88教案网

你的位置: 教案 > 高中教案 > 导航 > 高一数学教案:《球的体积和表面积》教学设计

小学数学数学教案

发表时间:2021-08-14

高一数学教案:《球的体积和表面积》教学设计。

作为杰出的教学工作者,能够保证教课的顺利开展,作为高中教师就要好好准备好一份教案课件。教案可以让学生能够在教学期间跟着互动起来,帮助高中教师营造一个良好的教学氛围。所以你在写高中教案时要注意些什么呢?下面是小编帮大家编辑的《高一数学教案:《球的体积和表面积》教学设计》,希望对您的工作和生活有所帮助。

高一数学教案:《球的体积和表面积》教学设计

一、教学目标

知识与技能

⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识。

⑵能运用球的面积和体积公式灵活解决实际问题。

⑶培养学生的空间思维能力和空间想象能力。

过程与方法

通过球的体积和面积公式的推导,从而得到一种推导球体积公式V=πR3和面积公式S=4πR2的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想。

情感与价值观

通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。

二、教学重点、难点

重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。

难点:推导体积和面积公式中空间想象能力的形成。

三、学法和教学用具

学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。

教学用具:投影仪

四、教学设计

创设情景

⑴教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考。

⑵教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式。

探究新知

1.球的体积:

如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割——求和——化为准确和”的方法来进行。

步骤:

第一步:分割

如图:把半球的垂直于底面的半径OA作n等分,过这些等分点,用一组平行于底面的平面把半球切割成n个“小圆片”,“小圆片”厚度近似为,底面是“小圆片”的底面。

练习:一种空心钢球的质量是142g,外径是5cm,求它的内径(钢的密度是7.9g/cm3)

2.球的表面积:

球的表面积是球的表面大小的度量,它也是球半径R的函数,由于球面是不可展的曲面,所以不能像推导圆柱、圆锥的表面积公式那样推导球的表面积公式,所以仍然用“分割、求近似和,再由近似和转化为准确和”方法推导。

思考:推导过程是以什么量作为等量变换的?

半径为R的球的表面积为 S=4πR2

练习:长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,则这个球的表面积是 。 (答案50元)

典例分析

课本P47 例4和P29例5

巩固深化、反馈矫正

⑴正方形的内切球和外接球的体积的比为 ,表面积比为 。

(答案: ; 3 :1)

⑵在球心同侧有相距9cm的两个平行截面,它们的面积分别为49πcm2和400πcm2,求球的表面积。 (答案:2500πcm2)

分析:可画出球的轴截面,利用球的截面性质求球的半径

课堂小结

本节课主要学习了球的体积和球的表面积公式的推导,以及利用公式解决相关的球的问题,了解了推导中的“分割、求近似和,再由近似和转化为准确和”的解题方法。

评价设计

作业 P30 练习1、3 ,B(1)

延伸阅读

球的表面积与体积


第三课时球的表面积与体积
(一)教学目标
1.知识与技能
(1)了解球的表面积与体积公式(不要求记忆公式).
(2)培养学生空间想象能力和思维能力.
2.过程与方法
通过作轴截面,寻找旋转体类组合体中量与量之间的关系.
3.情感、态度与价值
让学生更好地认识空间几何体的结构特征,培养学生学习的兴趣.
(二)教学重点、难点
重点:球的表面积与体积的计算
难点:简单组合体的体积计算
(三)教学方法
讲练结合
教学过程教学内容师生互动设计意图
新课引入复习柱体、锥体、台体的表面积和体积,点出主题.师生共同复习,教师点出点题(板书)复习巩固
探索新知1.球的体积:
2.球的表面积:
师:设球的半径为R,那么它的体积:,它的面积现在请大家观察这两个公式,思考它们都有什么特点?
生:这两个公式说明球的体积和表面积都由球的半径R惟一确定.其中球的体积是半径R的三次函数,球的表面积是半径R的二次函数.
师(肯定):球的体积公式和球的表面积公式以后可以证明.这节课主要学习它们的应用.加强对公式的认识培养学生理解能力
典例分析例1如图,圆柱的底面直径与高都等于球的直径.求证:
(1)球的体积等于圆柱体积的;
(2)球的表面积等于圆柱的侧面积.
证明:(1)设球的半径为R,则圆柱的底面半径为R,高为2R.
因为,

