88教案网

你的位置: 教案 > 高中教案 > 导航 > 1.1.1集合的含义与表示

高中力的合成教案

发表时间:2020-09-22

1.1.1集合的含义与表示。

一名爱岗敬业的教师要充分考虑学生的理解性,高中教师要准备好教案,这是教师工作中的一部分。教案可以让学生们能够更好的找到学习的乐趣,帮助授课经验少的高中教师教学。优秀有创意的高中教案要怎样写呢?为此,小编从网络上为大家精心整理了《1.1.1集合的含义与表示》,仅供参考,欢迎大家阅读。

1.1.1集合的含义与表示

教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法.

教学重难点:1、元素与集合间的关系

2、集合的表示法

教学过程:

一、集合的概念

实例引入:

⑴1~20以内的所有质数;

⑵我国从1991~2003的13年内所发射的所有人造卫星;

⑶金星汽车厂2003年生产的所有汽车;

⑷2004年1月1日之前与我国建立外交关系的所有国家;

⑸所有的正方形;

⑹黄图盛中学2004年9月入学的高一学生全体.

结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.

二、集合元素的特征

(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.

(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写

练习:判断下列各组对象能否构成一个集合

⑴2,3,4⑵(2,3),(3,4)⑶三角形

⑷2,4,6,8,…⑸1,2,(1,2),{1,2}

⑹我国的小河流⑺方程x2+4=0的所有实数解

⑻好心的人⑼著名的数学家⑽方程x2+2x+1=0的解
三、集合相等

构成两个集合的元素一样,就称这两个集合相等

四、集合元素与集合的关系

集合元素与集合的关系用“属于”和“不属于”表示:

(1)如果a是集合A的元素,就说a属于A,记作a∈A

(2)如果a不是集合A的元素,就说a不属于A,记作a∈A

五、常用数集及其记法

非负整数集(或自然数集),记作N;

除0的非负整数集,也称正整数集,记作N*或N+;

整数集,记作Z;

有理数集,记作Q;
实数集,记作R.

练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是()

A直角三角形B锐角三角形C钝角三角形D等腰三角形

(2)说出集合{1,2}与集合{x=1,y=2}的异同点?

六、集合的表示方式

(1)列举法:把集合中的元素一一列举出来,写在大括号内;

(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)

例1、用列举法表示下列集合:

(1)小于10的所有自然数组成的集合;

(2)方程x2=x的所有实数根组成的集合;

(3)由1~20以内的所有质数组成。

例2、试分别用列举法和描述法表示下列集合:

(1)由大于10小于20的的所有整数组成的集合;

(2)方程x2-2=2的所有实数根组成的集合.

注意:(1)描述法表示集合应注意集合的代表元素

(2)只要不引起误解集合的代表元素也可省略

七、小结

集合的概念、表示;集合元素与集合间的关系;常用数集的记法.

八、作业

相关阅读

集合的含义与表示(二)


§1集合的含义与表示(二)

自主学习
1.掌握集合的表示方法,能在具体问题中选择适当的方法表示集合.
2.通过实例和阅读自学体会用列举法和描述法表示集合的方法和特点,培养自主探究意识和自学能力.
1.集合的常用表示法有列举法和描述法.
2.列举法:把集合中的元素一一列举出来写在大括号内的方法.
3.描述法:用确定的条件表示某些对象是否属于这个集合的方法.
4.不含有任何元素的集合叫做空集,记作.
5.集合的分类1有限集;2无限集;3空集.
对点讲练
用列举法表示集合

【例1】用列举法表示下列集合:
(1)已知集合M=x∈N|61+x∈Z,求M;
(2)方程组x+y=2x-y=0的解集;
(3)由|a|a+b|b|(a,b∈R)所确定的实数集合.
点拨解答本题可先弄清集合元素的性质特点,然后再按要求改写.
解(1)∵x∈N,且61+x∈Z,∴1+x=1,2,3,6,
∴x=0,1,2,5,∴M={0,1,2,5}.
(2)由x+y=2x-y=0,得x=1y=1,
故方程组的解集为{(1,1)}.
(3)要分a0且b0,a0且b0,a0且b0,a0且b0四种情况考虑,故用列举法表示为{-2,0,2}.
规律方法(1)列举法表示集合,元素不重复、不计次序、不遗漏,且元素与元素之间用“,”隔开.(2)列举法适合表示有限集,当集合中元素的个数较少时,用列举法表示集合较为方便,而且一目了然.
变式迁移1用列举法表示下列集合:
(1)A={x||x|≤2,x∈Z};
(2)B={x|(x-1)2(x-2)=0};
(3)M={(x,y)|x+y=4,x∈N*,y∈N*};
(4)已知集合C=61+x∈Z|x∈N,求C.
解(1)∵|x|≤2,x∈Z,
∴-2≤x≤2,x∈Z,
∴x=-2,-1,0,1,2.
∴A={-2,-1,0,1,2}.
(2)∵1和2是方程(x-1)2(x-2)=0的根,
∴B={1,2}.
(3)∵x+y=4,x∈N*,y∈N*,
∴x=1,y=3,或x=2,y=2,或x=3,y=1.
∴M={(1,3),(2,2),(3,1)}.
(4)结合例1(1)知,61+x=6,3,2,1,
∴C={6,3,2,1}.

用描述法表示集合

【例2】用描述法表示下列集合:
(1)所有正偶数组成的集合;
(2)方程x2+2=0的解的集合;
(3)不等式4x-65的解集;
(4)函数y=2x+3的图像上的点集.
解(1)文字描述法:{x|x是正偶数}.
符号描述法:{x|x=2n,n∈N*}.
(2){x|x2+2=0,x∈R}.
(3){x|4x-65,x∈R}.
(4){(x,y)|y=2x+3,x∈R,y∈R}.
规律方法用描述法表示集合时,要注意代表元素是什么?同时要注意代表元素所具有的性质.
变式迁移2用描述法表示下列集合:
(1)函数y=ax2+bx+c(a≠0)的图像上所有点的集合;
(2)一次函数y=x+3与y=-2x+6的图像的交点组成的集合;
(3)不等式x-32的解集.
解(1){(x,y)|y=ax2+bx+c,x∈R,a≠0}.
(2)x,y|y=x+3y=-2x+6=x,y|x=1y=4.
(3){x∈R|x-32}.

