为负值,速度为负值,加速度为正值
5.水平方向做简谐运动的物体偏离平衡位置的位移为X,速度为V,加速度为a,则()
A.X与V同向时,物体加速B.X与V反向时,物体加速
C.V与a同向时,位移变大,D.V与a反向时,位移变大
6.关于水平方向上做简谐运动的弹簧振子的位移,加速度和速度间的关系,下列说法中正确的是()
A.位移减小时,加速度减小,速度增大
B.位移的方向总是跟加速度的方向相反,跟速度的方向相同
C.振子的运动方向指向平衡位置时,速度的方向跟位移方向相同
D.振子的运动方向改变时,加速度的方向也改变
7.如图,若水平弹簧振子在B、C间做简谐运动,O点为平衡位置,则()
A.振子在经过O点时速度最大,回复力也最大
B.振子在经过O点时速度最大,回复力为零
C.振子在由C点向O点运动的过程中,回复力逐渐减小,
加速度却逐渐增大
D.振子在由O点向B点运动的过程中,弹性势能逐渐增大,加速度却逐渐减小
8.若做简谐运动的弹簧振子的振幅是A,最大加速度的值为am,则在位移X=A/2处振子的加速度值a=。
9.振子质量是0.2kg的弹簧振子在水平方向上做简谐运动,当它运动到平衡位置左侧2cm时,受到的回复力是4N,当它运动到平衡位置右侧4cm时,它的加速度大小和方向分别是()
A.20m/s2,向右B.20m/s2,向左C.40m/s2,向左D.40m/s2,向右
※10.如图,一水平平台在竖直方向上做简谐运动,一物体置于平台上一起振动,当平台振动到什么位置时,物体对平台的压力最小?()
A.当平台振动到最低点时
B.当平台振动到最高点时
C.当平台向上振动经过平衡位置时
D.当平台向下振动经过平衡位置时
11.水平弹簧振子做简谐运动时,以下说法正确的是()
A.振子通过平衡位置时,回复力一定为零
B.振子减速度运动时,加速度在减小
C.振子向平衡位置运动时,加速度与速度方向相反
D.振子远离平衡位置运动时,加速度与速度方向相反