所以,.
(2)因为,

所以,S球=S圆柱侧.
例2球与圆台的上、下底面及侧面都相切,且球面面积与圆台的侧面积之比为3:4,则球的体积与圆台的体积之比为()
A.6:13B.5:14
C.3:4D.7:15
【解析】如图所示,作圆台的轴截面等腰梯形ABCD,球的大圆O内切于梯形ABCD.
设球的半径为R,圆台的上、下底面半径分别为r1、r2,由平面几何知识知,圆台的高为2R,母线长为r1+r2.
∵∠AOB=90°,OE⊥AB(E为切点),
∴R2=OE2=AEBE=r1r2.
由已知S球∶S圆台侧=4R2∶(r1+r2)2=3∶4
(r1+r2)2=
V球∶V圆台=
=故选A.
例3在球面上有四个点P、A、B、C,如果PA、PB、PC两两垂直且PA=PB=PC=a,求这个球的体积.
解:∵PA、PB、PC两两垂直,
PA=PB=PC=a.
∴以PA、PB、PC为相邻三条棱可以构造正方体.
又∵P、A、B、C四点是球面上四点,
∴球是正方体的外接球,正方体的对角线是球的直径.
∴.

教师投影例1并读题,学生先独立完成.教师投影答案并点评(本题联系各有关量的关键性要素是球的半径)

教师投影例2并读题,
师:请大家思考一下这道题中组合体的结构特征.
生:球内切于圆台.
师:你准备怎样研究这个组合体?
生:画出球和圆台的轴截面.
师:圆台的高与球的哪一个量相等?
生:球的直径.
师:根据球和圆台的体积公式,你认为本题解题关键是什么?
生:求出球的半径与圆台的上、下底面半径间的关系.
师投影轴截面图,边分析边板书有关过程.
师:简单几何体的切接问题,包括简单几何体的内外切和内外接,在解决这类问题时要准确地画出它们的图形,一般要通过一些特殊点,如切点,某些顶点,或一些特殊的线,如轴线或高线等,作几何体的截面,在截面上运用平面几何的知识,研究有关元素的位置关系和数量关系,进而把问题解决.

教师投影例3并读题,学生先思考、讨论,教师视情况控制时间,给予引导,最后由学生分析,教师板书有关过程.
师:计算球的体积,首先必须先求出球的半径.由于PA、PB、PC是两两垂直的而且相等的三条棱,所以P–ABC可以看成一个正方体的一角,四点P、A、B、C在球上,所以此球可视为PA、PB、PC为相邻三条棱的正方体的外接球,其直径为正方体的对角线.本题较易,学生独立完成,有利于培养学生问题解决的能力.

通过师生讨论,突破问题解决的关键,培养学生空间想象能力和问题解决的能力.

本题有两种解题方法,此处采用构造法解题,目标培养学生联想,转化化归的能力.另一种方法,因要应用球的性质,可在以后讨论.
随堂练习1.(1)将一个气球的半径扩大1倍,它的体积扩大到原来的几倍?
(2)一个正方体的顶点都在球面上,它的棱长是acm,求球的体积.
(3)一个球的体积是100cm2,试计算它的表面积(取3.14,结果精确到1cm2,可用计算器).
参考答案:
1.(1)8倍;(2)(3)104.学生独立完成巩固所学知识
归纳总结1.球的体积和表面积
2.等积变换
3.轴截面的应用学生独立思考、归纳,然后师生共同交流、完善归纳知识,提高学生自我整合知识的能力.
课后作业1.3第三课时习案学生独立完成固化练习
提升能力
备用例题
例1.已知过球面上三点A、B、C的截面到球心的距离等于球半径的一半,且AC=BC=6,AB=4,求球面面积与球的体积.
【分析】可以用球的截面性质。即截面小圆的圆心到球心的线段垂直于截面小圆平面.
【解析】如图,设球心为O,球半径为R,作OO1⊥平面ABC于O1,由于OA=OB=OC=R,则O1是△ABC的外心.
设M是AB的中点,由于AC=BC,则O1∈CM.
设O1M=x,易知O1M⊥AB,则O1A=,O1C=CM–O1M=–x
又O1A=O1C
∴.解得
则O1A=O1B=O1C=.
在Rt△OO1A中,O1O=,∠OO1A=90°,OA=R,
由勾股定理得.解得.
故.
例2.如图所示棱锥P–ABCD中,底面ABCD是正方形,边长为a,PD=a,PA=PC=,且PD是四棱锥的高.
(1)在这个四棱锥中放入一个球,求球的最大半径;
(2)求四棱锥外接球的半径.
【分析】(1)当所放的球与四棱锥各面都相切时球的半径最大,即球心到各个面的距离均相等,联想到用体积分割法求解.(2)四棱锥的外接球的球心到P、A、B、C、D五点的距离均为半径,只要找出球心的位置即可.球心O在过底面中心E且垂直于底面的垂线上.
【解析】(1)设此球半径为R,最大的球应与四棱锥各个面都相切,设球心为S,连结SA、SB、SC、SP,则把此四棱锥分为五个棱锥,设它们的高均为R.



