88教案网

你的位置: 教案 > 高中教案 > 导航 > 函数与方程

高中函数与方程教案

发表时间:2020-02-19

函数与方程。

作为优秀的教学工作者,在教学时能够胸有成竹,作为教师就要在上课前做好适合自己的教案。教案可以让学生能够听懂教师所讲的内容,帮助教师能够井然有序的进行教学。关于好的教案要怎么样去写呢?下面是小编精心收集整理,为您带来的《函数与方程》,欢迎大家阅读,希望对大家有所帮助。

【必修1】第四章函数应用
第一节函数与方程(2)
利用二分法求方程的近似解
学时:1学时
[学习引导]
一、自主学习
1.阅读课本页
2.回答问题:
(1)课本内容分成几个层次?每个层次的中心内容是什么?
(2)层次间有什么联系?
(3)二分法求函数零点的步骤是什么?
3.完成课本页练习及习题4-1.
4.小结
二、方法指导
1.本节课内容的重点:利用二分法求方程的近似值.
2.认真体会数形结合的思想.
3.注意用计算器算近似值的步骤
【思考引导】
一、提问题
1.为什么要研究利用二分法求方程的近似解?
2.如何用框图表述利用二分法求方程实数解的过程?
二、变题目
1.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)0,f(1.5)0,f(1.25)0则方程的根落在区间()
A.(1.25,1.5)B.(1,1.25)
C.(1.5,2)D.不能确定
2.用“二分法”求方程在区间(2,3)内的实根,取区间中点为,那么下一个有根的区间是。
3.借助科学计算器用二分法求方程2x+3x=7的近似解(精确到0.1)

【总结引导】
1.任何方程,只要它所对应的图象是连续曲线,而且有实根,就可用二分法借助于计算器或计算机求出方程根的近似值,二分的次数越多,根就越精确.二分法体现了无限逼近的数学思想
2.利用二分法求方程近似解的步骤是:
①确定区间[],使在[]上连续,且;
②求区间的中点;
③计算;
(1)若则就是方程的解
(2),则方程的解;
(3),则方程的解.
(4)判断是否达到精确度要求,若区间两端点按精确度要求相等,则得到方程的近似解.
【拓展引导】
1.函数的零点所在的大致区间是()
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

2.有12个小球,质量均匀,只有一个球是比别的球重,你用天平称几次可以找出这个球?要求次数越少越好.

3.某同学解决一道方程近似解的问题解答如下:求方程2x3-6x2+3=0的近似实数解(精确到0.01).
解:f(-1)=-50,f(3)=30,
可以取初始区间[-1,3],以后用二分法逐步求解,请问他的解答正确吗?

参考答案
【思考引导】
一、提问题
1.因为二分法求方程实数解的思想是非常简明的,利用计算器能很快解决近似值问题.二分法的基本思想也将在以后的学习中不断帮助我们解决大量的方程求解问题.
2.利用二分法求方程近似解的过程,可以简约地用右图表示.
【变题目】
1、A2、(2,2.5)
3、【解析】:原方程即2x+3x=7,令f(x)=2x+3x-7,用计算器作出函数f(x)=2x+3x-7对应值表:
x01234567
f(x)=2x+3x-7-6-2310214075142
f(1)f(2)0取区间[1,2]
区间中点的值中点函数近似值
(1,2)1.50.33
(1,1.5)1.25-0.87
(1.25,1.5)1.375-0.28
(1.375,1.5)1.43750.02
(1.375,1.4375)
由于|1.375-1.4375|=0.06250.1
此时区间(1.375,1.4375)的两个端点精确到0.1的近似值都是1.4,所以原方程精确到0.1的近似解为1.4。

【拓展引导】
1.(C)在上是增函数,0
时在(0,1)内无零点。
在(1,2)和(3,4)内均无零点。
而,故在(2,3)内至少有一个零点。
2.三次
3.提示:不正确。对于这样的高次方程,首先要确定它的实数解的个数,一般可以利用函数的单调性或函数的图像来确定。
对于此题:
有三个零点

延伸阅读

整合函数与方程教案


第三章单元小结(一)

