88教案网

你的位置: 教案 > 高中教案 > 导航 > 动量

小学语文微课教案

发表时间:2020-11-13

动量。

作为优秀的教学工作者,在教学时能够胸有成竹,教师在教学前就要准备好教案,做好充分的准备。教案可以让学生们能够更好的找到学习的乐趣,帮助教师缓解教学的压力,提高教学质量。优秀有创意的教案要怎样写呢?以下是小编为大家精心整理的“动量”,仅供参考,欢迎大家阅读。

课题碰撞课型
【学习目标】
(1)了解弹性碰撞非弹性碰撞和完全非弹性碰撞,对心碰撞和非对心碰撞.会应用动量、能量的观点综合分析、解决一维碰撞问题;(2)了解散射和中子的发现过程,体会理论对实践的指导作用,进一步了解动量守恒定律的普适性;(3)加深对动量守恒定律和机械能守恒定律的理解,能运用这两个定律解决一些简单的与生产、生活相关的实际问题。
【自主学习】
一、弹性碰撞和非弹性碰撞
1、弹性碰撞过程中机械能______的碰撞。2、非弹性碰撞过程中机械能______的碰撞。3、在光滑水平面上,质量为m1的小球以速度v1与质量为m2的静止小球发生弹性正碰,根据动量守恒和机械能守恒:m1v1=_________,(m1v12)/2=_________.碰后两个小球的速度分别为:v’1=________v’2=________。(1)若m1m2,v’1和v’2都是正值,表示v’1和v’2都与v1方向______。(若m1》m2,v’1=v1,v’2=2v1,表示m1的速度不变,m2以2v1的速度被撞出去)(2)若m1m2,v’1为负值,表示v’1与v1方向______,m1被弹回。(若m1《m2,v’1=-v1,v’2=0,表示m1被反向以原速率弹回,而m2仍静止)(2)若m1=m2,则有v’1=0,v’2=v1,即碰撞后两球速度互换
二、对心碰撞和非对心碰撞
1、对心碰撞前后,物体的运动方向____________,也叫正碰。2、非对心碰撞前后,物体的运动方向____________,也叫斜碰。高中阶段只研究正碰的情况。
三、散射
1、微观粒子碰撞时,微观粒子相互接近时并不发生__________。2、由于粒子与物质微粒发生对心碰撞的概率______所以______粒子碰撞后飞向四面八方。
【典型例题】
半径相等的小球甲和乙,在光滑水平面上沿同一直线相向运动,若甲球的质量大于乙球的质量,碰撞前两球的动能相等,则碰撞后两球的运动状态可能是()
A.甲球的速度为零,而乙球的速度不为零
B.乙球的速度为零,而甲球的速度不为零
C.两球的速度均不为零
D.两球的速度方向均与原方向相反,两球的动能仍相等
【问题思考】
1、比较正碰与完全弹性碰撞的区别。

2、在光滑水平面上的两个小球发生碰撞,应满足哪些条件?

【针对训练】
1、质量相等的A、B两球在光滑水平面上沿同一直线、向同一方向运动,A球的动量为7kgm/s,B球的动量为5kgm/s,当A球追上B球发生碰撞后,A、B两球的动量不可能为()
A.pA=6kgm/spB=6kgm/s?B.pA=3kgm/spB=9kgm/s?
C.pA=-2kgm/spB=14kgm/sD.pA=-4kgm/spB=17kgm/s?
2.一质量为M的平板车以速度v在光滑水平面上滑行,质量为m的烂泥团从离车h高处自由下落,恰好落到车面上,则小车的速度大小是()
A.仍是vB.C.D.
3、如图所示,A、B两物体的质量比mA∶mB=3∶2,它们原来静止在平板车C上,A、B间有一根被压缩了的弹簧,A、B与平板车上表面间动摩擦因数相同,地面光滑.当弹簧突然释放后,则有()?
A.A、B系统动量守恒B.A、B、C系统动量守恒?
C.小车向左运动?D.小车向右运动
4、如图,在光滑水平地面上有三个完全相同的小球排成一条直线。2、3小球静止,并靠拢在一起,1球以速度v0射向它们,设碰撞中不损失机械能,则碰后三个小球的速度可能值是()
A.v1=v2=v3=v0/3B.v1=0,v2=v3=v0/2
C.v1=v0/2,v2=v3=0D.v1=v2=0,v3=v0
5、质量相同的A、B两木块从同一高度自由下落,当A木块落至某一位置时被水平飞来的子弹很快的击中(设子弹未穿出),则A、B两木块在空中的运动时间ta、tb的关系是()
A.ta=tbB.tatbC.tatbD.无法比较
6、在光滑的水平面上依次有质量为M,2M………10M的10个球,排成一条线,彼此间有一定的距离,开始时,后面的九个小球是静止的,第一个小球以初速度v0向着第二个球碰去,结果它们先后全部粘合在一起向前运动,由于连续地碰撞,系统损失的机械能为多少?

