88教案网

你的位置: 教案 > 高中教案 > 导航 > 含对数的函数

高中对数函数教案

发表时间:2020-10-31

含对数的函数。

25对数函数的导数及应用
一、课前准备:
【自主梳理】
1.,.
2.,.
3.已知,则.
4.已知,则.
【自我检测】
1.函数的单调减区间为______.
2.直线是曲线的一条切线,则实数b=.
3.曲线上的点到直线的最短距离是.
4.已知函数,则在区间上的最大值和最小值分别为
和.
5.已知函数,.若函数与在区间上均为增函数,则实数的取值范围为.
二、课堂活动:
【例1】填空题:
(1)函数的单调递增区间是.
(2)点是曲线上任意一点,则点到直线的距离的最小值是.
(3)若函数在定义域内是增函数,则实数的取值范围是.
(4)已知函数,则曲线在点处的切线方程为__________。

【例2】已知函数.
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)求的极值;
(Ⅲ)若函数的图象与函数的图象在区间上有公共点,求实数的取值范围.

【例3】已知函数.
(Ⅰ)若曲线在和处的切线互相平行,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得,求的取值范围.

三、课后作业
1.已知函数,则函数的单调增区间为.
2.已知函数的图象在点(为自然对数的底数)处的切线斜率为3.则实数的值为.
3.已知函数,则曲线在点处的切线方程为.
4.已知函数f(x)=x2-x+alnx,当时,恒成立,则实数的取值范围为.
5.已知函数且,其中、则m的值为.
6.若f(x)=上是减函数,则b的取值范围是.
7.设函数若直线l与函数的图象都相切,且与函数的图象相切于点,则实数p的值.
8.已知定义在正实数集上的函数,,其中.设两曲线,有公共点,且在该点处的切线相同,则用可用表示为_________.
9.已知函数.
(Ⅰ)若,求曲线在处切线的斜率;(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得,求的取值范围.

10.设函数(),.
(1)若函数图象上的点到直线距离的最小值为,求的值;
(2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(3)对于函数与定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数与的“分界线”.设,,试探究与是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

四、纠错分析
错题卡题号错题原因分析
参考答案:
【自我检测】
1.2.ln2-13.4.和5.
二、课堂活动:
【例1】(1)(2)(3)(4)
【例2】解:(Ⅰ)∵,∴且.
又∵,∴.
∴在点处的切线方程为:,即.
(Ⅱ)的定义域为,,令得.当时,,是增函数;当时,,是减函数;∴在处取得极大值,即.
(Ⅲ)(i)当,即时,由(Ⅱ)知在上是增函数,在上是减函数,∴当时,取得最大值,即.又当时,,当时,,当时,,所以,的图像与的图像在上有公共点,等价于,解得,又因为,所以.
(ii)当,即时,在上是增函数,∴在上的最大值为,∴原问题等价于,解得,又∵∴无解.
综上,的取值范围是.
【例3】解:.
(Ⅰ),解得.
(Ⅱ).
①当时,,,在区间上,;在区间上,
故的单调递增区间是,单调递减区间是.
②当时,,在区间和上,;在区间上,
故的单调递增区间是和,单调递减区间是.
③当时,,故的单调递增区间是.
④当时,,在区间和上,;在区间上,
故的单调递增区间是和,单调递减区间是.
(Ⅲ)由已知,在上有.
由已知,,由(Ⅱ)可知,①当时,在上单调递增,故,所以,,解得,故.
②当时,在上单调递增,在上单调递减,故.由可知,,,所以,,,综上所述,.
三、课后作业
1.(1,+∞)2.3.4.5.m=1
6.(-∞,-1)7.p=1或p=38.
9.解:(Ⅰ)由已知,.故曲线在处切线的斜率为.
(Ⅱ).
①当时,由于,故,,所以,的单调递增区间为.
②当时,由,得.在区间上,,在区间上,
所以,函数的单调递增区间为,单调递减区间为.
(Ⅲ)由已知,转化为..
由(Ⅱ)知,当时,在上单调递增,值域为,故不符合题意.
(或者举出反例:存在,故不符合题意.)
当时,在上单调递增,在上单调递减,
故的极大值即为最大值,,
所以,解得.
10.解:(1)因为,所以,令,得:,此时,则点到直线的距离为,
即,解之得.
(2)解法一:不等式的解集中的整数恰有3个,
等价于恰有三个整数解,故,
令,由且,
所以函数的一个零点在区间,
则另一个零点一定在区间,故解之得.
解法二:恰有三个整数解,故,即,
,所以,又因为,所以,解之得.
(3)设,则.
所以当时,;当时,.因此时,取得最小值,则与的图象在处有公共点.
设与存在“分界线”,方程为,
即,由在恒成立,则在恒成立.所以成立,因此.
下面证明恒成立.
设,则.
所以当时,;当时,.
因此时取得最大值,则成立.
故所求“分界线”方程为:.