答案:
题号12345
答案AACDBDBD
题号678910
答案AB1/2CB
题号11
答案AD

简谐运动的描述


11.2简谐运动的描述
【教学目标】
(一)知识与技能
1、知道振幅、周期和频率的概念,知道全振动的含义。
2、了解初相和相位差的概念,理解相位的物理意义。
3、了解简谐运动位移方程中各量的物理意义,能依据振动方程描绘振动图象。
(二)过程与方法
1、在学习振幅、周期和频率的过程中,培养学生的观察能力和解决实际问题的能力。
2、学会从相位的角度分析和比较两个简谐运动。
(三)情感、态度与价值观
1、每种运动都要选取能反映其本身特点的物理量来描述,使学生知道不同性质的运动包含各自不同的特殊矛盾。
2、通过对两个简谐运动的超前和滞后的比较,学会用相对的方法来分析问题。
【教学重点】简谐运动的振幅、周期和频率的概念;相位的物理意义。
【教学难点】
1、振幅和位移的联系和区别、周期和频率的联系和区别。
2、对全振动概念的理解,对振动的快慢和振动物体运动的快慢的理解。
3、相位的物理意义。
【教学方法】分析类比法、讲解法、实验探索法、多媒体教学。
【教学用具】
CAI课件、劲度系数不同的弹簧、质量不同的小球、秒表、铁架台、音叉、橡皮槌;两个相同的单摆、投影片。
【教学过程】
(一)引入新课
教师:描述匀速直线运动的物理量有位移、时间和速度;描述匀变速直线运动的物理量有时间、速度和加速度;描述匀速圆周运动的物体时,引入了周期、频率、角速度等能反映其本身特点的物理量。
上节课我们学习了简谐运动,简谐运动也是一种往复性的运动,所以研究简谐运动时我们也有必要像匀速圆周运动一样引入周期、频率等能反映其本身特点的物理量。本节课我们就来学习描述简谐运动的几个物理量。
(二)进行新课
1.振幅
如果我们要乘车,我想大家都愿意坐小汽车,而不坐拖拉机,因为拖拉机比小汽车颠簸得厉害。
演示:在铁架台上悬挂一竖直方向的弹簧振子,分别把振子从平衡位置向下拉不同的距离,让振子振动。
现象:①两种情况下,弹簧振子振动的范围大小不同;②振子振动的强弱不同。
在物理学中,我们用振幅来描述物体的振动强弱。
(1)物理意义:振幅是描述振动强弱的物理量。
将音叉的下部与讲桌接触,用橡皮槌敲打音叉,一次轻敲,一次重敲,听它发出的声音的强弱,比较后,加深对振幅的理解。
(2)定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。
(3)单位:在国际单位制中,振幅的单位是米(m)。
(4)振幅和位移的区别
①振幅是指振动物体离开平衡位置的最大距离;而位移是振动物体所在位置与平衡位置之间的距离。
②对于一个给定的振动,振子的位移是时刻变化的,但振幅是不变的。
③位移是矢量,振幅是标量。
④振幅等于最大位移的数值。
2、周期和频率
(1)全振动
(用多媒体展示一次全振动的四个阶段)
从O点开始,一次全振动的完整过程为:O→A→O→A′→O。从A点开始,一次全振动的完整过程为:A→O→A′→O→A。从A'点开始,一次全振动的完整过程为:A′→O→A→O→A′。
在判断是否为一次全振动时不仅要看是否回到了原位置,而且到达该位置的振动状态(速度)也必须相同,才能说完成了一次全振动。只有物体振动状态再次恢复到与起始时刻完全相同时,物体才完成一次全振动。
振动物体以相同的速度相继通过同一位置所经历的过程,也就是连续的两次位置和振动状态都相同时所经历的过程,叫做一次全振动。
一次全振动是简谐运动的最小运动单元,振子的运动过程就是这一单元运动的不断重复。
(2)周期和频率
演示:在两个劲度系数不同的弹簧下挂两个质量相同的小球,让这两个弹簧振子以相同的振幅振动,观察到振子振动的快慢不同。
为了描述简谐运动的快慢,引入了周期和频率。
①周期:做简谐运动的物体完成一次全振动所需的时间,叫做振动的周期,单位:s。
②频率:单位时间内完成的全振动的次数,叫频率,单位:Hz,1Hz=1s-1。
③周期和频率之间的关系:T=1f
④研究弹簧振子的周期
问题:猜想弹簧振子的振动周期可能由哪些因素决定?
演示:两个不同的弹簧振子(弹簧不同,振子小球质量也不同),学生观察到:两个弹簧振子的振动不同步,说明它们的周期不相等。
猜想:影响弹簧振子周期的因素可能有:振幅、振子的质量、弹簧的劲度系数。
注意事项:
a.介绍秒表的正确读数及使用方法。
b.应选择振子经过平衡位置的时刻作为开始计时的时刻。
c.振动周期的求解方法:T=tn,t表示发生n次全振动所用的总时间。
d.给学生发秒表,全班同学同时测讲台上演示的弹簧振子的振动周期。
实验验证:弹簧一端固定,另一端系着小球,让小球在竖直方向上振动。
实验一:用同一弹簧振子,质量不变,振幅较小与较大时,测出振动的周期T1和T1′,并进行比较。
结论:弹簧振子的振动周期与振幅大小无关。
实验二:用同一弹簧,拴上质量较小和较大的小球,在振幅相同时,分别测出振动的周期T2和T2′,并进行比较。
结论:弹簧振子的振动周期与振子的质量有关,质量较小时,周期较小。
实验三:保持小球的质量和振幅不变,换用劲度系数不同的弹簧,测出振动的周期T3和T3′,并进行比较。
结论:弹簧振子的振动周期与弹簧的劲度系数有关,劲度系数较大时,周期较小。
通过上述实验,我们得到:弹簧振子的周期由振动系统本身的质量和劲度系数决定,而与振幅无关。
(简谐运动的周期公式T=2πmk,式中m为振子的质量,k为比例常数)
⑤固有周期和固有频率
对一个确定的振动系统,振动的周期和频率只与振动系统本身有关,所以把周期和频率叫做固有周期和固有频率。
3.相位
(观察和比较两个摆长相等的单摆做简谐运动的情形)
演示:将并列悬挂的两个等长的单摆(它们的振动周期和频率相同),向同一侧拉起相同的很小的偏角同时释放,让它们做简谐运动。
现象:两个简谐运动在同一方向同时达到位移的最大值,也同时同方向经过平衡位置,两者振动的步调一致。
对于同时释放的这两个等长单摆,我们说它们的相位相同。
演示:将两个单摆拉向同一侧拉起相同的很小的偏角,但不同时释放,先把第一个放开,当它运动到平衡位置时再放开第二个,让两者相差1/4周期,让它们做简谐运动。
现象:两者振动的步调不再一致了,当第一个到达另一侧的最高点时,第二个小球又回到平衡位置,而当第二个摆球到达另一方的最高点时,第一个小球又已经返回平衡位置了。与第一个相比,第二个总是滞后1/4周期,或者说总是滞后1/4全振动。
对于不同时释放的这两个等长单摆,我们说它们的相位不相同。
要详尽地描述简谐运动,只有周期(或频率)和振幅是不够的,在物理学中我们用不同的相位来描述简谐运动在一个全振动中所处的不同阶段。
相位是表示物体振动步调的物理量,用相位来描述简谐运动在一个全振动中所处的阶段。
4.简谐运动的表达式
(1)简谐运动的振动方程
既然简谐运动的位移和时间的关系可以用正弦曲线或余弦曲线来表示,那么若以x代表质点对于平衡位置的位移,t代表时间,根据三角函数知识,x和t的函数关系可以写成
x=Asin(ωt+)
公式中的A代表振动的振幅,ω叫做圆频率,它与频率f之间的关系为:ω=2πf;公式中的(ωt+)表示简谐运动的相位,t=0时的相位叫做初相位,简称初相。
(2)两个同频率简谐运动的相位差
设两个简谐运动的频率相同,则据ω=2πf,得到它们的圆频率相同,设它们的初相分别为1和2,它们的相位差就是
(ωt+2)-(ωt+)=2-1
讨论:
①一个物体运动时其相位变化多少就意味着完成了一次全振动?
(相位每增加2π就意味着发生了一次全振动)
②甲和乙两个简谐运动的相位差为3π/2,意味着什么?
(甲和乙两个简谐运动的相位差为3π/2,意味着乙总是比甲滞后3/2个周期或3/2次全振动)
(3)相位的应用
【例题1】两个简谐振动分别为
x1=4asin(4πbt+π)
和x2=2asin(4πbt+π)
求它们的振幅之比、各自的频率,以及它们的相位差。
解析:据x=Asin(ωt+)得到:A1=4a,A2=2a。
又ω=4πb及ω=2πf得:f=2b
它们的相位差是:
【例题2】如图所示是A、B两个弹簧振子的振动图象,求它们的相位差。