列举法和描述法的灵活运用

【例3】用适当的方法表示下列集合:
(1)比5大3的数;
(2)方程x2+y2-4x+6y+13=0的解集;
(3)二次函数y=x2-10图像上的所有点组成的集合.
点拨对于(1),比5大3的数就是8,宜用列举法;对于(2),方程为二元二次方程,可将方程左边因式分解后求解,宜用列举法;对于(3),所给二次函数图像上的点有无数个,宜采用描述法.
解(1)比5大3的数显然是8,故可表示为{8}.
(2)方程x2+y2-4x+6y+13=0可化为
(x-2)2+(y+3)2=0,
∴x=2y=-3,∴方程的解集为{(2,-3)}.
(3)“二次函数y=x2-10的图像上的点”用描述法表示为{(x,y)|y=x2-10}.
规律方法用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合.
变式迁移3用适当的方法表示下列集合:
(1)由所有小于10的既是奇数又是素数的自然数组成的集合;
(2)由所有周长等于10cm的三角形组成的集合;
(3)从1,2,3这三个数字中抽出一部分或全部数字(没有重复)所组成的自然数的集合;
(4)二元二次方程组y=xy=x2的解集.
解(1)列举法:{3,5,7}.
(2)描述法:{周长为10cm的三角形}.
(3)列举法:{1,2,3,12,13,21,31,23,32,123,132,213,231,312,321}.
(4)列举法:{(0,0),(1,1)}.
1.在用列举法表示集合时应注意以下四点:
(1)元素间用“,”分隔;
(2)元素不重复;
(3)不考虑元素顺序;
4)对于含有较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,
必须把元素间的规律显示清楚后方能用省略号.
2.使用描述法时应注意以下四点:
(1)写清楚该集合中元素的代号(字母或用字母表示的元素符号);
(2)说明该集合中元素的特征;
(3)不能出现未被说明的字母;
(4)用于描述的语句力求简明、确切.

课时作业

一、选择题
1.集合{1,3,5,7,9}用描述法表示应是()
A.{x|x是不大于9的非负奇数}
B.{x|x≤9,x∈N}
C.{x|1≤x≤9,x∈N}
D.{x|0≤x≤9,x∈Z}
答案A
2.在直角坐标系内,坐标轴上的点的集合可表示为()
A.{(x,y)|x=0,y≠0}
B.{(x,y)|x≠0,y=0}
C.{(x,y)|xy=0}
D.{(x,y)|x=0,y=0}
答案C
3.下列语句:
①0与{0}表示同一个集合;
②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};
③方程(x-1)2(x-2)2=0的所有解的集合可表示为{1,1,2};
④集合{x|4x5}可以用列举法表示.
正确的是()
A.只有①和④B.只有②和③
C.只有②D.以上语句都不对
答案C
4.已知集合A=a65-a∈N+,则A为()
A.{2,3}B.{1,2,3,4}
C.{1,2,3,6}D.{-1,2,3,4}
答案D
解析由65-a∈可知,5-a为6的正因数,所以5-a可以等于1,2,3,6,相应的a分别等于4,3,2,-1,即A={-1,2,3,4}.
5.下列集合中表示同一集合的是()
A.M={(3,2)},N={(2,3)}
B.M={3,2},N={2,3}
C.M={(x,y)|x+y=1},N={y|x+y=1}
D.M={1,2},N={(1,2)}
答案B
二、填空题
6.下列可以作为方程组x+y=3x-y=-1的解集的是__________(填序号).
①{x=1,y=2};②{1,2};
③{(1,2)};④{(x,y)|x=1或y=2};
⑤{(x,y)|x=1且y=2};
⑥{(x,y)|(x-1)2+(y-2)2=0}.
答案(3)(5)(6)
7.已知a∈Z,A={(x,y)|ax-y≤3}且(2,1)∈A,(1,-4)A,则满足条件的a的值为________.
答案0,1,2
解析∵(2,1)∈A且(1,-4)A,
∴2a-1≤3且a+43,
∴-1a≤2,又a∈Z,∴a的取值为0,1,2.
8.已知集合M={x∈N|8-x∈N},则M中的元素最多有________个.
答案9
三、解答题
9.用另一种方法表示下列集合.
(1){绝对值不大于2的整数};
(2){能被3整除,且小于10的正数};
(3){x|x=|x|,x5且x∈Z};
(4){(x,y)|x+y=6,x∈N*,y∈N*};
(5){-3,-1,1,3,5}.
解(1){-2,-1,0,1,2}.
(2){3,6,9}.
(3)∵x=|x|,∴x≥0,又∵x∈Z且x5,
∴x=0或1或2或3或4.
∴集合可以表示为{0,1,2,3,4}.
(4){(1,5),(2,4),(3,3),(4,2),(5,1)}.
(5){x|x=2k-1,-1≤k≤3,k∈Z}.
10.用描述法表示图中阴影部分(含边界)的点的坐标的集合.
解用描述法表示为(即用符号语言表示):
x,y|-1≤x≤32,-12≤y≤1,且xy≥0.
探究驿站
11.对于a,b∈N+,现规定:
a*b=a+ba与b的奇偶性相同a×ba与b的奇偶性不同.
集合M={(a,b)|a*b=36,a,b∈N+}
(1)用列举法表示a,b奇偶性不同时的集合M;
(2)当a与b的奇偶性相同时集合M中共有多少个元素?
解(1)当a,b奇偶性不同时,
a*b=a×b=36,
则满足条件的(a,b)有(1,36),(3,12),(4,9),(9,4),(12,3),(36,1),故集合M可表示为:
M={(1,36),(3,12),(4,9),(9,4),(12,3),(36,1)}.
(2)当a与b的奇偶性相同时a*b=a+b=36,由于两奇数之和为偶数,两偶数之和仍为偶数,故36=1+35=2+34=3+33=…=17+19=18+18=19+17=…=35+1,
所以当a,b奇偶性相同时这样的元素共有35个.