相关推荐

对数与对数函数


一位优秀的教师不打无准备之仗,会提前做好准备,高中教师要准备好教案,这是每个高中教师都不可缺少的。教案可以让学生们能够在上课时充分理解所教内容,帮助高中教师能够更轻松的上课教学。所以你在写高中教案时要注意些什么呢?下面是小编精心收集整理,为您带来的《对数与对数函数》,欢迎阅读,希望您能阅读并收藏。

学案14对数与对数函数
一、课前准备:
【自主梳理】
1.对数:
(1)一般地,如果,那么实数叫做________________,记为________,其中叫做对数的_______,叫做________.
(2)以10为底的对数记为________,以为底的对数记为_______.
(3),.
2.对数的运算性质:
(1)如果,那么,

(2)对数的换底公式:.
3.对数函数:
一般地,我们把函数____________叫做对数函数,其中是自变量,函数的定义域是______.
4.对数函数的图像与性质:
a10a1



质定义域:___________
值域:_____________
过点(1,0),即当x=1时,y=0
x∈(0,1)时_________
x∈(1,+∞)时________x∈(0,1)时_________
x∈(1,+∞)时________
在___________上是增函数在__________上是减函数

【自我检测】
1.的定义域为_________.
2.化简:.
3.不等式的解集为________________.
4.利用对数的换底公式计算:.
5.函数的奇偶性是____________.
6.对于任意的,若函数,则与的大小关系是___________________________.
二、课堂活动:
【例1】填空题:
(1).
(2)比较与的大小为___________.
(3)如果函数,那么的最大值是_____________.
(4)函数的奇偶性是___________.
【例2】求函数的定义域和值域.

【例3】已知函数满足.
(1)求的解析式;
(2)判断的奇偶性;
(3)解不等式.
课堂小结

三、课后作业
1..
2.函数的定义域为_______________.
3.函数的值域是_____________.
4.若,则的取值范围是_____________.
5.设则的大小关系是_____________.
6.设函数,若,则的取值范围为_________________.
7.当时,不等式恒成立,则的取值范围为______________.
8.函数在区间上的值域为,则的最小值为____________.
9.已知.
(1)求的定义域;
(2)判断的奇偶性并予以证明;
(3)求使的的取值范围.

10.对于函数,回答下列问题:
(1)若的定义域为,求实数的取值范围;
(2)若的值域为,求实数的取值范围;
(3)若函数在内有意义,求实数的取值范围.

四、纠错分析
错题卡题号错题原因分析

学案14对数与对数函数
一、课前准备:
【自主梳理】
1.对数
(1)以为底的的对数,,底数,真数.
(2),.
(3)0,1.
2.对数的运算性质
(1),,.
(2).
3.对数函数
,.
4.对数函数的图像与性质
a10a1



质定义域:(0,+∞)
值域:R
过点(1,0),即当x=1时,y=0
x∈(0,1)时y<0
x∈(1,+∞)时y>0x∈(0,1)时y>0
x∈(1,+∞)时y<0
在(0,+∞)上是增函数在(0,+∞)上是减函数
【自我检测】
1.2.3.
4.5.奇函数6..
二、课堂活动:
【例1】填空题:
(1)3.
(2).
(3)0.
(4)奇函数.

【例2】解:由得.所以函数的定义域是(0,1).
因为,所以,当时,,函数的值域为;当时,,函数的值域为.
【例3】解:(1),所以.
(2)定义域(-3,3)关于原点对称,所以
,所以为奇函数.
(3),所以当时,解得
当时,解得.
三、课后作业
1.2.
2..
3..
4..
5..
6..
7..
8..
9.解:(1)由得,函数的定义域为(-1,1);
(2)因为定义域关于原点对称,所以
,所以函数是奇函数.
(3)
当时,解得;当时,解得.

10.解:(1)由题可知的解集是,所以,解得
(2)由题可知取得大于0的一切实数,所以,解得
(3)由题可知在上恒成立,令
解得或解得,综上.