S□ABCD=a2.
VP–ABCD=VS–PDA+VS–PDC+VS–ABCD+VS–PAB+Vs–PBC,


所以,,
即球的最大半径为.
(2)法一:设PB的中点为F.
因为在Rt△PDB中,FP=FB=FD,
在Rt△PAB中,FA=FP=FB,
在Rt△PBC中,FP=FB=FC,
所以FP=FB=FA=FC=FD.
所以F为四棱锥外接球的球心,则FP为外接球的半径.
法二:球心O在如图EF上,设OE=x,EA=,

即球心O在PB中点F上.
【评析】方法二为求多面体(底面正多面边形)外接球半径的通法;求多面体内切球半径经常采用体积分割求和方法.

几何体的表面积与体积


学案1集合的概念与运算
一、课前准备:
【自主梳理】
1.侧面积公式:,,,,,.
2.体积公式:=,,,.
3.球:,.
4.简单的组合体:
⑴正方体和球正方体的边长为,则其外接球的半径为.
正方体的边长为,则其内切球的半径为.
⑵正四面体和球正四面的边长为,则其外接球的半径为.
【自我检测】
1.若一个球的体积为,则它的表面积为_______.
2.已知圆锥的母线长为2,高为,则该圆锥的侧面积是.
3.若圆锥的母线长为3cm,侧面展开所得扇形圆心角为,则圆锥的体积为.
4.在中,若,则的外接圆半径,将此结论拓展到空间,可得出的正确结论是:在四面体中,若两两垂直,,则四面体的外接球半径_____________________.
5.一个长方体共一顶点的三个面的面积分别是,这个长方体它的八个顶点都在同一个球面上,这个球的表面积是.
6.如图,已知正三棱柱的底面边长为2,高位5,一质点自点出发,沿着三棱柱的侧面绕行两周到达点的最短路线的长为.
二、课堂活动:
【例1】填空题:
(1)一个圆台的母线长为12cm,两底面面积分别为4πcm和25πcm,则(1)圆台的高
为(2)截得此圆台的圆锥的母线长为.
(2)若三棱锥的三个侧棱两两垂直,且侧棱长均为,则其外接球的表面积是.
(3)三棱柱的一个侧面面积为,此侧面所对的棱与此面的距离为,则此棱柱的体积为.
(4)已知三棱锥O-ABC中,OA、OB、OC两两互相垂直,OC=1,OA=x,OB=y,若x+y=4,则已知三棱锥O-ABC体积的最大值是.
【例2】如图所示,在棱长为2的正方体中,、分别为、的中点.
(1)求证://平面;
(2)求证:;
(3)求三棱锥的体积.

【例3】如图,棱锥P-ABCD的底面ABCD是矩形,PA平面ABCD,PA=AD=2,BD=。
(1)求棱锥P-ABCD的体积;
(2)求点C到平面PBD的距离.

课堂小结
(1)了解柱体、锥体、台体、球的表面积和体积公式;
(2)了解一些简单组合体(如正方体和球,正四面体和球);
(3)几何体表面的最短距离问题------侧面展开.