解析:这两个振动的周期相同,所以它们有确定的相位差,从图中可以看出,B的振动比A滞后1/4周期,所以两者的相位差是
Δ=
巩固练习:某简谐运动的位移与时间关系为:x=0.1sin(100πt+)cm,由此可知该振动的振幅是______cm,频率是Hz,t=0时刻振动物体的位移与规定正方向______(填“相同”或“相反”),t=时刻振动物体的位移与规定正方向______(填“相同”或“相反”)。
(参考答案:0.1;50;相同;相反)
(三)课堂总结、点评
本节课学习了描述振动的物理量——振幅、周期、频率和相位。
当振动物体以相同的速度相继通过同一位置所经历的过程就是一次全振动,一次全振动是简谐运动的最小运动单元,振子的运动过程就是这一单元运动的不断重复。振幅是描述振动强弱的物理量;周期和频率都是用来表示振动快慢的物理量。
相位是表示振动步调的物理量,用来描述在一个周期内振动物体所处的不同运动状态。用三角函数式来表示简谐运动,其表达式为:x=Asin(ωt+),其中x代表质点对于平衡位置的位移,t代表时间,ω叫做圆频率,ωt+表示简谐运动的相位。
两个具有相同圆频率ω的简谐运动,它们的相位差是:
(ωt+2)-(ωt+)=2-1
(四)课余作业
完成P11“问题与练习”的题目。
阅读P10科学漫步中的短文。
附:教材分析
本节学习了描述简谐运动的几个物理量,是进一步认识简谐运动的基础课,同时也为后续课程交流电、电磁振荡等知识的学习打下基础。
由于相位的概念比较抽象,在教学中,能让学生理解相位的物理意义,识别位移方程中各量的含义就可以了.对于基础较好的学生,教师也可以介绍参考圆的方法,以帮助学生更深入地理解相位的概念。

《简谐运动》典型案例分析


一名优秀负责的教师就要对每一位学生尽职尽责,高中教师要准备好教案,这是高中教师的任务之一。教案可以保证学生们在上课时能够更好的听课,帮助高中教师营造一个良好的教学氛围。那么,你知道高中教案要怎么写呢?小编经过搜集和处理,为您提供《简谐运动》典型案例分析,供大家借鉴和使用,希望大家分享!