集合的含义与表示教学设计


一名优秀的教师在教学时都会提前最好准备,作为高中教师就要在上课前做好适合自己的教案。教案可以让学生们能够在上课时充分理解所教内容,帮助高中教师能够井然有序的进行教学。你知道如何去写好一份优秀的高中教案呢?考虑到您的需要,小编特地编辑了“集合的含义与表示教学设计”,仅供参考,欢迎大家阅读。

教学设计
1.1.1集合的含义与表示
整体设计
教学分析
集合语言是现代数学的基本语言,同时也是一种抽象的数学语言.教材将集合的初步知识作为初、高中数学课程的衔接,既体现出集合在高中数学课程中举足轻重的作用,又体现出集合在数学中的奠基性地位.
课本除了从学生熟悉的集合(自然数的集合、有理数的集合等)出发,结合实例给出元素、集合的含义、性质、表示方法之外,还特别注意渗透了“概括”与“类比”这两种常用的逻辑思考方法.因此,建议教学时,应引导学生从大量的实例中概括出集合的含义;多创设让学生运用集合语言进行表达和交流的情境和机会,以便学生在实际应用中逐渐熟悉自然语言、集合语言和图形语言各自的特点和表示方法,能进行相互转换并且灵活应用,充分掌握集合语言.与此同时,本小节作为高一数学教学的第一节新授课,知识体系中的新概念、新符号较多,建议教学时先引导学生阅读课本,然后进行交流、讨论,让学生在阅读与交流中理解概念并熟悉新符号的使用.这样,既能够培养学生自我阅读、共同探究的能力,又能提高学生主动学习、合作交流的精神.
三维目标
1.了解集合的含义;理解元素与集合的“属于”关系;熟记常用数集专用符号.
2.深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.
3.能选择不同的形式表示具体问题中的集合.
重点难点
教学重点:集合的基本概念与表示方法.
教学难点:选择适当的方法表示具体问题中的集合.
课时安排
1课时
教学过程
导入新课
思路1.集合对我们来说可谓是“最熟悉的陌生人”.说它熟悉,是因为我们在现实生活中常常用到“集合”这个名词;比如说,军训的时候,教官是不是经常喊:“高一(4)班的同学,集合啦!”那么说它陌生,是因为我们还未从数学的角度理解集合,从数学的层面挖掘集合的内涵.那么,在数学的领域中,集合究竟是什么呢?集合又有着怎样的含义呢?就让我们通过今天这堂课的学习,一起揭开“集合”神秘的面纱.
思路2.你经常会谈论你的家庭,你的班级.其实在讲到你的家庭、班级的时候,你必定在联想构成家庭、班级的成员,例如:家庭成员就是被你称为父亲、母亲、哥哥、姐姐、妹妹、弟弟……的人;班级成员就是与你在同一个教室里一起上课、一起学习的人;一些具有特定属性的人构成的群体,在数学上就是一个集合.那么,在数学中,一些对象的总体怎样才可以构成集合、集合中的元素有哪些特性?集合又有哪些表示方法呢?
这就是本节课我们所要学习的内容.
思路3.“同学们,在小学和初中的学习过程中,我们已经接触过一些集合的例子,比如说:有理数集合,到一个定点的距离等于定长的点的集合(圆),那么大家是否能够举出更多关于集合的例子呢?”(通过两个简单的例子,引导大家进行类比,运用发散性思维思考说出更多的关于集合的实例,然后教师予以点评.)
“那么,集合的含义究竟是什么?它又该如何表示呢?这就是我们今天要研究的课题.”
推进新课
新知探究
提出问题
①中国有许多传统的佳节,那么这些传统的节日是否能构成一个集合?如果能,这个集合由什么组成?
②全体自然数能否构成一个集合?如果能,这个集合由什么组成?
③方程x2-3x+2=0的所有实数根能否构成一个集合?如果能,这个集合由什么组成?
④你能否根据上述几个问题总结出集合的含义?
讨论结果:①能.这个集合由春节、元宵节、端午节等有限个种类的节日组成,称为有限集.
②能.这个集合由0,1,2,3,……等无限个元素组成,称为无限集.
③能.这个集合由1,2两个数组成.
④我们把研究对象统称为“元素”,把一些元素组成的总体叫做“集合”.
提出问题
通过以上的学习我们已经知道集合是由一些元素组成的总体,那么是否所有的元素都能构成集合呢?请看下面几个问题.
①近视超过300度的同学能否构成一个集合?
②“眼神很差”的同学能否构成一个集合?
③比较问题①②,说明集合中的元素具有什么性质?
④我们知道冬虫夏草既是一种植物,又是一种动物.那么在所有动植物构成的集合中,冬虫夏草出现的次数是一次呢还是两次?
⑤组成英文单词every的字母构成的集合含有几个元素?分别是什么?
⑥问题④⑤说明集合中的元素具有什么性质?
⑦在玩斗地主的时候,我们都知道3,4,5,6,7是一个顺子,那比如说老师出牌的时候把这五张牌的顺序摆成了5,3,6,7,4,那么这还是一个顺子么?类比集合中的元素,一个集合中的元素是3,4,5,6,7,另外一个集合中的元素是5,3,6,7,4,这两个集合中的元素相同么?集合相同吗?这体现了集合中的元素的什么性质?
讨论结果:①能.
②不能.
③确定性.问题②对“眼神很差”的同学没有一个确定的标准,到底怎样才算眼神差,是近视300度?400度?还是说“眼神很差”只是寓意?我们不得而知.因此通过问题①②我们了解到,对于给定的集合,它的元素必须是确定的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合中元素的确定性.
④一次.
⑤4个元素.e,v,r,y这四个字母.
⑥互异性.一个集合中的元素是互不相同的,也就是说,集合中的元素不能重复出现.
⑦是.元素相同.集合相同.体现集合中元素的无序性,即集合中的元素的排列是没有顺序的.只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.