对数函数的性质


总课题对数函数分课时第5课时总课时总第33课时
分课题对数函数的性质课型新授课
教学目标熟悉对数函数的图象和性质,会用对数函数的性质求一些与对数函数有关的复合函数的单调区间;对数形式函数单调区间及值域的求法。
重点对数函数的图象的变换。
难点对数函数的图象的变换。
一、复习引入
1、对数函数的概念及其与指数函数的关系

2、对数函数的图象及性质

3、与对数有关的复合函数及其性质

4、课前练习
(1)已知,则的大小。

(2)函数且恒过定点。
(3)将函数的图象向得到函数的图象;
将明函数的图象向得到函数的图象。
(4)函数的定义域为,求的反函数的定义域与值域分别。

二、例题分析
例1、画出函数的图象,并根据图象写出函数的单调区间。

例2、比较与图像的关系,并讨论函数与之间的关系。

变式:画出的图像,并利用函数图像求函数的值域及单调区间。

例3、判断函数的单调性,并证明。

例4、求函数在上的最值。

三、随堂练习
1、已知函数,,,的图象如图所示,
则下式中正确的是。
(1)(2)
(3)(4)
2、函数的奇偶性是。
3、在同一坐标系中作出下列函数的图像。
(1)(2)

四、回顾小结
1、函数图像的作法;2、对数形式函数单调区间及值域的求法。
课后作业
班级:高一()班姓名__________
一、基础题
1、若函数,则的大小关系为。
2、函数的单调递增区间是_______________________。
3、下列函数在上为增函数是___________________。
(1)(2)(3)(4)
4、函数的定义域是。

二、提高题
5、已知函数。
(1)求的定义域;(2)判断的奇偶性,并证明。

6、作出下列函数的图像,并写出函数的单调区间:
(1)(2)

三、能力题
7、对于任意,若函数,试比较与的大小。

8、已知,,求的最大值及取最大值时的值。

探究:关于的两方程,的根分别是,求的值。(图象法)
得分:____________________

课题 对数函数


课题对数函数

教学目标

在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.

通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.

通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.

教学重点,难点

重点是理解对数函数的定义,掌握图像和性质.

难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.

教学方法

启发研讨式

教学用具

投影仪

教学过程

引入新课

今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.

反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.

提问:什么是指数函数?指数函数存在反函数吗?

由学生说出

教案点评:

根据教材内容和课程标准的要求,本节课的重点是理解对数函数的定义,掌握图像和性质。教案的编写从四个环节设计教学过程。各个教学环节,依据教学内容和教学目标的不同要求,呈现的教学方式、方法各有不同,第一个环节从复习指数函数开始,有学生熟悉的指数函数入手,引起学生兴趣;第二个环节是对数函数的定义;第三个环节:因为学生已经具有一定的作图能力,让学生画出常见的几个函数图象,并总结出对数函数的性质。第四个环节:简单应用。因此通过学生之间、师生之间的交流、讨论,使知识系统化、条理化,利于学生记忆对数函数的性质。

对数函数的性质的应用


经验告诉我们,成功是留给有准备的人。作为高中教师就要早早地准备好适合的教案课件。教案可以让上课时的教学氛围非常活跃,帮助高中教师有计划有步骤有质量的完成教学任务。那么怎么才能写出优秀的高中教案呢?下面是小编为大家整理的“对数函数的性质的应用”,欢迎大家与身边的朋友分享吧!

2.2.2对数函数的性质的应用(2)
课前预习学案
一、预习目标
记住对数函数的定义;掌握对数函数的图象与性质.
二、预习内容
1.对数函数的性质:
a10a1



质定义域:
值域:
过点(,),即当时,




在(,)上是增函数在(,)上是减函数
2.函数恒过的定点坐标是()
A.B.C.D.
3.画出函数y=x及y=的图象,并且说明这两个函数的相同性质和不同性质.

课内探究学案
一、学习目标
1.使学生理解对数函数的定义,进一步掌握对数函数的图像和性质
2、通过定义的复习,图像特征的观察、巩固过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。
教学重点:对数函数的图像和性质
教学难点:底数a的变化对函数性质的影响
二、学习过程
探究点一
例1求下列函数的定义域:
(1);(2);(3)
解析:利用对数函数的定义域解.
解:略
点评:本题主要考察了利用函数的定义域.
探究点二
例2.比较大小
1.,,2.
解析:利用对数函数的单调性解.
解:略
点评:本题主要考察了利用函数的单调性比较对数的大小.

探究点三
例3求下列函数的反函数
①②
解析:利用对数函数与指数函数互为反函数解.
解:略
点评:本题主要考察了反函数的解法.

三、反思总结

四、当堂检测
1.求下列函数的定义域:
(1)y=(1-x)(2)y=
(3)y=
2.若求实数的取值范围

课后练习与提高
1、函数的定义域是()
A、B、
C、D、
2、函数的值域是()
A、B、C、D、
3、若,那么满足的条件是()
A、B、C、D、
4、已知函数,判断的奇偶性和单调性。