《简谐运动》典型案例分析

人类生活在运动的世界里,振动就是其中一种较为常见的形式,如图所示的钟表利用了钟摆的振动来进行计时,蹦极运动的运动员利用弹性绳沿竖直方向上下运动,琴弦的振动让人们欣赏到优美的音乐,地震可能会给人类带来巨大的灾难……振动现象比比
皆是,与我们的生活密切相关。因此,认识并理解振动,掌握物体振动的规律很有必要。
振动的物体千姿百态,各物体的振动情况也不尽相同,不可能对所有物体的振动规律全部描述一遍,但我们仍用研究问题的基本方法来研究振动——将复杂的振动看成几个简单振动的合振动。在本章中,我们着重分析两种最简单的振动模型,学习如何描述振动,掌握两种简单振动模型所具有的性质。

课时11.1简谐运动

1.知道什么是弹簧振子,领会弹簧振子是理想化模型。
2.通过观察和分析,理解简谐运动的位移—时间图象是一条正弦曲线。
3.经历对简谐运动的运动学特征的探究过程,加深领悟用图象描绘运动的方法。
重点难点:理解简谐运动的概念,理解简谐运动位移—时间图象的意义。
教学建议:对于本节课的教学,首先通过学生身边和生活中实际的例子引出振动的概念;而后按从简单到复杂、从特殊到一般的思路,从运动学的角度认识弹簧振子,通过演示实验得出弹簧振子的振动图象;再通过数据分析揭示出弹簧振子的位移—时间图象是正弦曲线,然后从其运动学特征给出简谐运动的定义,并进一步引导学生认识简谐运动是一种较前面所学的直线运动、曲线运动更复杂的机械运动;最后回归生活和应用举例,使学生知道机械振动是一种普遍的运动形式。
导入新课:随着社会经济的发展,我国高层建筑与超高层建筑越来越多。高层建筑受地面震动和风力的影响较大,其力学稳定性很重要。建筑受到风荷载的作用,高度增加,横向振幅增大。例如,100层建筑横向振幅达1m左右。从本节开始,我们要学习物体振动所遵循的规律。
1.弹簧振子
(1)平衡位置:做往复运动的物体原来①静止时的位置叫作平衡位置。
(2)机械振动:物体(或者物体的一部分)在②平衡位置附近所做的③往复运动,叫作机械振动,简称④振动。
(3)弹簧振子:把一个有孔的小球装在弹簧的一端,弹簧的另一端固定,小球穿在⑤光滑的杆上,能够自由滑动,两者之间的⑥摩擦可以忽略,弹簧的⑦质量与小球相比也可以忽略。把小球拉离平衡位置后放开,小球便做机械振动,这样的系统称为弹簧振子。
2.弹簧振子的位移—时间图象
用横坐标表示振子运动的⑧时间,纵坐标表示振子运动的⑨位移,然后用频闪照相法可以得到振子在⑩平衡位置附近往复运动的位移—时间图象。
3.简谐运动及其图象
(1)简谐运动:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象是一条正弦曲线,这样的振动叫作简谐运动。
(2)简谐运动是最简单、最基本的振动,弹簧振子的振动就是简谐运动。
1.弹簧振子作为物理模型忽略了哪些因素?
解答:弹簧振子是一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子的大小和形状的理想化的物理模型。
2.振动图象是一种怎样的图象?
解答:振动图象表示振子的位移随时间变化的规律,即位移—时间图象,也叫振动曲线。
3.简谐运动的振动图象具有什么特点?
解答:理论和实验证明,所有简谐运动的振动图象都是正弦或余弦曲线。
主题1:机械振动的特征
问题:(1)机械振动的轨迹一定是直线吗?若不是,请讨论后举例说明。
(2)做机械振动的物体,其空间位置随时间的推移有何规律?
(3)做机械振动的物体离开平衡位置后受力有何特点?力的作用效果是什么?
解答:(1)不一定;光滑小球在一个碗的底部的往复运动属于机械振动,但轨迹是曲线。
(2)空间位置随时间的推移具有往复性的变化规律。
(3)受到一个指向平衡位置的力;力的作用效果是使物体回到平衡位置。
知识链接:振动的物体可能做直线运动,也可能做曲线运动。
主题2:简谐运动中的位移
情景:
图示为放在光滑水平面上在A、B间运动的弹簧振子。
问题:(1)小球从O运动到B的过程中和从B运动到O的过程中途经C时,其相对平衡位置的位移(填“相同”或“不相同”),所受合外力(填“相同”或“不相同”)。
(2)若C点和D点关于位置O对称,则小球在C点和D点的位移有什么关系?与小球的速度方向有关吗?
解答:(1)相同相同
(2)位移大小相等,方向相反;与小球速度无关。
知识链接:简谐运动中的位移更像是某时刻振子的位置,是指相对平衡位置的位移,与振子的速度方向无关。
主题3:简谐运动中的速度
情景:如图所示的弹簧振子,小球在水平方向做简谐运动,O点为小球的平衡位置,A、B为其左右两端的最大位移位置。
问题:(1)小球由O点向A点和由O点向B点运动的过程中,小球的速度如何变化?
(2)同理分析小球由A点到O点和由B点到O点运动的过程中速度的变化情况,总结出简谐运动中小球速度的变化特点。
解答:(1)小球由O点向A点和由O点向B点运动的过程中,小球的速度均逐渐变小。
(2)小球由A点到O点和由B点到O点运动的过程中,速度均逐渐变大;在简谐运动中,小球离开平衡位置的过程速度变小,靠近平衡位置的过程速度变大。
知识链接:做简谐运动的物体,在平衡位置处速度最大,最大位移处速度为零。
主题4:振动图象
情景:在运动学中,我们曾用x-t图象直观地描述了物体运动的位移和时间的关系。做简谐振动的小球离开平衡位置的位移在不断变化,那么我们也可以用x-t图象来描述做简谐振动的物体离开平衡位置的位移和时间的关系。
问题:(1)观察图甲,并认真分析。在绘制弹簧振子的x-t图象的过程中采用了何种物理方法?为什么要让纸条匀速运动?请说明绘制出的图象的物理意义。
甲乙
(2)图乙为某弹簧振子的位移图象,若此图象为正弦曲线,则弹簧振子的振动周期为多少?振动过程中振子离开平衡位置的最大位移为多少?根据数学知识写出此正弦函数的方程式。
解答:(1)描迹法;让纸条匀速运动是为了把振子经历的时间均匀地展开;绘制出的图象表示振子在各个时刻离开平衡位置的位移。
(2)2πs;10cm;y=10sint(cm)。
知识链接:通过振动图象可以知道振子离开平衡位置的最大距离和振动周期,还可以根据图象走势判断振子某时刻的速度方向。
1.(考查简谐运动中各物理量的变化规律)一弹簧振子在水平面内做简谐运动,当振子每次经过非平衡位置的同一位置时,不一定相同的物理量是()。
A.速度B.合力C.位移D.加速度
【解析】只要振子离开平衡位置,其位移一定由平衡位置指向振子所在的位置;所受弹簧的弹力(即合力)一定指向平衡位置,加速度也指向平衡位置,而且同一位置大小一定;速度大小虽然一定,但方向可能指向平衡位置,也可能背离平衡位置,所以方向不一定相同。B、C、D错,A选项正确。
【答案】A
【点评】做简谐运动的物体经过同一位置时,可能正远离平衡位置,也可能正靠近平衡位置,速度方向不同,但位移、合力、加速度的方向都相同。
2.(考查简谐运动的位移)如图所示,O点是弹簧振子的平衡位置,当振子由A向O运动时,下列说法中正确的是()。

