88教案网

你的位置: 教案 > 高中教案 > 导航 > 高一物理《动能和动能定理》复习学案

高中物理动能定理教案

发表时间:2020-05-20

高一物理《动能和动能定理》复习学案。

一名优秀的教师就要对每一课堂负责,作为高中教师就需要提前准备好适合自己的教案。教案可以让学生能够在教学期间跟着互动起来,让高中教师能够快速的解决各种教学问题。你知道怎么写具体的高中教案内容吗?以下是小编收集整理的“高一物理《动能和动能定理》复习学案”,但愿对您的学习工作带来帮助。<jAb88.coM/p>高一物理《动能和动能定理》复习学案
动能和动能定理
三维教学目标
1、知识与技能
(1)知道动能的定义式,能用动能的定义式计算物体的动能;
(2)理解动能定理反映了力对物体做功与物体动能的变化之间的关系;
(3)能够理解动能定理的推导过程,知道动能定理的适用条件;
(4)能够应用动能定理解决简单的实际问题。
2、过程与方法
(1)运用归纳推导方式推导动能定理的表达式;
(2)通过动能定理的推导理解理论探究的方法及其科学思维的重要意义;
(3)通过对实际问题的分析,对比牛顿运动定律,掌握运用动能定理分析解决问题的方法及其特点。
3、情感、态度与价值观
(1)通过动能定理的归纳推导培养学生对科学研究的兴趣;
(2)通过对动能定理的应用感悟量变(过程的积累)与质变(状态的改变)的哲学关系。
教学重点:动能的概念;动能定理的推导和理解。
教学难点:动能定理的理解和应用。
教学过程:
第七节动能和动能定理
1、对“动能”的初步认识
追寻守恒量中,已经知道物体由于运动而具有的能叫动能,大家先猜想一下动能与什么因素有关?应该与物体的质量与速度有关。
你能通过实验粗略验证一下你的猜想吗?(物体的动能与物体的质量和速度有什么关系)。
方案1:让滑块从光滑的导轨上滑下与静止的木块相碰,推动木块做功。
实验:(1)让同一滑块从不同的高度滑下;(2)让质量不同的滑块从同一高度滑下。
现象:(1)高度大时滑块把木块推得远,对木块做的功多;(2)质量大的滑块把木块推得远,对木块做的功多。
实验结果:
(1)高度越大,滑块滑到底端时速度越大,在质量相同的情况下,速度越大,对外做功的本领越强,说明滑块由于运动而具有的能量越多。
(2)滑块从相同的高度滑下,具有的末速度是相同的,之所以对外做功的本领不同,是因为滑块的质量不同,在速度相同的情况下,质量越大,滑块对外做功的能力越强,也就是说滑块由于运动而具有的能量越多。
归纳:物体的质量越大、速度越大物体的动能越大。
方案2:被举高的锤子下落可将铁钉钉入木板中,高度越高,锤子越重具有的动能越大,钉铁钉得越深。
2、对“动能的变化”原因的初步探究
前边我们学过,当力对物体做功时会对应某种形式的能的变化,例如:重力做功对应于重力势能的变化,弹簧弹力做功对应于弹性势能的变化,那么什么原因使物体的动能发生变化哪?
(1)多媒体演示实验:
实验1:小球在空中下落过程,重力做正功,动能增大。
实验2:沿粗糙平面滑动的小车由运动到静止,由于摩擦阻力做负功,小车的动能减小。
(2)学生观察实验现象(要求学生观察物体在运动过程中受力、各力做功,及物体动能的变化情况?
(3)得出结论:外力做功(牵引力、阻力或其它力等)是物体的动能改变的原因。
3、定量探究:外力做功与物体动能的变化之间的定量关系
(1)就下列几种物理情境,用牛顿运动定律推导:外力做功与物体动能的变化之间的定量关系。
用多媒体展示:
情境1:质量为m的物体,在光滑水平面上,受到与运动方向相同的水平外力F的作用下,发生一段位移L,速度由V1增加到V2