三、课后作业
1.一个球的外切正方体的全面积等于,则此球的体积为.
2.等边圆柱(底面直径和高相等的圆柱)的底面半径与球的半径相等,则等边圆柱的表面积与球的表面积之比为.
3.三个平面两两垂直,三条交线相交于,到三个平面的距离分别为1、2、3,
则=.
4.圆锥的全面积为,侧面展开图的中心角为60°,则该圆锥的体积为.
5.如图,三棱柱的所有棱长均等于1,且,则该三棱柱的体积是.
6.如图,已知三棱锥A—BCD的底面是等边三角形,三条侧棱长都等于1,且∠BAC=30°,M、N分别在棱AC和AD上,则BM+MN+NB的最小值为.
7.如图,在多面体中,已知是边长为1的正方形,且均为正三角形,∥,=2,则该多面体的体积为.
8.已知正四棱锥中,,那么当该棱锥的体积最大时,则高为.
9.如图,已知四棱锥中,底面是直角梯形,,,,,平面,.
(1)求证:平面;
(2)求证:平面;
(3)若是的中点,求三棱锥的体积.

10.如图,矩形中,⊥平面,,为上的一点,且⊥平面,,求三棱锥的体积.

四、纠错分析
错题卡题号错题原因分析

一、课前准备:
【自主梳理】
1.
2.
3.4
4.
【自我检测】
1.122.23.4.5.6π6.13
二、课堂活动:
【例1】填空题
1.(1)20(2)3(3)(4)
【例2】(Ⅰ)连结,在中,、分别为,的中点,则
(Ⅱ)
(Ⅲ),,且,
,.

∴,即.=
=.
【例3】解:(1)由知四边形ABCD为边长是2的正方形,
,又PA平面ABCD,=.
(2)设点C到平面PBD的距离为,
PA平面ABCD,=.
由条件,.
由.得.
点C到平面PBD的距离为.
三、课后作业
1.2.3:23.4.
5.6.7.8.
9.(1)证明:,且平面,∴平面.
(2)证明:在直角梯形中,过作于点,则四边形为矩形.
∴.又,∴.在Rt△中,,
∴,.∴.
则,∴.
又,∴.
,∴平面.
(3)∵是中点,∴到面的距离是到面距离的一半.
.
10.解:连结.可证三棱锥中,与底面垂直,所以所求
体积为.

高一数学下册《空间几何体的表面积与体积》知识点人教版


每个老师不可缺少的课件是教案课件,规划教案课件的时刻悄悄来临了。需要我们认真规划教案课件工作计划,这样我们接下来的工作才会更加好!你们会写适合教案课件的范文吗?请您阅读小编辑为您编辑整理的《高一数学下册《空间几何体的表面积与体积》知识点人教版》,欢迎大家阅读,希望对大家有所帮助。

高一数学下册《空间几何体的表面积与体积》知识点人教版

空间几何体表面积体积公式:

1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

3、a-边长,S=6a2,V=a3

4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

5、棱柱S-h-高V=Sh

6、棱锥S-h-高V=Sh/3

7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6

9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

11、r-底半径h-高V=πr^2h/3

12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6

14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6

16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4

17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

练习题:

1.正四棱锥P—ABCD的侧棱长和底面边长都等于,有两个正四面体的棱长也都等于.当这两个正四面体各有一个面与正四棱锥的侧面PAD,侧面PBC完全重合时,得到一个新的多面体,该多面体是()

(A)五面体

(B)七面体

(C)九面体

(D)十一面体

2.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为()

(A)9

(B)18

(C)36

(D)64

3.下列说法正确的是()

A.棱柱的侧面可以是三角形

B.正方体和长方体都是特殊的四棱柱

C.所有的几何体的表面都能展成平面图形

D.棱柱的各条棱都相等

柱体、锥体、台体的表面积与体积


俗话说,凡事预则立,不预则废。高中教师要准备好教案,这是每个高中教师都不可缺少的。教案可以让学生们能够在上课时充分理解所教内容,帮助高中教师提高自己的教学质量。优秀有创意的高中教案要怎样写呢?为了让您在使用时更加简单方便,下面是小编整理的“柱体、锥体、台体的表面积与体积”,仅供参考,欢迎大家阅读。

1.3.1柱体、锥体、台体的表面积与体积(2)

学习目标
1.了解柱、锥、台的体积计算公式;
2.能运用柱、锥、台的体积公式进行计算和解决有关实际问题.