A.振子的位移在减小
B.振子的运动方向向左
C.振子的位移方向向左
D.振子的位移大小在增大
【解析】由于振子在O点的右侧由A向O运动,所以振子的位移方向向右,且大小在不断减小,故正确答案为A、B。
【答案】AB
【点评】对于简谐运动,位移的参考点均是平衡位置。
3.(考查从图象读取信息的能力)在弹簧振子的小球上安置一记录用的铅笔P,在下面放一条白纸带,当小球振动时沿垂直于振动方向匀速拉动纸带,铅笔P就在纸带上画出一条振动曲线。若振动曲线如图所示,假设向右为正方向,则下列说法正确的是()。
A.振子偏离平衡位置的最大距离为10cm
B.1s末到2s末振子速度方向为负
C.2.5s末和3.5s末振子的位移相同,运动方向也相同
D.振子在4.5s时所受的合力为正
【解析】由图象可知,A对;1s末到2s末振子的位移越来越小,且正向平衡位置运动,速度为负,B对;2.5s末和3.5s末振子的位移相同,但速度方向相反,C错;由图象可知,振子在4.5s时所受合力方向指向平衡位置,为负,D错。
【答案】AB
【点评】要注意根据位移的变化趋势判断速度方向。
4.(考查由图象确定加速度的方向)在水平方向上做简谐运动的质点其振动图象如图所示,假设向右为正方向,则物体正在向右加速的时间是()。
A.0~1sB.1s~2s
C.2s~3sD.3s~4s
【解析】物体向右加速说明物体正在从负向最大位移处向平衡位置运动,根据图象可以判断在3s~4s内物体向右做加速运动,D正确。
【答案】D
【点评】要注意向右运动与向右加速运动的时间段不同。
拓展一:简谐运动的平衡位置、位移变化规律和速度变化规律
1.如图所示,在一个竖直悬挂的轻弹簧下方挂一个小球做成一个弹簧振子,在O处弹簧处于自然状态,悬挂小球后小球可静止于O处。将小球拉到B处后放手,小球即可在A、B之间往复运动,若小球从B处返回到平衡位置的过程中途径C处,则下列说法中正确的是()。
A.O为平衡位置
B.小球从B处返回到平衡位置的过程中经C处时速度方向向上
C.小球从B处返回到平衡位置的过程中经C处时所受合力方向向上
D.小球从B处返回到平衡位置的过程中经C处时离开平衡位置的位移方向向上
【分析】确定平衡位置是解答本题的关键。注意平衡位置是振动前小球静止的位置,也就是合力为零的位置。在简谐运动问题中,质点的位移都是相对于平衡位置而言的。
【解析】小球在平衡位置时所受合力为0,O为平衡位置,A选项错误;小球从B处返回到平衡位置的过程中向O运动,速度方向向上,B正确;小球在C处时所受弹簧的弹力向上,且大于重力,合力方向向上,C对;小球在C处时离开平衡位置的位移为OC,方向向下,D选项错误。
【答案】BC
【点拨】平衡位置一定是振子沿运动方向所受合力为零的位置;位移一定要抓住“离开平衡位置的位移”这个要点;运动方向即为速度方向。