(一)教学目标
1.知识与技能
整合函数与方程的基本知识和基本方法,进一步提升函数与方程思想.
2.过程与方法
通过学生自我回顾、反思、整理、归纳所学知识,从而构建本节的知识体系
3.情感、态度与价值观
在学习过程中,学会整合知识,提升自我学习的品质,养成合作、交流、创新的良好学习品质.
(二)教学重点与难点
重点:整合单元知识;难点:提升综合运用单元知识的能力.
(三)教学方法
动手练习与合作交流相结合,在整合知识中构建单元知识体系,在综合练习中提升综合运用单元知识的能力.
(四)教学过程
教学环节教学内容师生互动设计意图
回顾反思构建体系1.函数与方程单元知识网络
2.知识梳理
①二次函数的零点与一元二次方程根的关系
对于二次函数f(x)=ax2+bx+c(a≠0),当f(x)=0时,就是一元二次方程ax2+bx+c=0,因此,二次函数f(x)=ax2+bx+c(a≠0)的零点就是一元二次方程ax2+bx+c=0的根;也即二次函数f(x)=ax2+bx+c的图象——抛物线与x轴相交时,交点的横坐标就是一元二次方程ax2+bx+c=0的根.
②函数的零点的理解
(1)函数的零点是一个实数,当自变量取该值时,其函数值等于零.
(2)根据函数零点定义可知,函数f(x)的零点就是f(x)=0的根,因此判断一个函数是否有零点,有几个零点,就是判断方程f(x)=0是否有实根,有几个实根.
③函数零点的判定
判断一个函数是否有零点,首先看函数f(x)在区间[a,b]上的图象是否连续,并且是否存在f(a)f(b)<0,若满足,那么函数y=f(x)在区间(a,b)内必有零点.
④用二分法求方程的近似解要注意以下问题:
(1)要看清题目要求的精确度,它决定着二分法步骤的结束.
(2)初始区间的选定一般在两个整数间,不同的初始区间结果是相同的,但二分的次数却相差较大.
(3)在二分法的第四步,由|a–b|<,便可判断零点近似值为a或b.
⑤用二分法求曲线的近似交点应注意以下几点:
(1)曲线的交点坐标是方程组的解,最终转化为求方程的根;
(2)求曲线y=f(x)和y=g(x)的交点的横坐标,实际上就是求函数y=f(x)–g(x)的零点,即求方程f(x)–g(x)=0的实数解.1.师生合作,绘制单元知识网络图
2.学生回顾口述知识要点,老师总结、归纳,师生共同进行知识疏理.整理知识,培养归纳能力;师生共同回顾、再现知识与方法.
经典例题剖析

例1利用计算器,求方程2x+2x–5=0的近似解.(精确到0.1)

例2确定函数f(x)=+x–4的零点个数.例3(1)试说明方程2x3–6x2+3=0有3个实数解,并求出全部解的和(精确到0.01)
(2)探究方程2x3–6x2+5=0,方程2x3–6x2+8=0全部解的和,你由此可以得到什么结论?

1.学生自主完成例1、例2、例3,求解学生代表板书解答过程,老师点评,总结.
例1【解析】设f(x)=2x+2x–5,由于函数在R上是增函数,所以函数f(x)在R上至多一个零点.
∵f(1)=–1<0,f(2)=3>0,
∴f(1)f(2)<0,
∴函数f(x)=2x+2x–5在(1,2)内有一个零点,则二分法逐次计算,列表如下:
取区间中点值中点函数值
(1,2)1.50.83(正数)
(1,1,5)1.25–0.12(负数)
(1.25,1.5)1.3750.34(正数)
(1.25,1.375)1.31250.11(正数)
(1.25,1.3125)
∵|1.3125–1.25|=0.0625<0.1,
∴函数f(x)的零点近似值为1.3125.
∴方程2x+2x–5=0的近似解是1.3125.
例2【解析】设,则f(x)的零点个数即y1与y2的交点个数,作出两函数图象如图.
由图知,y1与y2在区间(0,1)内有一个交点,
当x=4时,y1=–2,y2=0,
当x=8时,y1=–3,y2=–4,
∴在(4,8)内两曲线又有一个交点,又和y2=x–4均为单调函数.
∴两曲线只有两个交点,
即函数有两个零点.
例3【解析】(1)设函数f(x)=2x3–6x2+3,
∵f(–1)=–5<0,f(0)=3>0,f(1)=–1<0,
f(2)=–5<0,f(3)=3>0,函数y=f(x)的图象是连续的曲线,∴方程2x3–6x2+3=0有3个实数解.
首先以区间[–1,0]为计算的初始区间,用二分法逐步计算,列表如下:
端点或中点的横坐标
a0=–1,b0=0
x0=(–1+0)/2=–0.5
x1=(–1–0.5)/2=–0.75
x2=(–0.75–0.5)/2=–0.625
x3=(–0.75–0.625)/2=–0.6875
x4=(–0.6875–0.625)/2=–0.65625
x5=(–0.65625–0.625)/2=–0.640625
x6=(–0.65625–0.640625)/2
=–0.6484375
x7=–0.64453125