学习过程
一、课前准备
(预习教材P25~P26,找出疑惑之处)
复习1:多面体的表面积就是___________________
加上___________.

复习2:圆柱、圆锥、圆台的侧面展开图分别是_____、______、_______;若圆柱、圆锥底面和圆台上底面的半径都是,圆台下底面的半径是,母线长都为,则_______________________,
___________,__________________.

引入:初中我们学习了正方体、长方体、圆柱的体积公式(为底面面积,为高),是否柱体的体积都是这样求呢?锥体、台体的体积呢?

二、新课导学
※探索新知
新知:经过证明(有兴趣的同学可以查阅祖暅原理)

柱体体积公式为:,(为底面积,为高)
锥体体积公式为:,(为底面积,为高)
台体体积公式为:
(,分别为上、下底面面积,为高)

补充:柱体的高是指两底面之间的距离;锥体的高是指顶点到底面的距离;台体的高是指上、下底面之间的距离.

反思:思考下列问题
⑴比较柱体和锥体的体积公式,你发现什么结论?
⑵比较柱体、锥体、台体的体积公式,你能发现三者之间的关系吗?

※典型例题
例1如图(1)所示,三棱锥的顶点为,是它的三条侧棱,且分别是面的垂线,又,,求三棱锥的体积.

变式:如图(2),在边长为4的立方体中,求三棱锥的体积.

小结:求解锥体体积时,要注意观察其结构特征,尤其是三棱锥(四面体),它的每一个面都可以当作底面来处理.这一方法又叫做等体积法,通常运用此法可以求点到平面的距离(后面将会学习),它会给我们的计算带来方便.

例2高12的圆台,它的中截面(过高的中点且平行于底面的平面与圆台的截面)面积为225,体积为,求截得它的圆锥的体积.

变式:已知正六棱台的上、下底面边长分别为2和4,高为2,求截得它的的正六棱锥的体积.

小结:对于台体和其对应锥体之间的关系,可通过轴截面中对应边的关系,用相似三角形的知识来解.
※动手试试
练1.在△中,°,若将△绕直线旋转一周,求所形成的旋转体的体积.

练2.直三棱柱高为6,底面三角形的边长分别为3,将棱柱削成圆柱,求削去部分体积的最小值.

三、总结提升
※学习小结
1.柱体、锥体、台体体积公式及应用,公式不要死记,要在理解的基础上掌握;
2.求体积要注意顶点、底面、高的合理选择.

※知识拓展
祖暅及祖暅原理
祖暅,祖冲之(求圆周率的人)之子,河北人,南北朝时代的伟大科学家.柱体、锥体,包括球的体积都可以用祖暅原理推导出来.

祖暅原理:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等.

学习评价
※自我评价你完成本节导学案的情况为().
A.很好B.较好C.一般D.较差
※当堂检测(时量:5分钟满分:10分)计分:
1.圆柱的高增大为原来的3倍,底面直径增大为原来的2倍,则圆柱的体积增大为原来的().
A.6倍B.9倍C.12倍D.16倍
2.已知直四棱柱相邻的三个面的面积分别为,,,则它的体积为().
A.B.C.D.4
3.各棱长均为的三棱锥中,任意一个顶点到其对应面的距离为().
A.B.C.D.
4.一个斜棱柱的的体积是30,和它等底等高的棱锥的体积为________.
5.已知圆台两底面的半径分别为,则圆台和截得它的圆锥的体积比为___________.

课后作业
1.有一堆规格相同的铁制(铁的密度是)六角螺帽共重,已知底面是正六边形,边长为12,内孔直径为10,高为10,问这堆螺帽大约有多少个(取3.14).

2.一个四棱锥和一个三棱锥恰好可以拼成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为,则﹕﹕=