拓展二:简谐运动图象的有关问题
2.某质点做简谐运动,其位移随时间变化的图象如图所示,则质点()。
A.第1s末与第3s末的位移相同
B.第1s末与第3s末的速度相同
C.4s末至8s末路程为10cm
D.3s末至5s末速度方向不变

【分析】从振动图象可以看出各时刻位移的大小、正负以及变化情况。判断位移是否相同时一定要看其大小、方向是否都相同;简谐运动的速度具有对称性,位移大小相同的位置速度大小也相等,但速度方向要根据位移的变化来判断。
【解析】由图象可以看出,t=1s和t=3s两时刻位移相同,A选项正确;第1s末和第3s末的速度方向不同,B选项错误;仍由图象可知,4s末至8s末质点路程为s=2×5cm=10cm,C选项正确;3s末至5s末速度方向不变,D选项正确。
【答案】ACD
【点拨】将位移图象和振动物体的位移变化情况一一对应是解决图象问题的关键,要能在位移图象中准确地找出振动物体在平衡位置和离开平衡位置的最大距离处的时刻。
一、物理百科
微波炉是怎样给食物加热的?
微波(Microwaves)就是频率介于300MHz~300000MHz(波长介于0.1cm~100cm)的电磁波。微波炉就是利用微波的能量给食物加热,由微波的能量转变为食物的内能。在水分子(H2O)中,H2的一端带正电,而O的一端带负电。微波通过食物时,微波的电场就对水分子产生作用力,令水分子的正负两端急剧地扭转振动,如图所示,这振动就导致摩擦生热,迅速将食物煮熟。
微波炉的微波频率为2450MHz,这是使水分子振动的最有效频率。瓷质盛器中没有水分子,也没有一端正一端负的其他分子,微波炉的电场不能使其分子运动,故不会被加热。反之,金属盛器中具有大量的自由电子,自由电子受到微波的电场而轻易运动,善于吸收微波的能量而受热。故不要用金属器皿装食物放入微波炉中。
二、备用试题
1.简谐运动是()。
A.匀变速运动B.匀速直线运动
C.非匀变速运动D.匀加速直线运动
【解析】简谐运动的速度是变化的,B错。加速度a也是变化的,A、D错,C对。
【答案】C
2.关于简谐运动,下列说法正确的是()。
A.简谐运动一定是水平方向的运动
B.所有的振动都可以看作是简谐运动
C.物体做简谐运动时一定可以得到正弦曲线形状的轨迹线
D.只要振动图象是正弦曲线,物体就是做简谐运动
【解析】物体的简谐运动并不一定在水平方向发生,各个方向都有可能发生,A错。简谐运动是最简单的振动,B错。做简谐运动的物体的轨迹线并不是正弦曲线,C错。如果物体振动的图象是正弦曲线,则物体做简谐运动,D对。
【答案】D
3.图示是质点做简谐运动的图象,由此可知()。
A.t=0时,质点位移、速度均为零
B.t=1s时,质点位移最大,速度为零
C.t=2s时,质点的位移为零,速度为负向最大值
D.t=4s时,质点停止运动
【解析】当t=0时,质点的位移为零,此时质点在平衡位置,具有沿x轴正方向的最大速度,故选项A错误。当t=1s时,质点的位移最大,此时质点振动到平衡位置正方向的最大位移处,速度为零,选项B正确。当t=2s时,质点的位移为零,质点在平衡位置,具有沿x轴负方向的最大速度,因此选项C正确。当t=4s时,质点位移为零,质点在平衡位置,具有沿x轴正方向的最大速度,故选项D错误。
【答案】BC