计算端点或中点的函数值定区间
f(–1)=–5,f(0)=3[–1,0]
f(x0)=f(–0.5)=1.25>0[–1,–0.5]
f(x1)=f(–0.75)<0[–0.75,–0.5]
f(x2)=f(–0.625)>0[–0.75,–0.625]
f(x3)=f(–0.6875)<0[–0.6875,–0.625]
f(x4)=f(–0.65625)<0[–0.65625,–0.625]
f(x5)=f(–0.640625)>0[–0.65625,–0.640625]
f(x6)=f(–0.64843725)<0[–0.6484375,–0.640625]
f(x7)<0[–0.64453125,–0.640625]
由上表计算可知,区间[–0.64453125,–0.640625]的左、右两端点精确到0.01所取的近似值都是–0.64,所以–0.64可以作为方程2x3–6x2+3=0在区间[–1,0]上的一个近似解.
同理可求得方程2x3–6x2+3=0在区间[0,1]和[2,3]内且精确到0.01的近似解分别为0.83,2.81.所以方程2x3–6x2+3=0全部解的和为–0.64+0.83+2.81=3.
(2)利用同样方法可求得方程2x3–6x2+5=0和方程2x3–6x2+8=0全部解的和也为3.
由于3只与未知数的系数比相等,即–(–6÷2)=3,所以猜想:
一般地,对于一元三次方程ax3+bx3+cx+d=0有三个根xl,x2,x3,则和为x1+x2+x3=.动手尝试练习提升综合应用知识的能力.
备选例题
例1求函数y=x3–2x2–x+2的零点,并画出它的图象.
【解析】因为x3–2x–x+2=x2(x–2)–(x–2)=(x–2)(x2–1)=(x–2)(x–1)(x+1),
所以已知函数的零点为–1,1,2.
3个零点把x轴分成4个区间:
,[–1,1],[1,2],.
在这4个区间内,取x的一些值(包括零点),列出这个函数的对应值表:
x…–1.5–1–0.500.511.522.5…
y…–4.3801.8821.130–0.6302.63…
在直角坐标系内描点连线,这个函数的图象如图所示.
例2求函数f(x)=x3+x2–2x–2的一个为正实数的零点(误差不超过0.1).
【解析】由于f(1)=–2<0,f(2)=6>0,可以取区间[1,2]作为计算的初始区间.
用二分法逐次计算,列表如下:
端点(中点)坐标计算中点的函数值取区间|an–bn|
[1,2]1
x0=(1+2)/2=1.5f(x0)=0.625>0[1,1.5]0.5
x1=(1+1.5)/2=1.25f(x1)=–0.984<0[1.25,1.5]0.25
x2=(1.25+1.5)/2=1.375f(x2)=–0.260<0[1.375,1.5]0.125
x3=(1.375+1.5)/2=1.438
由上表的计算可知,区间[1.375,1.5]的长度小于0.2,所以这个区间的中点x3=1.438可作为所求函数误差不超过0.1的一个正实数零点的近似值.
函数f(x)=x3+x2–2x–2的图象如图所示.
实际上还可用二分法继续算下去,进而得到这个零点精确度更高的近似值.

