88教案网

你的位置: 教案 > 高中教案 > 导航 > 2.2.1.1对数的概念

大班对小学的教案

发表时间:2020-09-22

2.2.1.1对数的概念。

2.2.1.1对数的概念
一、内容及其解析
(一)内容:1、理解对数的概念;
2、能够熟练进行对数式与指数式的互化;
3、会根据对数的概念求一些特殊对数式的值;
(二)解析:1、由指数式引出对数式的概念,区分指数式与对数式子中各自的名称及读法;
2、能熟练对数式与指数式之间的互化,
3、会根据对数的概念求一些特殊对数式的值。
二、目标及其解析
(一)教学目标:
1.理解对数的概念,能够进行对数式与指数式的互化;
2.渗透应用意识,培养归纳思维能力和逻辑推理能力,提高数学发现能力;
3.会求一些特殊的对数式的值。
(二)解析:
1.理解对数的概念就是指:一是实际的需要;二是人为规定的一种新的表
示数的符号。
2.熟练进行对数式与指数式的互化就是指:一是弄清楚对数与指数,对数
式与指数式的含义;二是理解对数式与指数式的互化的实质;三是要把这种互化
提升为一种方法,为我们以后解题奠定基础。
3.会求一些特殊的对数式的值就是指能够熟练利用:和对数恒等式。
三、问题诊断分析
对数概念的理解中学生存在问题,所以要结合具体的实例,指出为了解决实际问题,引入对数的概念,体现了数学来源于实际的生活,并服务于实际的生活。
四、教学过程设计
(一)复习引入:
1.庄子:一尺之棰,日取其半,万世不竭(1)取4次,还有多长?(2)取多少次,还有0.125尺?
2.假设2002年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?
抽象出:1.=?,=0.125x=?2.=2x=?
也是已知底数和幂的值,求指数你能看得出来吗?怎样求呢?
(二)新授内容:
定义:一般地,如果的b次幂等于N,就是,那么数b叫做以a为底N的对数,记作,a叫做对数的底数,N叫做真数
例如:;
;
探究:⑴负数与零没有对数(∵在指数式中N0)
⑵,
∵对任意且,都有∴
同样易知:
⑶对数恒等式
如果把中的b写成,则有
⑷常用对数:我们通常将以10为底的对数叫做常用对数为了简便,N的常用对数简记作lgN
例如:简记作lg5;简记作lg3.5.
⑸自然对数:在科学技术中常常使用以无理数e=2.71828……为底的对数,以e为底的对数叫自然对数,为了简便,N的自然对数简记作lnN
例如:简记作ln3;简记作ln10
(6)底数的取值范围;真数的取值范围
(三)合作探究,精讲点拨
探究一:指对互化
例1将下列指数式写成对数式:(课本第87页)
(1)=625(2)=(3)=27(4)=5.73
解析:直接用对数式的定义进行改写.
解:(1)625=4;(2)=-6;
(3)27=a;(4)
点评:主要考察了底真树与幂三者的位置.
变式练习1:将下列对数式写成指数式:
(1);(2)128=7;
(3)lg0.01=-2;(4)ln10=2.303
解:(1)(2)=128;
(3)=0.01;(4)=10
探究二:计算
例2计算:⑴,⑵,⑶,⑷
解析:将对数式写成指数式,再求解.
解:⑴设则,∴
⑵设则,,∴
⑶令=,
∴,∴
⑷令,∴,,∴
点评:考察了指数与对数的相互转化.

相关阅读

对数的概念


数学必修1:对数
教学目的:(1)理解对数的概念;
(2)能够说明对数与指数的关系;
(3)掌握对数式与指数式的相互转化.
教学重点:对数的概念,对数式与指数式的相互转化
教学难点:对数概念的理解.
教学过程:
一、引入课题
1.(对数的起源)价绍对数产生的历史背景与概念的形成过程,体会引入对数的必要性;
设计意图:激发学生学习对数的兴趣,培养对数学习的科学研究精神.
2.尝试解决本小节开始提出的问题.
二、新课教学
1.对数的概念
一般地,如果,那么数叫做以为底的对数(Logarithm),记作:
—底数,—真数,—对数式
说明:○1注意底数的限制,且;
○2;
○3注意对数的书写格式.
思考:○1为什么对数的定义中要求底数,且;
○2是否是所有的实数都有对数呢?
设计意图:正确理解对数定义中底数的限制,为以后对数型函数定义域的确定作准备.
两个重要对数:
○1常用对数(commonlogarithm):以10为底的对数;
○2自然对数(naturallogarithm):以无理数为底的对数的对数.
2.对数式与指数式的互化
对数式指数式
对数底数←→幂底数
对数←→指数
真数←→幂
例1.(教材P73例1)
巩固练习:(教材P74练习1、2)
设计意图:熟练对数式与指数式的相互转化,加深理解对数概念.
说明:本例题和练习均让学生独立阅读思考完成,并指出对数式与指数式的互化中应注意哪些问题.
3.对数的性质
(学生活动)
○1阅读教材P73例2,指出其中求的依据;
○2独立思考完成教材P74练习3、4,指出其中蕴含的结论
对数的性质
(1)负数和零没有对数;
(2)1的对数是零:;
(3)底数的对数是1:;
(4)对数恒等式:;
(5).
三、归纳小结,强化思想
○1引入对数的必要性;
○2指数与对数的关系;
○3对数的基本性质.
四、作业布置
教材P86习题2.2(A组)第1、2题,(B组)第1题.