4.图示为弹簧振子的振动图象,关于振子的振动,下列描述正确的是()。
A.振子沿如图所示的曲线运动
B.图象描述的是振子在任意时刻的位移
C.在0.5s到1.5s内振子先加速运动后减速运动
D.在1s到2s内振子先减速运动后加速运动

【解析】振动图象表达的是振子的位移随时间的变化规律,不是运动轨迹,选项A错、B对。振子运动到平衡位置时速度最大,由图象得出:0.5s时振子在平衡位置,1s时在负的最大位移处,1.5s时又回到平衡位置,2s时在正的最大位移处,所以在0.5s到1.5s内振子先减速运动后加速运动,C错。在1s到2s内振子先加速运动后减速运动,D错。
【答案】B
1.下列运动属于振动的是()。
A.活塞在汽缸中的往复运动
B.拍皮球时,皮球的上下往复运动
C.儿童在蹦蹦床上的往复运动
D.小球在左右对称的两个光滑斜面上来回滚动
【解析】左右对称的两个光滑斜面的底端是物体的平衡位置,物体在平衡位置附近所做的往复运动叫振动,D正确;A、B、C找不到平衡位置,故A、B、C选项错误。
【答案】D
2.做简谐振动的弹簧振子可能同时为负的物理量为()。
A.位移和速度B.合力和速度
C.位移和合力D.加速度和位移
【解析】从平衡位置向负向最大位移处运动的过程中位移和速度方向同时为负,选项A正确;从正向最大位移处向平衡位置运动的过程中合力和速度同时为负,选项B正确;对弹簧弹力的特性分析可知,弹力和弹簧形变量的方向总是相反,故C、D选项错误。
【答案】AB
3.图示为一质点做简谐运动的图象,则在t时刻这个质点()。
A.正在向平衡位置运动
B.正在加速
C.正在背离平衡位置运动
D.正在减速
【解析】由简谐运动图象可知,在t时刻这个质点正在离开平衡位置向负向最大位移处运动,C对;t时刻质点的速度方向和合力的方向相反,质点做减速运动,故D选项正确。
【答案】CD
4.图示为一弹簧振子,O为平衡位置,设向右为正方向,振子在B、C之间振动时()。
A.B→O时位移为负,速度为正
B.O→C时位移为正,加速度为正
C.C→O时位移为负,加速度为正
D.O→B时位移为负,速度为正
【解析】B→O时,振子在O点的左侧向右运动,其位移是负值,速度是正值,故A对。O→C时,振子在O点的右侧向右运动,其位移和速度都是正值,而加速度指向左侧,是负值,故B错。C→O时,振子在O点的右侧向左运动,其位移是正值,加速度指向左侧,是负值,故C错。O→B时,振子在O点的左侧向左运动,其位移是负值,速度是负值,故D错。
【答案】A
5.图示是用频闪照相的方法获得的弹簧振子的位移-时间图象,下列有关该图象的说法正确的是()。
A.该图象的坐标原点在弹簧振子的平衡位置
B.从图象可以看出小球在振动过程中是沿t轴方向移动的
C.为了显示小球在不同时刻偏离平衡位置的位移,让底片沿垂直于x轴的方向匀速运动
D.图象中小球的疏密显示出相等时间内小球位置变化快慢的不同
【解析】从图象中能看出坐标原点在平衡位置,A项对;横轴虽然是由底片匀速运动得到的,但已经转化为对应的时间,小球只在x轴上振动,所以B项错,C项对;因图象中相邻小球之间时间间隔相等,疏处说明位置变化快,而密处说明位置变化慢,D项对。
【答案】ACD
6.图示为一个弹簧振子做简谐运动的位移图象,从图象中可以看出,此振子离开平衡位置的最大距离为cm;在F时刻振子的速度方向为(填“正”或“负”);和F时刻振子的速度方向一致的时刻有(填“A”“B”“C”“D”或“E”);在F时刻振子的位移方向为(填“正”或“负”);在F时刻振子的合力方向为(填“正”或“负”)。
【解析】从图象上可以看出离开平衡位置的最大距离为0.4m,即40cm;在F时刻振子正在从负向最大位移处向平衡位置运动,速度方向为正;B时刻振子正在从负向最大位移处向平衡位置运动,速度方向为正,C时刻振子正在从平衡位置向正向最大位移处运动,速度方向也为正;振子位移是指离开平衡位置的位移,在F时刻振子的位移方向为负;弹簧的弹力即振子的合力为正。
【答案】40正B、C负正
7.下列说法正确的是()。
A.弹簧振子的运动是简谐运动
B.简谐运动是机械运动中最简单、最基本的一种
C.简谐运动中位移的方向总是指向平衡位置
D.简谐运动中位移的方向总与速度方向相反
【解析】弹簧振子的运动就是简谐运动,但简谐运动有许多种,如水中浮标上下微小的浮动,后面将要学习的单摆在空气中的小角度摆动都是简谐运动,它是机械振动中最基本、最简单的一种,而机械运动中最基本、最简单的是匀速直线运动,因此A正确,B错误。振动中位移总是相对于平衡位置而言的,而它总是从平衡位置开始,背离平衡位置的,所以C错误。虽然位移方向总背离平衡位置,但速度具有“双向性”,当质点远离平衡位置运动时,它与位移方向相同;质点向平衡位置运动时,它与位移方向相反,所以D错误。
【答案】A
8.图示为某物体做简谐运动的图象,下列说法中正确的是()。
A.由P→Q位移在增大
B.由P→Q速度在增大
C.由M→N位移是先减小后增大
D.由M→N位移始终减小
【解析】物体经过平衡位置向正方向运动,先后经过P、Q两点,故位移增大,速度减小;物体从正方向最大位移处向负方向运动,先后经过M、N两点,且N点在平衡位置另一侧,故从M→N位移先减小后增大。
【答案】AC