函数方程


竞赛讲座15
-函数方程
一、相关知识
函数方程的解是

函数方程的解是

二、函数方程的题型
许多函数方程的解决仅以初等数学为工具,解法富于技巧,对人类的智慧具有明显的挑战
意味,因此,函数方程是数学竞赛中一种常见的题型。
1、确定函数的形式
尚无一般解法,需因题而异,其解是多样的:有无限多解的,有有限个解的,有可能无解(如:方程无解)。
2、确定函数的性质
3、确定函数值
三、求函数的解析式
1、换元法
例题1、设函数满足条件,求。

例题2、设函数定义于实数集,且满足条件,求。

:函数在处没有定义,但对所有非零实数有:,求。
答案:
:求满足条件的。

2、赋值法
例题1、设函数定义于实数集上,且,若对于任意实数、,都有:
,求。

例题2、设函数定义于自然数集上,且,若对于任意自然数、,都有:,求。

四、究函数的性质
例题、设函数定义于上,且函数不恒为零,,若对于任意实数、,恒有:。
①求证:
②求证:
③求证:

:若对常数和任意,等式都成立,求证:函数是周期函数。
:设函数定义于实数集上,函数不恒为零,且对于任意实数、,都有:,求证:。

函数与方程(1)教案苏教版必修1


3.4.1函数与方程(1)
教学目标:
1.理解函数的零点的概念,了解函数的零点与方程根的联系.
2.理解“在函数的零点两侧函数值乘积小于0”这一结论的实质,并运用其解决有关一元二次方程根的分布问题.
3.通过函数零点内容的学习,分析解决对一元二次方程根的分布的有关问题,转变学生对数学学习的态度,加强学生对数形结合、分类讨论等数学思想的进一步认识.

教学重点:
函数零点存在性的判断.
教学难点:
数形结合思想,转化化归思想的培养与应用.

教学方法:
在相对熟悉的问题情境中,通过学生自主探究,在合作交流中完成学习任务.尝试指导与自主学习相结合.

教学过程:
一、问题情境
1.情境:在第3.2.1节中,我们利用对数求出了方程0.84x=0.5的近似解;
2.问题:利用函数的图象能求出方程0.84x=0.5的近似解吗?
二、学生活动
1.如图1,一次函数y=kx+b的图象与x轴交于点(-2,0),试根据图象填空:
(1)k0,b0;
(2)方程kx+b=0的解是;
(3)不等式kx+b<0的解集;
2.如果二次函数y=ax2+bx+c的图象与x轴交于点(-3,0)和(1,0),且开口方向向下,试画出图象,并根据图象填空:
(1)方程ax2+bx+c=0的解是;
(2)不等式ax2+bx+c>0的解集为;
ax2+bx+c<0的解集为.
三、建构数学
1.函数y=f(x)零点的定义;
2.一元二次方程ax2+bx+c=0(a>0)与二次函数y=ax2+bx+c的图象之间关系:
△=b2-4ac△>0△=0△<0
ax2+bx+c=0的根
y=ax2+bx+c的图象
y=ax2+bx+c的零点
3.函数零点存在的条件:函数y=f(x)在区间[a,b]上不间断,且f(a)f(b)<0,则函数y=f(x)在区间(a,b)上有零点.
四、数学运用
例1函数y=f(x)(x[-5,3])的图象如图所示,根据图象,写出函数f(x)的零点及不等式f(x)>0与f(x)<0的解集.

例2求证:二次函数y=2x2+3x-7有两个不同的零点.
例3判断函数f(x)=x2-2x-1在区间(2,3)上是否存在零点?
例4求证:函数f(x)=x3+x2+1在区间(-2,-1)上存在零点.
练习:(1)函数f(x)=2x2-5x+2的零点是_______.
(2)若函数f(x)=x2-2ax+a没有零点,则实数a的取值范围是___________;
(3)二次函数y=2x2+px+15的一个零点是-3,则另一个零点是;
(4)已知函数f(x)=x3-3x+3在R上有且只有一个零点,且该零点在区间[t,t+1]上,则实数t=_____.
五、要点归纳与方法小结
1.函数零点的概念、求法.
2.函数与方程的相互转化,即转化思想;以及数形结合思想.
六、作业
课本P97-习题2,5.

方程的根与函数的零点


作为杰出的教学工作者,能够保证教课的顺利开展,作为高中教师就要在上课前做好适合自己的教案。教案可以保证学生们在上课时能够更好的听课,帮助高中教师掌握上课时的教学节奏。那么,你知道高中教案要怎么写呢?下面是小编帮大家编辑的《方程的根与函数的零点》,大家不妨来参考。希望您能喜欢!