提出问题
①如果用A表示所有的自然数构成的集合,B表示所有的有理数构成的集合,a=1.58,那么元素a和集合A,B分别有着怎样的关系?
②大家能否从问题①中总结出元素与集合的关系?
③A表示“1~20内的所有质数”组成的集合,那么3__________A,4__________A.
讨论结果:①a是集合B中的元素,a不是集合A中的元素.
②a是集合B中的元素,就说a属于集合B,记作a∈B;a不是集合A中的元素,就说a不属于集合A,记作aA.因此元素与集合的关系有两种,即属于和不属于.
③3∈A,4A.
提出问题
①从这堂课的开始到现在,你们注意到我用了几种方法表示集合吗?
②字母表示法中有哪些专用符号?
③除了自然语言法和字母表示法之外,课本还为我们提供了几种集合的表示方法?分别是什么?
④列举法的含义是什么?你能否运用列举法表示一些集合?请举例!
⑤能用列举法把下列集合表示出来吗?
小于10的质数;
不等式x-2>5的解集.
⑥描述法的含义是什么?你能否运用描述法表示一些集合?请举例!
⑦集合的表示方法共有几种?
讨论结果:①两种,自然语言法和字母表示法.
②非负整数集(或自然数集),记作N;
除0的非负整数集,也称正整数集,记作N*或N+;
整数集,记作Z;有理数集,记作Q;实数集,记作R.
③两种,列举法与描述法.
④把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.例如“地球上的四大洋”组成的集合可以用列举法表示为{太平洋,大西洋,印度洋,北冰洋},方程x2-3x+2=0的所有实数根组成的集合可以用列举法表示为{1,2}.
⑤“小于10的质数”可以用列举法表示出来;“不等式x-2>5的解集”不能够用列举法表示出来,因为这个集合是一个无限集.因此,当集合是无限集或者其元素数量较多而不便于无一遗漏地列举出来的时候,如果我们再用列举法来表示集合就显得不够简洁明了.
⑥用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例如,不等式x-2>5的解集可以表示为{x∈R|x>7};所有的正方形的集合可以表示为{x|x是正方形},也可写成{正方形}.
⑦自然语言法、字母表示法、列举法、描述法.
应用示例
例1下列所给对象不能构成集合的是__________.
(1)高一数学课本中所有的难题;
(2)某一班级16岁以下的学生;
(3)某中学的大个子;
(4)某学校身高超过1.80米的学生.
活动探究:教师首先引导学生通过读题、审题,了解本题考查的基本知识点——集合中元素的确定性;然后指导学生对4个选项进行逐一判断;判断所给元素是否能构成集合,关键是看是否满足集合元素的确定性.
解析:(1)不能构成集合.“难题”的概念是模糊的,不确定的,无明确的标准,对于一道数学题是否是“难题”无法客观地判断.实际上一道数学题是“难者不会,会者不难”,因而“高一数学课本中所有的难题”不能构成集合.
(2)能构成集合,其中的元素是某班级16岁以下的学生.
(3)因为未规定大个子的标准,所以(3)不能组成集合.
(4)由于(4)中的对象具备确定性,因此,能构成集合.
答案:(1)(3)
变式训练
1.下列几组对象可以构成集合的是()
A.充分接近π的实数的全体
B.善良的人
C.某校高一所有聪明的同学
D.某单位所有身高在1.7m以上的人
答案:D
2.已知集合S的三个元素a,b,c是△ABC的三边长,那么△ABC一定不是()
A.锐角三角形B.直角三角形
C.钝角三角形D.等腰三角形
答案:D
3.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是()
A.1B.-2C.6D.2
答案:C
点评:本题主要考查集合元素的性质.当所描述的对象明确的时候就能构成集合,若元素不明确就不能构成集合,称为元素的确定性;同时,一个集合中的元素是互不相同的,称为元素的互异性;此外还要注意元素的无序性.
例2用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1~20以内的所有质数组成的集合.
活动探究:讲解例2的过程中,可以设计如下问题引导学生:
针对例2(1):①自然数中是否含有0?②小于10的自然数有哪些?③如何用列举法表示小于10的所有自然数组成的集合?
针对例2(2):①解一元二次方程的方法有哪些?分别是什么?②方程x2=x的解是什么?③如何用列举法表示方程x2=x的所有实数根组成的集合?
针对例2(3):①如何判断一个数是否为质数(即质数的定义是什么)?②1~20以内的质数有哪些?③如何用列举法表示由1~20以内的所有质数组成的集合?
在用列举法表示集合的过程中,应让学生先明确集合中的元素,再把元素写入“{}”内,并用逗号隔开.
解:(1)小于10的自然数有0,1,2,3,4,5,6,7,8,9,设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9};
(2)方程x2=x的两个实根为x1=0,x2=1,设方程x2=x的所有实数根组成的集合为B,那么B={0,1};
(3)1~20以内的质数有2,3,5,7,11,13,17,19,设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.
点评:本题主要考查了集合表示法中的列举法,通过本题的教学可以体会利用集合表示教学内容的严谨性和简洁性.
变式训练
1.用列举法表示下列集合:
(1)一年之中的四个季节组成的集合;
(2)满足不等式1<1+2x<19的素数组成的集合.
答案:(1){春季,夏季,秋季,冬季};
(2){2,3,5,7}.
2.已知集合A=x∈N86-x∈N,试用列举法表示集合A.
解:由题意可知6-x是8的正约数,当6-x=1时,x=5;当6-x=2时,x=4;当6-x=4时,x=2;当6-x=8时,x=-2;而x≥0,∴x=2,4,5,即A={2,4,5}.
点评:变式训练1主要对列举法进行了考查;变式训练2考查了两个方面的知识点,一是元素与集合的关系,二是列举法的应用,体现了对知识综合应用的能力.
例3试分别用列举法和描述法表示下列集合:
(1)方程x2-2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合.
活动探究:讲解例3的过程中,可以设计如下问题引导学生:
针对例3(1)——列举法
①方程x2-2=0的解是什么?
②如何用列举法表示方程x2-2=0的所有实数根组成的集合?
针对例3(1)——描述法
①描述法的定义是什么?
②所求集合中元素有几个共同特征?分别是什么?
③如何用描述法表示所求集合?
针对例3(2)——列举法
①大于10小于20的所有整数有哪些?
②由大于10小于20的所有整数组成的集合用列举法如何表示?
针对例3(2)——描述法
①所求集合中元素有几个共同特征?分别是什么?
②如何用描述法表示所求集合?
解:(1)设方程x2-2=0的实数根为x,并且满足x2-2=0,因此,用描述法表示为A={x∈R|x2-2=0};方程x2-2=0的两个实根为x1=-2,x2=2,因此,用列举法表示为A={-2,2}.
(2)设大于10小于20的整数为x,它满足条件x∈Z且10<x<20,因此,用描述法表示为B={x∈Z|10<x<20};大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为{11,12,13,14,15,16,17,18,19}.
点评:例2和例3是通过“问题引导”的方式,使学生逐步逼近答案的过程.在此过程中,既帮助学生理清了解答问题的基本思路,又使得列举法和描述法在实例中得到进一步的巩固.
变式训练
用适当的方法表示下列集合:
(1)Welcome中的所有字母组成的集合;
(2)由所有小于20的既是奇数又是质数的正整数组成的集合;
(3)由所有非负偶数组成的集合;
(4)直角坐标系内第三象限的点组成的集合;
(5)不等式2x-3>2的解集.
解:(1)列举法:{W,e,l,c,o,m};
(2)列举法:{3,5,7,11,13,17,19};
(3)描述法:{x|x=2n,n∈N};
(4)描述法:{(x,y)|x<0,且y<0};
(5)描述法:{x|x>2.5}.
知能训练
课后练习1,2.
【补充练习】
1.考查下列对象能否构成集合:
(1)著名的数学家;
(2)某校2013年在校的所有高个子同学;
(3)不超过20的非负数;
(4)方程x2-9=0在实数范围内的解;
(5)直角坐标平面内第一象限的一些点;
(6)3的近似值的全体.
答案:(1)(2)(5)(6)不能组成集合,(3)(4)能组成集合.
2.用适当的符号填空:
(1)0__________N,5__________N,16__________N;
(2)-12__________Q,π__________Q,e__________RQ(e是个无理数);
(3)2-3+2+3=__________{x|x=a+6b,a∈Q,b∈Q}.
答案:(1)∈∈(2)∈∈(3)∈
3.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,求实数m的值.
解:∵2∈A,
∴m=2或m2-3m+2=2.
若m=2,则m2-3m+2=0,不符合集合中元素的互异性,舍去.
若m2-3m+2=2,求得m=0或3.
m=0不合题意,舍去.
∴m只能取3.
4.用适当方法表示下列集合:
(1)函数y=ax2+bx+c(a≠0)的图象上所有点的集合;
(2)一次函数y=x+3与y=-2x+6的图象的交点组成的集合;
(3)不等式x-3>2的解集;
(4)自然数中不大于10的质数集.
答案:(1)描述法:{(x,y)|y=ax2+bx+c,x∈R,a≠0}.
(2)描述法:(x,y)y=x+3y=-2x+6=(x,y)x=1y=4.
列举法:{(1,4)}.
(3)描述法:{x|x>5}
(4)列举法:{2,3,5,7}.
拓展提升
问题1:设集合P={x-y,x+y,xy},Q={x2+y2,x2-y2,0},若P=Q,求x,y的值及集合P,Q.
活动探究:首先,应让学生思考两个数集相等的条件——集合中的元素分别对应相等;然后,再引导学生讨论:本题中集合P,Q对应相等时,其元素可能出现的几种情况,并根据讨论的结果进行计算;最后,应当指导学生自主探究,应用集合中元素的性质检验所求结果是否符合要求.
解:∵P=Q且0∈Q,
∴0∈P.
若x+y=0或x-y=0,则x2-y2=0,从而Q={x2+y2,0,0},与集合中元素的互异性矛盾,∴x+y≠0且x-y≠0;
若xy=0,则x=0或y=0.
当y=0时,P={x,x,0},与集合中元素的互异性矛盾,
∴y≠0;
当x=0时,P={-y,y,0},Q={y2,-y2,0},
由P=Q得-y=y2,y=-y2,y≠0,①或-y=-y2,y=y2,y≠0.②
由①得y=-1,由②得y=1,
∴x=0,y=-1或x=0,y=1,
此时P=Q={1,-1,0}.