情境2:质量为m的物体,在粗糙水平面上,受摩擦力的作用下,发生一段位移L,速度由V1增加到V2
情境3:质量为m的物体,在粗糙水平面上,受到与运动方向相同的水平外力F和摩擦力的作用下,发生一段位移L,速度由V1增加到V2
按学生基础情况分组推导,将结论填入下面的表格中,并用语言表述本小组的结论:
物理情境
结论
1
2
-
3
教师在学生表述自己得出的结论(各组的分结论)后,引导学生得出动能定理的具体内容。及其理解动能的概念。
结论:合力的功等于物体动能的变化量。
分析总结、讲解规律
1、动能
(1)“”是一个新的物理量
(2)是物体末状态的一个物理量,是物体初状态的一个物理量。其差值正好等于合力对物体做的功。
(3)物理量定为动能,其符号用EK表示,即当物体质量为m,速度为V时,其动能:EK=
(4)动能是标量,单位焦耳(J)
(5)含义:动能是标量,同时也是一个状态量
(6)动能具有瞬时性,是个状态量:对应一个物体的质量和速度就有一个动能的值。
计算:我国第一颗人造卫星的质量是173㎏,运行速度是7.2㎞/S,它的动能是多少?
答:EK=mV2/2=4.48×109(J)通过计算进一步理解动能的物理意义。
2、动能定理
有了动能的表达式,前面推出的W=mV22/2-mV12/2就写成W=EK2-EK1
师生讨论、、的物理意义,最后得出:力在一个过程中对物体做的功等于物体在该过程中的动能变化。这个结论叫动能定理。
(1)内容:合力在一个过程中对物体做的功等于物体在该过程中的动能变化量。
(2)表达式:W=EK2-EK1
(3)讨论:
①当合力做正功时,物体动能如何变化?
②当合力做负功时,物体动能如何变化?
③当物体受变力作用,如何计算物体动能的变化?
④当物体做曲线运动时,如何计算物体动能的变化?
答案:
①当合力做正功时,物体动能增加。
②当合力做负功时,物体动能减小。
③当物体受变力作用,可把过程分解成许多小段每一段按照恒力运动是直线分段求解。
④当物体做曲线运动时,可把过程分解成许多小段每一段按照恒力运动是直线分段求解。
3、应用练习
例题:一架喷气式飞机质量为5.0×103㎏,起飞过程中从静止开始滑跑,当位移达到L=5.3×102m时,速度达到起飞速度V=60/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍。求:飞机受到的牵引力。
思考:
(1)该题中叙述飞机的一个什么过程?答:飞机的起飞过程。
(2)飞机的初速度多大?末速度多大?做功的位移多大?V初=0V末=60m/sL=5.0×103㎏
(3)起飞过程中有几个力?大小方向如何?
答:四个力。重力、支持力、牵引力、阻力。其中牵引力和阻力做功。牵引力做正功,阻力做负功。
(4)如何求解合力做功?答:两种方法:①W分=F合L②W分=F牵L-fL
解:飞机起飞初动能EK1=0末动能EK=mV2/2合力功有W=F合L
根据动能定理:F合L=mV2/2-0,根据飞机起飞时受力F=F牵-f阻
F牵=mV2/2L+f阻=1.8×104(V),飞机受到的牵引力是1.8×104(V)。
4、拓展训练:
(1)该题中飞机起飞过程中牵引力的功转化成什么了?(讨论完成?)
答:牵引力做的功转化成了飞机起飞的动能和飞机与地面摩擦的内能(即摩擦力做的功)。
(2)本题是否可用牛顿运动定律来解,与上面解法有何不同?(用牛顿运动定律重解例题)
(3)物体的运动为多段运动组成,是否可用动能定理来解?如何来解?(举个例题)