§3.1.1方程的根与函数的零点
学习目标
1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;
2.掌握零点存在的判定定理.
旧知提示(预习教材P86~P88,找出疑惑之处)
复习1:一元二次方程+bx+c=0(a0)的解法.
判别式=.
当0,方程有两根,为;当0,方程有一根,为;当0,方程无实根.
复习2:方程+bx+c=0(a0)的根与二次函数y=ax+bx+c(a0)的图象之间有什么关系?
判别式一元二次方程二次函数图象
合作探究
探究1:①方程的解为,函数的图象与x轴有个交点,坐标为.
②方程的解为,函数的图象与x轴有个交点,坐标为.
③方程的解为,函数的图象与x轴有个交点,坐标为.
根据以上结论,可以得到:
一元二次方程的根就是相应二次函数的图象与x轴交点的.你能将结论进一步推广到吗?
新知:函数零点与方程的根的关系

反思:函数的零点、方程的实数根、函数的图象与x轴交点的横坐标,三者有什么关系?

试试:(1)函数的零点为;(2)函数的零点为.
小结:方程有实数根函数的图象与x轴有交点函数有零点.
探究2:①作出的图象,求的值,观察和的符号
②观察下面函数的图象,
在区间上零点;0;
在区间上零点;0;
在区间上零点;0.
新知:零点存在性定理

讨论:零点个数一定是一个吗?逆定理成立吗?试结合图形来分析.

典型例题
例1求函数的零点的个数.

小结:函数零点的求法.
①代数法:求方程的实数根;
②几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
课堂小结
①零点概念;②零点、与x轴交点、方程的根的关系;③零点存在性定理
知识拓展
图象连续的函数的零点的性质:
(1)函数的图象是连续的,当它通过零点时(非偶次零点),函数值变号.
推论:函数在区间上的图象是连续的,且,那么函数在区间上至少有一个零点.
(2)相邻两个零点之间的函数值保持同号.
学习评价
1.函数的零点个数为().
A.1B.2C.3D.4
2.若函数在上连续,且有.则函数在上().
A.一定没有零点B.至少有一个零点
C.只有一个零点D.零点情况不确定
3.函数的零点所在区间为().
A.B.C.D.
4.函数的零点为,的零点为,的零点为.
5.若函数为定义域是R的奇函数,且在上有一个零点.则的零点个数为.
6.已知二次方程的两个根分别属于(-1,0)和(0,2),求的取值范围.

课外作业
1.下列函数中在区间[1,2]上有零点的是()
A.f(x)=3x2-4x+5B.f(x)=x3-5x-5
C.f(x)=lnx-3x+6D.f(x)=ex+3x-6
2.函数f(x)=lgx-9x的零点所在的大致区间是()
A.(6,7)B.(7,8)C.(8,9)D.(9,10)
3.若函数f(x)=ax+b的零点是2,则函数g(x)=bx2-ax的零点是()
A.0,2B.0,12C.0,-12D.2,-12
4.函数f(x)=x2+2x-3,x≤0,-2+lnx,x0的零点个数为()
A.0B.1C.2D.3
5.二次函数中,,则函数的零点个数是()
A.0B.1C.2D.无法确定
6.有下列四个结论:
①函数f(x)=lg(x+1)+lg(x-1)的定义域是(1,+∞)
②若幂函数y=f(x)的图象经过点(2,4),则该函数为偶函数
③函数y=5|x|的值域是(0,+∞)
④函数f(x)=x+2x在(-1,0)有且只有一个零点.
其中正确结论的个数为()
A.1B.2C.3D.4
7.已知关于x的不等式ax-1x+10的解集是(-∞,-1)∪-12,+∞.则a=________.
8.二次函数有一个零点大于1,一个零点小于1,则实数的取值范围是.
9.已知函数.
(1)为何值时,函数的图象与轴有两个零点;
(2)若函数至少有一个零点在原点右侧,求值.

10.二次函数f(x)=ax2+bx+c的零点是-2和3,当x∈(-2,3)时,f(x)0,且f(-6)=36,求二次函数的解析式.