点评:本题综合性地考查了两数集相等的条件、集合中元素的性质以及学生的运算能力和分类讨论能力.
问题2:已知集合A={x|ax2-3x+2=0},若A中的元素至多只有一个,求a的取值范围.
活动探究:讨论关于x的方程ax2-3x+2=0实数根的情况,从中确定a的取值范围,依题意,方程有一个实数根或两个相等的实数根或无实数根.
解:(1)a=0时,原方程为-3x+2=0,x=23,符合题意.
(2)a≠0时,方程ax2-3x+2=0为一元二次方程.
由Δ=9-8a≤0,得a≥98.
∴当a≥98时,方程ax2-3x+2=0无实数根或有两个相等的实数根.
综合(1)(2),知a=0或a≥98.
点评:“a=0”这种情况最容易被忽视,只有在“a≠0”的条件下,方程ax2-3x+2=0才是一元二次方程,才能用判别式Δ解决问题.
问题3:设S={x|x=m+2n,m,n∈Z}.
(1)若a∈Z,则a是否是集合S中的元素?
(2)对S中的任意两个x1,x2,则x1+x2,x1x2是否属于S?
活动探究:针对问题(1)——首先引导学生仔细观察集合S中元素的共同特征与构成方式;然后,再引导学生思考题中所给的元素a能否表示成m+2n的形式;如果能,m和n分别是多少,如果不能,请说明理由;最后小结,判断一个元素是否属于集合时,转化为判断这个元素是否满足集合元素的特征即可.
针对问题(2)——首先引导学生将x1,x2分别表示出来,再引导大家根据正确的表示结果,推断x1+x2,x1x2是否是集合S中的元素.
解:(1)a是集合S中的元素,a=a+2×0∈S.
(2)不妨设x1=m+2n,x2=p+2q,m,n,p,q∈Z.
则x1+x2=(m+2n)+(p+2q)=(m+p)+2(n+q),m,n,p,q∈Z.
∴x1+x2∈S;x1x2=(m+2n)(p+2q)=(mp+2nq)+2(mq+np),m,n,p,q∈Z.
∴x1x2∈S.综上,x1+x2,x1x2都属于S.
点评:本题考查集合的描述法以及元素与集合间的关系.
课堂小结
本节学习了:(1)集合的含义;(2)集合中元素的性质;(3)元素与集合的关系;(4)集合的表示方法.
课后作业
习题1.1A组3,4.
设计感想
本节教学设计是以数学课程标准的要求为指导,结合生活中的一些实例,重视引导学生积极思考,主动参与到教学中,体现了学生的主体地位.同时结合高考的要求适当拓展了教材,使学生的发散性思维得到拓展,最大限度地挖掘了学生的学习潜力,真正做到了对教材的“活学活用”.
备课资料
集合论的诞生
集合论是德国著名数学家康托尔于19世纪末创立的.17世纪,数学中出现了一门新的分支:微积分.在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果.其推进速度之快使人来不及检查和巩固它的理论基础.19世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动.正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端.到1874年康托尔开始一般地提出“集合”的概念.他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.
康托尔把无穷集这一词汇引入数学.对无穷集的研究使他打开了“无限”这一数学上的潘多拉盒子.“我们把全体自然数组成的集合简称作自然数集,用字母N来表示.”学过集合的所有人应该对这句话不会感到陌生.但在接受这句话时我们根本无法想到当年康托尔如此做时是在进行一项更新无穷观念的工作.在此以前数学家们只是把无限看作永远在延伸着的,一种变化着成长着的东西来解释.无限永远处在构造中,永远完成不了,是潜在的,而不是实在的.这种关于无穷的观念在数学上被称为潜无限.18世纪数学王子高斯就持这种观点.由于潜无限思想在微积分的基础重建中已经获得了全面胜利,康托尔的实无限思想在当时遭到一些数学家的批评与攻击是不足为怪的.然而康托尔并未就此止步,他以前所未有的方式,继续正面探讨无穷.他提出用一一对应准则来比较无穷集元素的个数.他把元素间能建立一一对应的集合称为个数相同,用他自己的概念是等势.由于一个无穷集可以与它的真子集建立一一对应关系——也就是说无穷集可以与它的真子集等势,即具有相同的个数.这与传统观念“全体大于部分”相矛盾.而康托尔认为这恰恰是无穷集的特征.在此意义上,自然数集与正偶数集具有了相同的个数,他将其称为可数集.又可容易地证明有理数集与自然数集等势,因而有理数集也是可数集.后来当他又证明了实数集合也是可数集时,一个很自然的想法是无穷集是清一色的,都是可数集.但出乎意料的是,他在1873年证明了实数集的势大于自然数集.有人嘲笑集合论是一种“疾病”,有人嘲讽超限数是“雾中之雾”,称“康托尔走进了超限数的地狱”.
然而集合论前后经历二十余年,最终获得了世界公认.在1900年第二次国际数学家大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了.从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等.而这一切都是与康托尔的开拓性工作分不开的.因而当现在回头去看康托尔的贡献时,我们仍然可以引用当时著名数学家对他的集合论的评价作为我们的总结.“它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一.康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献.”