4.6对数函数


一名优秀的教师就要对每一课堂负责,作为高中教师就要在上课前做好适合自己的教案。教案可以让学生能够听懂教师所讲的内容,帮助高中教师掌握上课时的教学节奏。你知道怎么写具体的高中教案内容吗?下面是小编精心为您整理的“4.6对数函数”,仅供参考,欢迎大家阅读。

4.6对数函数
【教学目标】:
知识与技能:理解对数函数的概念,掌握它们的基本性质,进一步领会研究函数的基本方法
过程与方法:复习与实例引入、利用互为反函数的关系研究图像与性质
情感态度与价值观:体会对数函数的应用价值,体验数学建模、求解和解释的过程
【教学重点与难点】
重点:对数函数的概念;对数函数的性质;研究函数的方法
难点:对数函数的性质
【教学过程】:
一.复习:反函数的概念;通过实例和反函数的概念导出对数函数的概念
通过关于细胞分裂的具体实例,直接了解对数函数模型所刻画的数量关系,使学生科学的发展源于实际生活,感受到指数函数与对数函数的密切关系:它们是从不同角度、不同需求看待同一个客观事实,前者根据细胞分裂次数,获得分裂后的细胞数;后者根据分裂后的细胞数,获得分裂的次数.前者用指数函数表示,后者用对数函数.
(1)引入:在我们学习研究指数函数时,曾经讨论过细胞分裂问题.某种细胞分裂时,得到的细胞的个数是分裂次数的函数,这个函数可用指数函数表示.
现在来研究相反的问题,如果要求这种细胞经过多少次分裂,可以得到1万个、10万个、……细胞,那么分裂次数就是要得到的细胞个数的函数.根据对数的定义,这个函数可以写成对数的形式,就是.
如果用表示自变量,表示函数,这个函数就是
由反函数的概念,可知函数与指数函数互为反函数.
(2)定义:一般地,函数(且)就是指数函数(且)的反函数.因为的值域是,所以,函数的定义域是.
二.通过对数函数和指数函数的关系利用互为反函数的两函数的关系探求对数函数的图像和性质
提问绘制图像的方法:(1)利用反函数的关系;(2)描点绘图
图像
OX

性质
对数函数
性质1.对数函数的图像都在Y轴的右方.
性质2.对数函数的图像都经过点(1,0)
性质3.当时,;当时,;
当时,.当时,.
性质4.对数函数在上是增函数.对数函数在上是减函数.

三.掌握对数函数的图像和性质———巩固与应用对数函数的性质解决简单问题
例1.求下列函数的定义域:
;(2);(3).
解(1)因为,即,所以函数的定义域是.
(2)因为,即,所以函数的定义域是.
(3)因为,即,所以函数的定义域是.
例2.利用对数函数的性质,比较下列各题中两个值的大小:
(1)和;(2)和;(3)和,其中
解(1)因为对数函数在上是增函数,又,所以.
(2)因为对数函数在上是减函数,又3,所以.
(3)①当时,因为对数函数在上是增函数,又,所以.
②当时,因为对数函数在上是减函数,又,所以.
例3.“学习曲线”可以用来描述学习某一任务的速度,假设函数中,表示达到某一英文打字水平(字/分)所需的学习时间(时),表示每分钟打出的字数(字/分).
(1)计算要达到20字/分、40字/分所需的学习时间;(精确到“时”)
(2)利用(1)的结果,结合对数性质的分析,作出函数的大致图像
解(1)用计算器计算,得=20时,=16;=40时,=37.
所以,要达到这两个水平分别需要时间16小时和37小时.
(2)由0,得90.当增大时,随得增大而减小.
又为递增函数,随得增大而减小.
从而有随得增大而增大,所以为递增函数.
由(1)知函数图像过点(20,16)、(40,37).
另外,当=0时=0,所以函数图像过点(0,0).O
根据上述这些点得坐标描点作图
N
四.练习:教科书P20页1.2.3.4.5.6
作业:练习册P5页1————4;《一课一练》
五.小结:对数函数的概念、图像、性质
教学反思:

对数的概念与对数运算性质


作为优秀的教学工作者,在教学时能够胸有成竹,作为教师就要在上课前做好适合自己的教案。教案可以让学生更好的消化课堂内容,使教师有一个简单易懂的教学思路。关于好的教案要怎么样去写呢?以下是小编为大家收集的“对数的概念与对数运算性质”供您参考,希望能够帮助到大家。

2.2.1对数的概念与对数运算性质
一、内容与解析
(一)内容:对数的概念与对数的基本性质
(二)解析:我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.
教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.
二、教学目标及解析
(一)教学目标
1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.
2.通过与指数式的比较,引出对数的定义与性质.
3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;在学习过程中培养学生探究的意识;增加学生的成功感,增强学习的积极性.
(二)解析
1、理解对数的概念就是指:一是实际的需要;二是人为规定的一种新的表示数的符号;
2、熟练进行对数式与指数式的互化就是指:一是弄清楚对数与指数,对数式与指数式的含义;二是理解对数式与指数式的互化的实质;三是要把这种互化提升为一种方法,为我们以后解题奠定基础。3、会求一些特殊的对数式的值就是指能够熟练利用:和对数恒等式。
三、问题诊断分析
对数概念的理解中学生存在问题,所以要结合具体的实例,指出为了解决实际问题,引入对数的概念,体现了数学来源于实际的生活,并服务于实际的生活。
四、教学支持条件分析
在本节课()的教学中,准备使用(),因为使用(),有利于().

五、教学过程
1.庄子:一尺之棰,日取其半,万世不竭(1)取4次,还有多长?(2)取多少次,还有0.125尺?
2.假设2002年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?
抽象出:1.=?,=0.125x=?2.=2x=?
也是已知底数和幂的值,求指数你能看得出来吗?怎样求呢?
问题1.将上述问题进行归纳----对数的定义
一般地,如果a(a0,a≠1)的x次幂等于N,就是ax=N,那么数x叫做以a为底N的对数(logarithm),记作x=logaN,其中a叫做对数的底数,N叫做真数.
有了对数的定义,(1)前面问题中的x就可表示成什么式子?
x=log1.01,x=log1.01,x=log1.01.
(2)怎样用表格表示对数和指数幂之间的关系?
由此得到对数和指数幂之间的关系:
aNb
指数式ab=N底数幂指数
对数式logaN=b对数的底数真数对数
例如:42=162=log416;102=1002=log10100;4=2=log42;10-2=0.01-2=log100.01
探究一:指对互化
例1将下列指数式写成对数式:(课本第87页)
(1)=625(2)=(3)=27(4)=5.73
解析:直接用对数式的定义进行改写.
解:(1)625=4;(2)=-6;
(3)27=a;(4)
点评:主要考察了底真树与幂三者的位置.
变式练习1:将下列对数式写成指数式:
(1);(2)128=7;
(3)lg0.01=-2;(4)ln10=2.303
解:(1)(2)=128;
(3)=0.01;(4)=10
探究二:计算
例2计算:⑴,⑵,⑶,⑷
解析:将对数式写成指数式,再求解.
解:⑴设则,∴
⑵设则,,∴
⑶令=,
∴,∴
⑷令,∴,,∴
点评:考察了指数与对数的相互转化.
五.课堂目标检测
优化设计:随堂练习.
六.小结
本节主要学习了对数的概念,要熟练的进行指对互化.
七.配餐作业
优化设计:优化作业.

(1)求log84的值;
(2)已知loga2=m,loga3=n,求a2m+n的值.

2.2.2对数函数(三)


一名优秀的教师在教学方面无论做什么事都有计划和准备,教师要准备好教案,这是老师职责的一部分。教案可以让学生们充分体会到学习的快乐,帮助授课经验少的教师教学。那么怎么才能写出优秀的教案呢?下面是小编精心为您整理的“2.2.2对数函数(三)”,相信能对大家有所帮助。

课题:§2.2.2对数函数(三)

教学目标:

知识与技能理解指数函数与对数函数的依赖关系,了解反函数的概念,加深对函数的模型化思想的理解.