7、质量为m1=1000g的鸟在空中水平飞行,离地高h=20m,速度v1=6m/s,突然被一颗质量为m2=20g、沿水平方向以速度v2=300m/s同向飞行的子弹击中,假定子弹留在鸟体内,鸟立即死去,取g=10m/s2,问:
(1)鸟被击中后,经多少时间落地;

(2)鸟落地处离被击中处的水平距离是多少?
www.JAb88.Com

【典型例题】A、C

精选阅读

《动量和动量定理》学案


俗话说,凡事预则立,不预则废。作为教师就要根据教学内容制定合适的教案。教案可以让学生们充分体会到学习的快乐,使教师有一个简单易懂的教学思路。您知道教案应该要怎么下笔吗?下面是小编为大家整理的“《动量和动量定理》学案”,仅供参考,欢迎大家阅读。

《动量和动量定理》学案

【学习目标】
1.了解物理学中动量概念的建立过程。
2.理解动量和动量的变化及其矢量性,会正确计算做一维运动的物体的动量变化。
3.理解冲量概念,理解动量定理及其表达式。
4.能够利用动量定理解释有关现象和解决实际问题。
【学习重点】理解动量定理
【学习难点】1.理解动量定理的矢量性
2.利用动量定理解释实际问题
【知识链接】上节课的探究使我们看到,不论哪一种形式的碰撞,碰撞前后的矢量和保持不变,因此很可能具有特别的物理意义。
【导学流程】
一.动量
讨论:讨论下列问题,并说明理由
1.动量是矢量还是标量?
2.动量是过程量还是状态量?
3.动量与参考系的选择有没有关系?
练习1关于物体的动量,下列说法中正确的是()
A.动量越大的物体,其惯性一定越大
B.动量越大的物体,其速度一定越大
C.物体的加速度不变,其动量一定也不变
D.运动物体在任一时刻的动量方向,一定与该时刻物体的速度方向相同
二、动量的变化量
1.知识回顾:速度变化量是某一运动过程的末速与初速的矢量差
2.类比“速度变化量”的定义给“动量变化量”下一个定义:
3.表达式△p=
4.讨论:△p是矢量还是标量?方向如何?
提示:
20xx年06月05日速度变化的运算(在图中作出△v)
20xx年06月05日20xx年06月05日
20xx年06月05日
20xx年06月05日

类比:动量变化的运算(在图中作出△p)
20xx年06月05日
20xx年06月05日20xx年06月05日
20xx年06月05日

动量的变化量等于末状态动量减去初状态的动量,一维情况下,提前规定正方向,p的方向与△v的方向.
20xx年06月05日
例1、一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬物后被弹回,沿着同一直线以6m/s的速度水平向左运动(如图),碰撞前后钢球的动量各是多少?碰撞前后钢球的动量变化了多少?
三、冲量、动量定理
推导:用动量概念表示牛顿第二定律
20xx年06月05日设一个物体质量为m,在恒力F作用下,在时刻t物体的速度为v,经过一段时间,在时刻t’物体的速度为v’,尝试由F=ma和运动学知识推导出力和动量变化的关系?
最终你得到的表达式为:F=_________。
物理意义:物体所受的力等于物体动量的_________。
1.冲量定义:
讨论:讨论下列问题,并说明理由
1.冲量是矢量还是标量?
2.冲量是过程量还是状态量?
3.冲量与参考系的选择有没有关系?
思考:用力去推一个物体,一段时间后仍没能推动。这个力的冲量为零吗?为什么?
2.动量定理:物体在一个过程始末的____________等于它在这个过程中所受力的______。
公式:_________或___________
讨论:
动量定理中的Ft指的是合外力的冲量还是物体所受某一个力的冲量?
四、动量定理的应用:
练习2:一个质量m=10kg的物体,以v=10m/s的速度做直线运动,受到一个反向作用力F,经过4s,速度变为反向2m/s。这个力多大?
HWOCRTEMP_ROC10练习3.如图所示,固定的光滑斜面倾角为θ.质量为m的物体由静止开始从斜面顶端滑到底端,所用时间为t.在这一过程中正确的是()
A.所受支持力的冲量为OB.合力的冲量大小为mgtcosθ
C.所受重力的冲量大小为mgtD.动量的变化量大小为mgtsinθ
交流讨论:运用动量定理解题的步骤:
五、用动量定理解释现象
1.为什么鸡蛋落在垫子没有碎
2.体操运动员在落地时总要屈腿,这是为什么?
3.轿车前面的发动机舱是不是越坚固越好?