集合的含义与表示导学案


一位优秀的教师不打无准备之仗,会提前做好准备,准备好一份优秀的教案往往是必不可少的。教案可以让学生更好的消化课堂内容,帮助教师营造一个良好的教学氛围。教案的内容要写些什么更好呢?小编收集并整理了“集合的含义与表示导学案”,仅供参考,大家一起来看看吧。

1.1.1集合的含义及其表示方法(1)

一、课前预习新知
(一)、预习目标:
初步理解集合的含义,了解属于关系的意义,知道常用数集及其记法
(二)、预习内容:
阅读教材填空:
1、集合:一般地,把一些能够对象看成一个整体,就说这个整体是由这些对象的全体构成的(或)。构成集合的每个对象叫做这个集合的
(或)。
2、集合与元素的表示:集合通常用来表示,它们的元素通常用来表示。
3、元素与集合的关系:
如果a是集合A的元素,就说,记作,读作。
如果a不是集合A的元素,就说,记作,读作。
4.常用的数集及其记号:
(1)自然数集:,记作。
(2)正整数集:,记作。
(3)整数集:,记作。
(4)有理数集:,记作。
(5)实数集:,记作。

二、课内探究新知
(一)、学习目标
1.通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.
2.了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.
学习重点:集合的基本概念与表示方法.
学习难点:选择恰当的方法表示一些简单的集合.
(二)、学习过程
1、核对预习学案中的答案
2、思考下列问题
①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”
②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?
③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.
④如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?
⑤世界上最高的山能不能构成一个集合?
⑥世界上的高山能不能构成一个集合?
⑦问题⑥说明集合中的元素具有什么性质?
⑧由实数1、2、3、1组成的集合有几个元素?
⑨问题⑧说明集合中的元素具有什么性质?
⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?
3、集合元素的三要素是、、。
4、例题
例题1.下列各组对象不能组成集合的是()
A.大于6的所有整数B.高中数学的所有难题
C.被3除余2的所有整数D.函数y=图象上所有的点
变式训练1
1.下列条件能形成集合的是()
A.充分小的负数全体B.爱好足球的人
C.中国的富翁D.某公司的全体员工
例题2.下列结论中,不正确的是()
A.若a∈N,则-aNB.若a∈Z,则a2∈Z
C.若a∈Q,则|a|∈QD.若a∈R,则
变式训练2判断下面说法是否正确、正确的在()内填“√”,错误的填“×”
(1)所有在N中的元素都在N*中()
(2)所有在N中的元素都在Z中()
(3)所有不在N*中的数都不在Z中()
(4)所有不在Q中的实数都在R中()
(5)由既在R中又在N*中的数组成的集合中一定包含数0()
(6)不在N中的数不能使方程4x=8成立()
5、课堂小结
三、当堂检测
1、你能否确定,你所在班级中,高个子同学构成的集合?并说明理由。
你能否确定,你所在班级中,最高的3位同学构成的集合?
2、
(1)-3N;(2)3.14Q;(3)Q;(4)0Φ;
(5)Q;(6)R;(7)1N+;(8)R。

课后练习巩固新知

1.下列对象能否组成集合:
(1)数组1、3、5、7;
(2)到两定点距离的和等于两定点间距离的点;
(3)满足3x-2x+3的全体实数;
(4)所有直角三角形;
(5)美国NBA的著名篮球明星;
(6)所有绝对值等于6的数;
(7)所有绝对值小于3的整数;
(8)中国男子足球队中技术很差的队员;
(9)参加2008年奥运会的中国代表团成员.
2.(口答)说出下面集合中的元素:
(1){大于3小于11的偶数};
(2){平方等于1的数};
(3){15的正约数}.
3.用符号∈或填空:
(1)1______N,0______N,-3______N,0.5______N,______N;
(2)1______Z,0______Z,-3______Z,0.5______Z,______Z;
(3)1______Q,0______Q,-3______Q,0.5______Q,______Q;
(4)1______R,0______R,-3______R,0.5______R,______R.
4.判断正误:
(1)所有属于N的元素都属于N*.()
(2)所有属于N的元素都属于Z.()
(3)所有不属于N*的数都不属于Z.()
(4)所有不属于Q的实数都属于R.()
(5)不属于N的数不能使方程4x=8成立.()

1.1.1集合的含义及其表示方法(2)

课前预习学案
一、预习目标:
1、会用列举法表示简单的结合。2、明确描述法表示集合的
二、预习内容:
阅读教材表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1~20以内的所有质数组成的集合

课内探究学案
一、【学习目标】
1、集合和元素的表示法;
2、掌握一些常用的数集及其记法
3、掌握集合两种表示法:列举法、描述法。
学习重难点:集合的两种表示法:列举法和描述法。
二、学习过程
1、核对预习学案中的答案
2、列举法的基本格式是
描述法的基本格式是
3、例题
例题1、..用列举法表示下列集合:
(1)、小于5的正奇数组成的集合;
(2)、能被3整除且大于4小于15的自然数组成的集合;
(3)、方程x2-9=0的解组成的集合;
(4)、{15以内的质数};
(5)、{x|∈Z,x∈Z}.

变式训练1
用列举法表示下列集合:
(1)x2-4的一次因式组成的集合;
(2){y|y=-x2-2x+3,x∈R,y∈N};
(3)方程x2+6x+9=0的解集;
(4){20以内的质数};
(5){(x,y)|x2+y2=1,x∈Z,y∈Z};
(6){大于0小于3的整数};
(7){x∈R|x2+5x-14=0};
(8){(x,y)|x∈N且1≤x4,y-2x=0};
(9){(x,y)|x+y=6,x∈N,y∈N}.
例题2.用描述法分别表示下列集合:
(1)二次函数y=x2图象上的点组成的集合;
(2)数轴上离原点的距离大于6的点组成的集合;
(3)不等式x-73的解集.
变式训练2用描述法表示下列集合:
(1)方程2x+y=5的解集;
(2)小于10的所有非负整数的集合;
(3)方程ax+by=0(ab≠0)的解;
(4)数轴上离开原点的距离大于3的点的集合;
(5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;
(6)方程组的解的集合;
(7){1,3,5,7,…};
(8)x轴上所有点的集合;
(9)非负偶数;
(10)能被3整除的整数.
三、当堂检测
课本P5练习1、2.

课后练习与提高

1.下列集合表示法正确的是()
A.{1,2,2,3}
B.{全体实数}
C.{有理数}
D.不等式x2-5>0的解集为{x2-5>0}
2.用列举法表示下列集合
①是的约数_______;
②________________________;
③________;
④数字和为的两位数________;
⑤___________________________;

3.用列举法和描述法分别表示方程x2-5x+6=0的解集
4.集合{x∈N|-1<x<4}用列举法表示为.

集合的含义及其表示


1.1集合的含义及其表示第2课时
【学习目标】
1.理解并掌握集合三种表示方法;熟练地进行集合表示方法之间的转换;
2.初步理解集合相等的概念,并会初步运用;
3.培养学生的逻辑思维能力和运算能力.
【课前导学】
一、复习回顾:
1、集合的概念描述:
1)一般地,一定范围内某些确定的、不同的对象的全体构成一个集合。
2)集合的元素具有__确定____性、_互异__性和__无序__性.
3)如果a是集合A的元素,记作________.
4)集合的分类:有限集,无限集和空集.
2、常用数集的符号:
自然数集__N____;正整数集__N*____;整数集__Z____;有理数集__Q____;实数集__R___.
二、思考题:
集合A中的元素由x=a+b(a∈Z,b∈Z)组成,判断下列元素与集合A的关系?
(1)0(2)(3)
分析:先把x写成a+b的形式,再观察a,b是否为整数.
【解】(1)因为,所以;
(2)因为,所以;
(3)因为,所以.
点评:要判断某个元素是否是某个集合的元素,就是看这个元素是否满足该集合的特性或具体表达形式.