过程与方法通过作图,体会两种函数的单调性的异同.

情感、态度、价值观对体会指数函数与对数函数内在的对称统一.

教学重点:

重点难两种函数的内在联系,反函数的概念.

难点反函数的概念.

教学程序与环节设计:

创设情境

组织探究

尝试练习

巩固反思

作业回馈

课外活动

由函数的观点分析例题,引出反函数的概念.

两种函数的内在联系,图象关系.

简单的反函数问题,单调性问题.

从宏观性、关联性角度试着给指数函数、对数函数的定义、图象、性质作一小结.

简单的反函数问题,单调性问题.

互为反函数的函数图象的关系.


教学过程与操作设计:

环节

呈现教学材料

师生互动设计

材料一:

当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据些规律,人们获得了生物体碳14含量P与生物死亡年数t之间的关系.回答下列问题:

(1)求生物死亡t年后它机体内的碳14的含量P,并用函数的观点来解释P和t之间的关系,指出是我们所学过的何种函数?

(2)已知一生物体内碳14的残留量为P,试求该生物死亡的年数t,并用函数的观点来解释P和t之间的关系,指出是我们所学过的何种函数?

(3)这两个函数有什么特殊的关系?

(4)用映射的观点来解释P和t之间的对应关系是何种对应关系?

(5)由此你能获得怎样的启示?

生:独立思考完成,讨论展示并分析自己的结果.

师:引导学生分析归纳,总结概括得出结论:

(1)P和t之间的对应关系是一一对应;

(2)P关于t是指数函数;

t关于P是对数函数,它们的底数相同,所描述的都是碳14的衰变过程中,碳14含量P与死亡年数t之间的对应关系;

(3)本问题中的同底数的指数函数和对数函数,是描述同一种关系(碳14含量P与死亡年数t之间的对应关系)的不同数学模型.

材料二:

由对数函数的定义可知,对数函数是把指数函数中的自变量与因变量对调位置而得出的,在列表画的图象时,也是把指数函数的对应值表里的和的数值对换,而得到对数函数的对应值表,如下:

表一.

环节

呈现教学材料

师生互动设计

-3

-2

-1

0

1

2

3

1

2

4

8

表二.

-3

-2

-1

0

1

2

3

1

2

4

8

在同一坐标系中,用描点法画出图象.

生:仿照材料一分析:与的关系.

师:引导学生分析,讲评得出结论,进而引出反函数的概念.

组织探究

材料一:反函数的概念:

当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数.

由反函数的概念可知,同底数的指数函数和对数函数互为反函数.

材料二:以与为例研究互为反函数的两个函数的图象和性质有什么特殊的联系?

师:说明:

(1)互为反函数的两个函数是定义域、值域相互交换,对应法则互逆的两个函数;

(2)由反函数的概念可知“单调函数一定有反函数”;

(3)互为反函数的两个函数是描述同一变化过程中两个变量关系的不同数学模型.

师:引导学生探索研究材料二.

生:分组讨论材料二,选出代表阐述各自的结论,师生共同评析归纳.

尝试练习

求下列函数的反函数:

(1);(2)

生:独立完成.

巩固反思

从宏观性、关联性角度试着给指数函数、对数函数的定义、图象、性质作一小结.

作业反馈

1.求下列函数的反函数:

1

2

3

4

3

5

7

9

环节

呈现教学材料

师生互动设计

1

2

3

4

3

5

7

9

2.(1)试着举几个满足“对定义域内任意实数a、b,都有f(a·b)=f(a)+f(b).”的函数实例,你能说出这些函数具有哪些共同性质吗?

(2)试着举几个满足“对定义域内任意实数a、b,都有f(a+b)=f(a)·f(b).”的函数实例,你能说出这些函数具有哪些共同性质吗?

答案:

1.互换、的数值.

2.略.

课外活动

我们知道,指数函数,且与对数函数,且互为反函数,那么,它们的图象有什么关系呢?运用所学的数学知识,探索下面几个问题,亲自发现其中的奥秘吧!

问题1在同一平面直角坐标系中,画出指数函数及其反函数的图象,你能发现这两个函数的图象有什么特殊的对称性吗?

问题2取图象上的几个点,说出它们关于直线的对称点的坐标,并判断它们是否在的图象上,为什么?

问题3如果P0(x0,y0)在函数的图象上,那么P0关于直线的对称点在函数的图象上吗,为什么?

问题4由上述探究过程可以得到什么结论?

问题5上述结论对于指数函数

,且及其反函数,且也成立吗?为什么?

结论:

互为反函数的两个函数的图象关于直线对称.