冲量和动量


教学目标
一、知识目标
1.理解动量的概念,知道动量的定义,知道动量是矢量。
2、理解冲量的概念,知道冲量的定义,知道冲量是标量。
3、知道动量的变化也是矢量,会正确计算一维的动量变化
二、能力目标
1、会计算力的冲量和物体的动量。
2、会计算一维情况下动量的变化。
三、德育目标
培养学生的创造思维能力,建立正确的认识论的方法论。
四、教学重点
1、冲量和动量的概念;
2、冲量和动量的正确计算。
五、教学难点
1、对冲量和动量概念的理解;
2、动量变化的计算。
六、教学方法
1、通过举例、推导、归纳,讲解综合教法得到冲量和动量的概念。
2、通过例题的分析,使学生学会求解物体动量的变化。
教学过程
一、导入新课
前面几章我们主要应用牛顿运动定律研究了物体的运动,但对于有些物体的运用直接应用牛顿运动定律就发生了困难。(请同学们观看录像片资料中的碰撞、爆炸、打击、反冲等问题)同学们分析一下这几类问题有什么共同特点?
学生回答后教师小结:同学们回答得很好。这几类问题中物体间作用时间都很短,作用力很大,而且作用力随时间都在不断地变化,并用变化规律很难确定。因些直接应用牛顿运动定律就发生了困难。物理学家在研究这些问题时,引入了动量的概念研究了与动量有关的规律,确立了动量守恒定律。就用有关动量的知识,这些问题就容易解决了。这一节课我们就来学习第一节—冲量和动量。(出示课题)
二、新课教学
(一)冲量
1、用多媒体出示下列问题:
一个静止的质量m=2kg的物体受到F=10N的水平恒力作用,问:
1、经过时间t=4s物体的速度v变为多大?(v=20m/s)
2、如果要使此物体的速度从静止开始在t=1s的时间内速度达到v,则应将作用力变为多大?(F=40N)
学生给出答案后,询问解题方法。
解:物体在力F的作用下得到的加速度为a=;经时间t,据v=at=t。
3、拓展分析
把v=t。整理可得Ft=mv,
由此我们得到:对于一个原来静止的物体(v0=0,m一定),要使它获得一定的速度,你可采用哪些方法?
学生答:a、可以用较大的力作用较短的时间;b、可以用较小的力作用较长的时间。
教师:对于一个原来静止的物体,只要作用力F和作用时间t和乘积Ft相同,这个物体就获得相同的速度。也就是说:对一定质量的物体,力所产生的改变物体速度的效果,是由Ft这个物理量决定的,那么Ft这个物理量叫什么?它有什么特点呢?
4、冲量
(1)冲量的定义:力F和力的作用时间t的乘积Ft叫做力的冲量,通常用符号I表示冲量。
(2)定义式:I=Ft
(3)单位:冲量的国际单位是牛·秒(N·s)
(4)冲量是矢量,它的方向是由力的方向决定的,如果力的方向在作用时间内不变,冲量的方向就跟力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。学习过动量定理后,自然也就会明白了。
5、冲量的计算:冲量是表示物体在力的作用下经历一段时间的累积的物理量,因此,力对物体有冲量作用必须具备力F和该力作用下的时间t两个条件。换句话说:只要有力并有作用一段时间,那么该力对物体就有冲量作用,可见,冲量是个过程量。
6、巩固训练:
以初速度竖直向上抛出一物体,空气阻力不可忽略。关于物体受到的
冲量,以下说法正确的是:()
A、物体上升阶段和下落阶段受到的重力的冲量方向相反;
B、物体上升阶段和下落阶段受到空气阻力冲量的方向相反;
C、物体在下落阶段受到重力的冲量大于上升阶段受到重力的冲量;
D、物体从抛出到返回抛出点,所受各力冲量的总和方向向下。
学生思考后让一位同学作答并说明各选项正误的理由。
小结:冲量和力的作用过程有关,冲量是由力的作用过程确定的过程量。

动量与能量


动量与能量
动量与能量的综合问题,是高中力学最重要的综合问题,也是难度较大的问题。分析这类问题时,应首先建立清晰的物理图象,抽象出物理模型,选择合理的物理规律建立方程进行求解。
一、力学规律的选用原则
1、如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律。
2、研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间问题)或动能定理(涉及位移问题)去解决。
3、若研究的对象为一物体系统,且它们之间有相互作用,一般用两个守恒定律去解决问题,但须注意研究的问题是否满足守恒条件。
4、在涉及相对位移问题时,则优先考虑能量守恒定律,即用系统克服摩擦力所做的总功等于系统机械能的减少量,也即转变为系统内能的量。
5、在涉及有碰撞、爆炸、打击、绳绷紧等物理现象时,须注意到一般这些过程均隐含有系统机械能与其他形式能量之间的转化,这种问题由于作用时间都极短,故动量守恒定律一般能派上大用场。
二、利用动量观点和能量观点解题应注意下列问题
(1)动量定理和动量守恒定律是矢量表达式,还可以写出分量表达式,而动能定理和能量守恒定律是标量式,绝无分量式。
(2)从研究对象上看动量定理既可研究单体,又可研究系统,但高中阶段一般用于单体,动能定理在高中阶段只能用于单体。
(3)动量守恒定律和能量守恒定律,是自然界最普遍的规律,它们研究的是物体系统,解题时必须注意动量守恒的条件和机械能守恒的条件,在应用这两个规律时,应当确定了研究对象及运动状态变化的过程后,根据问题的已知条件和要求解未知量,选择研究的两个状态列方程求解。
(4)中学阶段可用力的观点解决的问题,若用动量观点或能量观点求解,一般都要比用力的观点简便,而中学阶段涉及的曲线运动(加速度不恒定)、竖直面内的圆周运动、碰撞等,就中学只是而言,不可能单纯考虑用力的观点解决,必须考虑用动量观点和能量观点解决。