9.如图甲所示,一个弹簧振子在A、B间做简谐运动,O是平衡位置,以某时刻为计时起点(t=0),此时刻振子具有正向的最大合力,则图乙中的四个振动图线,能正确地反映振子的振动情况的是()。


【解析】弹簧的弹力方向和弹簧形变量的方向总是相反,振子具有正向的最大合力,说明此时x为负向最大值,即振子从负向最大位移处开始振动,B正确。
【答案】B
10.弹簧振子的质量m=0.2kg,在水平方向做简谐运动,当它运动到平衡位置左侧x1=2cm的位置时,受到弹簧弹力的大小为F1=4N。当它运动到平衡位置右侧x2=4cm的位置时,它的加速度是多少?方向如何?
【解析】根据胡克定律F=-kx可得,弹簧的劲度系数k==N/cm=2N/cm
当振子运动到平衡位置右侧x2=4cm的位置时,弹簧弹力F2=kx2=2×4N=8N
振子加速度大小a==m/s2=40m/s2,方向向左。
【答案】40m/s2,方向向左
11.如图所示,简谐运动的图象上有a、b、c、d、e、f6个点,其中:
(1)与a点位移相同的点有哪些?
(2)与a点速度相同的点有哪些?
(3)从a点到c点的过程中,质点经过的路程为多少?
【解析】(1)分析图象可得a、b、e、f点的位移均为1cm。c、d点的位移都是-1cm,故与a点位移相同的点为b、e、f三点。
(2)由(1)可知,图象上的a、b、e、f点对应质点运动到同一位置,图象上的c、d点对应质点运动到关于O点对称的另一位置,故以上6个点的速度大小相等。再结合图象可以判断a、b、c、d、e、f6个点的运动方向分别为向上、向下、向下、向上、向上和向下,故与a点有相同速度的点为d和e。
(3)从a点到b点的过程中,对应质点先从正方向1cm处到正方向2cm处,然后又返回到正方向1cm处,通过的路程为2cm。从b点到c点的过程中,对应质点从正方向1cm处经平衡位置运动到负方向1cm处,通过的路程也为2cm,故从a点到c点通过的路程总共为4cm。
【答案】(1)b、e、f(2)d和e(3)4cm
12.如图所示,一根劲度系数为k=200N/m的轻弹簧下端固定在地面上,并竖立在水平面上,O为自然状态。在其上端固定一个质量为m=2kg的小球,然后将小球竖直向上拉起到OA=20cm的位置后由静止释放,小球便在竖直方向上做简谐运动。已知OB=20cm,取向上为正,g=10m/s2,则:
(1)小球离开平衡位置的最大距离为多大?
(2)小球在B位置的位移为多大?
(3)小球在B处所受外力的合力为多大?
(4)若小球运动的最低点为C,则OC间距离为多大?
【解析】(1)小球做简谐运动的平衡位置的形变量x==m=0.1m=10cm
即平衡位置应在O点下方x=10cm处,小球离开平衡位置的最大距离为30cm。
(2)小球的位移应为相对平衡位置的位移,在B处时相对平衡位置的位移为x=-10cm。
(3)小球在B处受到的向下的重力G=20N,小于向上的弹力F=kx1=200×0.2N=40N
所受外力的合力为F合=F-mg=40N-20N=20N,方向竖直向上。
(4)小球做简谐运动,离开平衡位置的最大距离相对平衡位置对称,为30cm,则OC=40cm。
【答案】(1)30cm(2)-10cm(3)20N,方向竖直向上
(4)40cm