三、问题情境
观察下列对象能否构成集合
(1)满足x-3>2的全体实数;
(2)本班的全体男生;
(3)我国的四大发明;
(4)2008年北京奥运会中的球类项目;
(5)不等式2x+39的自然数解;
(6)所有的直角三角形;
如果能够,那么这些集合又如何来表示?

【课堂活动】
一、建构数学:
1、列举法:将集合的元素一一列举出来,并置于花括号“{}”内.用这种方法表示集合,元素要用逗号隔开,但与元素的次序无关.
思考:用列举法表示下列对象构成集合:
(1)满足x-3>2的全体实数;
(2)本班的全体男生;
(3)我国的四大发明;
(4)2008年北京奥运会中的球类项目;
(5)不等式2x+39的自然数解;
(6)所有的直角三角形.
【提醒】
(1)如果两个集合所含元素完全相同(即A中的元素都是B中的元素,B中的元素也都是A中的元素),则称这两个集合相等.
(2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素.
(3)集合{(1,2),(3,4)}与集合{1,2,3,4}不同.

2、描述法:
将集合的所有元素都具有的性质(满足的条件)表示出来,写成{x|p(x)}的形式.
如:{x|x为中国直辖市},{x|x为young中的字母}.
所有直角三角形的集合可以表示为:{x|x是直角三角形}等.

3、Venn图法:
用封闭的曲线内部表示集合(形象直观).如:集合{x|x为young中的字母}.

【思考】何时用列举法?何时用描述法?
(1)有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法.
如:集合{3,7,8}.
(2)有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法.
如:集合{(x,y)|y=x+1};集合{x|x为1000以内的质数}.
4、集合相等:
如果两个集合A,B所含的元素完全相同,则称这两个集合相等,记为:____A=B____.
二、应用数学:
例1用列举法表示下列集合:
①{x∈N|x是15的约数};
②{x|x=,n∈N};
③{(x,y)|x+y=6,x∈N,y∈N};
解:①;②;③.

例2用描述法表示下列集合:
①{1,4,7,10,13};
②奇数的集合.
解:①;
②.
例3用适当的方法表示下列集合:
1)方程x2-2x-3=0的解集;
2)不等式2x-35的解集;
3)方程组的解集.
解:(1);
(2);
(3).
【解后反思】常见题型,常考题型,可以有多种不同的表示方法!
例4已知,求集合M.
解:.
【变式】已知,求集合M.
解:M=.
【解后反思】审题时注意两者代表元素的区别.
例5若
【思路分析】第一个集合中有元素0,分析知,b=0,从而集合可以化简为.
解:第一个集合中有元素0,故必有b=0,从而集合可以化简为,
因此a=1
有集合中元素的互异性知,a=-1,a=1不合,舍去.
故a=-1.
【解后反思】特殊元素优先原则.
例6已知A={x|a+2x+1=0},
(1)若A中有且只有一个元素,求a的取值集合;
(2)若A中至多有一个元素,求a的取值范围.
解:(1)由题意知,A中有且只有一个元素,
当a=0时,对应方程为一次方程,此时A=,符合题意;
当a0时,对应方程a+2x+1=0有两个相等实根,即a=1时也符合题意.
综上所述,a的取值集合为;
(2)由(1)知,a=0或1时,A中有且只有一个元素,符合题意;
当对应方程a+2X+1=0无实根时,即a1时,A=,符合题意;
综上所述,a=0或a1.
【解后反思】
1、注意分类讨论;
2、一元二次方程有两个相等实数根,对应的方程的解集只有一个元素.
三、理解数学:
1、用列举法表示下列集合:
(1)中国国旗的颜色的集合;
(2)单词mathematics中的字母的集合;
(3)自然数中不大于10的质数的集合;
(4)同时满足的整数解的集合.
解:(1){红,黄};
(2){m,a,t,h,e,i,c,s};
(3){2,3,5,7};
(4){-1,0,1,2}.
2、用描述法表示下列集合:
(1)所有被3整除的整数的集合;
(2)使有意义的x的集合;
(3)方程x2+x+1=0所有实数解的集合;
(4)抛物线y=-x2+3x-6上所有点的集合;
(5)图中阴影部分内点的集合.
【解】(1){x|x=3k,k∈Z};
(2){x|x≤2且x≠0};
(3);
(4){(x,y)|y=-x2+3x-6};
(5){(x,y)|或.
3、已知A=,试用列举法表示集合A.
【答案】A={-3,0,1,2}.
【课后提升】
1.下列集合表示法错误的是(1)(2)(4)(6).
(1){1,2,2,3};(2){全体实数};(3){有理数};
(4)不等式x2-5>0的解集为{x2-5>0};(5){Ф};
(6)方程组的解的集合为{2,4}.
2.用列举法表示下列集合:
①{x|x为不大于10的正偶数}=__{2,4,6,8,10}_____;
②=__{(1,1),(1,2),(2,1),(2,2)}___;
③集合{x∈N|-1<x<4}用列举法表示为{0,1,2,3};
④数字和为的两位数=_{14,23,32,41,50}__;
⑤=__{(0,8),(2,5),(4,2)}__;
3.已知集合P={-1,a,b},Q={-1,a2,b2},且Q=P,求1+a2+b2的值.
解:分两种情况讨论:
①1+a2+b2=2;
②这与集合的性质矛盾,
∴1+a2+b2=2.