相关阅读

动能和动能定理


必修二第七章:第七节动能和动能定理教案
一、教材分析:动能定理是本章教学重点,也是整个力学的重点。动能定理是一条适用范围很广的物理定理,但教材在推导这一定理时,由一个恒力做功使物体的动能变化,得出力在一个过程中所做的功等于物体在这个过程中动能的变化。然后逐步扩大几个力做功和变力做功及物体做曲线运动的情况。这个梯度是很大的,为了帮助学生真正理解动能定理,教师可以设置一些具体的问题,让学生寻找物体动能的变化与那些力做功相对应。
二、教学三维目标:
(一)知识与技能:
1、知道动能的符号和表达式和符号,理解动能的概念,利用动能定义式进行计算。
2、理解动能定理表述的物理意义,并能进行相关分析与计算
3、深化性理解动能定理的物理含义,区别共点力作用与多物理过程下动能定理的表述
(二)过程与方法:
1、掌握利用牛顿运动定律和动学公式推导动能定理
2、理解恒力作用下牛顿运动定律与动能定理处理问题的异同点,体会变力作用下动能定理解决问题的优越性。
(三)情感态度与价值观
1、感受物理学中定性分析与定量表述的关系,学会用数学语言推理的简洁美。
2、体会从特殊到一般的研究方法。
教学重点:理解动能的概念,会用动能的定义式进行计算。
教学难点:探究功与速度变化的关系,会推导动能定理的表达式,理解动能定理的含义与适用范围,会利用动能定理解决有关问题。
三、教学过程:
(一)提出问题、导入新课
通过上节探究功与速度变化的关系:功与速度变化的平方成正比。
问:动能具体的数学表达式是什么?
(二)动能表达式的推导
1、动能与什么因素有关?
动能是物体由于运动而具有的能量,所以动能与物体的质量和速度有关,质量越大、速度越大,物体的动能越大
2、例;有一质量为M的物体以初速度V1在光滑的水平面上运动,受到的拉力为F,经过位移为X后速度变为V2.。根据以上,可以列出的表达式:
3、动能
1.定义:_由于物体运动而具有的能量______________________;
2.公式表述:_______________________;
3.理解
⑴状态物理量→能量状态;→机械运动状态;
⑵标量性:大小,无负值;
(三)动能定理
1、表达式:
2、内容:合外力对物体所做的功,等于物体动能的该变量。
3、理解:
1)若合外力方向与物体运动方向相同时,合外力对物体做正功,W﹥0,则物体动能增加。2)若合外力方向与物体运动方向相反时,合外力对物体做负功,W﹤0,则物体动能减小。
四、例题解析:
例1质量为8g子弹以400m/s的速度水平射入厚为5cm的木板,射出后的速度为100m/s,求子弹克服阻力所做的功以及子弹受到的平均阻力。
解:子弹射入木板的过程中,在竖直方向受到的重力和支持力的作用互相抵消,在水平方向受到阻力为Ff,如图所示。根据动能定理得

五、方法归纳:
动能定理的应用步骤:
(1)明确研究对象及所研究的物理过程。
(2)对研究对象进行受力分析,并确定各力所做的功,求出这些力的功的代数和。
(3)确定始、末态的动能。(未知量用符号表示),根据动能定理列出方程
(4)求解方程、分析结果。
六、巩固练习
1.如图所示在高为H的平台上以初速V0抛出一质量为m的小球,不计空气阻力,当它到达离抛出点的竖直距离为h的B点时,小球的动能增量为()
A.B.
C.D.
2.静止在光滑水平面上的物体,在水平力F的作用下产生位移s而获得速度v,若水平面不光滑,物体运动时受到摩擦力为(n是大于1的常数),仍要使物体由静止出发通过位移s而获得速度v,则水平力为()
A.B.C.D.
3、下列关于运动物体所受的合外力、合外力做功和动能变化的关系,正确的是()
A.如果物体所受的合外力为零,那么,合外力对物体做的功一定为零
B.如果合外力对物体所做的功为零,则合外力一定为零
C.物体在合外力作用下作变速运动,动能一定变化
D.物体的动能不变,所受的合外力必定为零
4、质量为m的物体,从静止开始以a=g/2的加速度竖直向下运动h米,下列说法中错误的是()
A.物体的动能增加了mgh/2B.物体的动能减少了mgh/2
C.物体的势能减少了mgh/2D.物体的势能减少了mgh
5、一质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度2m/s,则下列说法正确的是()
A.手对物体做功12JB.合外力对物体做功12J
C.合外力对物体做功2JD.物体克服重力做功10J
6、如图所示,汽车在拱型桥上由A匀速率地运动到B,以下说法正确的是()
A.牵引力与摩擦力做的功相等
B.牵引力和重力做的功大于摩擦力做的功
C.合外力对汽车不做功
D.重力做功的功率保持不变
7.一质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度2m/s,则下列说法正确的是[]
A.手对物体做功12JB.合外力对物体做功12J
C.合外力对物体做功2JD.物体克服重力做功10J

动能动能定理


一、教学目标

1.理解动能的概念:

(1)知道什么是动能。

制中动能的单位是焦耳(J);动能是标量,是状态量。

(3)正确理解和运用动能公式分析、解答有关问题。

2.掌握动能定理:

(1)掌握外力对物体所做的总功的计算,理解“代数和”的含义。

(2)理解和运用动能定理。

二、重点、难点分析

1.本节重点是对动能公式和动能定理的理解与应用。

2.动能定理中总功的分析与计算在初学时比较困难,应通过例题逐步提高学生解决该问题的能力。

3.通过动能定理进一步加深功与能的关系的理解,让学生对功、能关系有更全面、深刻的认识,这是本节的较高要求,也是难点。

三、教具

投影仪与幻灯片若干。

四、主要教学过程

(一)引入新课

初中我们曾对动能这一概念有简单、定性的了解,在学习了功的概念及功和能的关系之后,我们再进一步对动能进行研究,定量、深入地理解这一概念及其与功的关系。

(二)教学过程设计

1.什么是动能?它与哪些因素有关?这主要是初中知识回顾,可请学生举例回答,然后总结作如下板书:

物体由于运动而具有的能叫动能,它与物体的质量和速度有关。

下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。所以说动能是表征运动物体做功的一种能力。

2.动能公式

动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。因此我们可以通过做功来研究能量。外力对物体做功使物体运动而具有动能。下面我们就通过这个途径研究一个运动物体的动能是多少。

用投影仪打出问题,引导学生回答:

光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。在恒定外力F作用下,物体发生一段位移s,得到速度v(如图1),这个过程中外力做功多少?物体获得了多少动能?

样我们就得到了动能与质量和速度的定量关系:

物体的动能等于它的质量跟它的速度平方的乘积的一半。用Ek表示动能,则计算动能的公式为:

由以上推导过程可以看出,动能与功一样,也是标量,不受速度方向的影响。它在国际单位制中的单位也是焦耳(J)。一个物体处于某一确定运动状态,它的动能也就对应于某一确定值,因此动能是状态量。

下面通过一个简单的例子,加深同学对动能概念及公式的理解。

试比较下列每种情况下,甲、乙两物体的动能:(除下列点外,其他情况相同)

①物体甲的速度是乙的两倍;②物体甲向北运动,乙向南运动;

③物体甲做直线运动,乙做曲线运动;④物体甲的质量是乙的一半。

在学生得出正确答案后总结:动能是标量,与速度方向无关;动能与速度的平方成正比,因此速度对动能的影响更大。

3.动能定理

(1)动能定理的推导

将刚才推导动能公式的例子改动一下:假设物体原来就具有速度v1,且水平面存在摩擦力f,在外力F作用下,经过一段位移s,速度达到v2,如图2,则此过程中,外力做功与动能间又存在什么关系呢?

外力F做功:W1=Fs

摩擦力f做功:W2=-fs

可见,外力对物体做的总功等于物体在这一运动过程中动能的增量。其中F与物体运动同向,它做的功使物体动能增大;f与物体运动反向,它做的功使物体动能减少。它们共同作用的结果,导致了物体动能的变化。

将上述问题再推广一步:若物体同时受几个方向任意的外力作用,情况又如何呢?引导学生推导出正确结论并板书:

外力对物体所做的总功等于物体动能的增加,这个结论叫动能定理。

用W总表示外力对物体做的总功,用Ek1表示物体初态的动能,用Ek2表示末态动能,则动能定理表示为:

(2)对动能定理的理解

动能定理是学生新接触的力学中又一条重要规律,应立即通过举例及分析加深对它的理解。

a.对外力对物体做的总功的理解

有的力促进物体运动,而有的力则阻碍物体运动。因此它们做的功就有正、负之分,总功指的是各外力做功的代数和;又因为W总=W1+W2+…=F1·s+F2·s+…=F合·s,所以总功也可理解为合外力的功。

b.对该定理标量性的认识

因动能定理中各项均为标量,因此单纯速度方向改变不影响动能大小。如匀速圆周运动过程中,合外力方向指向圆心,与位移方向始终保持垂直,所以合外力做功为零,动能变化亦为零,并不因速度方向改变而改变。

c.对定理中“增加”一词的理解

由于外力做功可正、可负,因此物体在一运动过程中动能可增加,也可能减少。因而定理中“增加”一词,并不表示动能一定增大,它的确切含义为末态与初态的动能差,或称为“改变量”。数值可正,可负。

d.对状态与过程关系的理解

功是伴随一个物理过程而产生的,是过程量;而动能是状态量。动能定理表示了过程量等于状态量的改变量的关系。

4.例题讲解或讨论

主要针对本节重点难点——动能定理,适当举例,加深学生对该定理的理解,提高应用能力。

例1.一物体做变速运动时,下列说法正确的是[]

A.合外力一定对物体做功,使物体动能改变

B.物体所受合外力一定不为零

C.合外力一定对物体做功,但物体动能可能不变

D.物体加速度一定不为零

此例主要考察学生对涉及力、速度、加速度、功和动能各物理量的牛顿定律和动能定理的理解。只要考虑到匀速圆周运动的例子,很容易得到正确答案B、D。

例2.在水平放置的长直木板槽中,一木块以6.0m/s的初速度开始滑动。滑行4.0m后速度减为4.0m/s,若木板糟粗糙程度处处相同,此后木块还可以向前滑行多远?

此例是为加深学生对负功使动能减少的印象,需正确表示动能定理中各物理量的正负。解题过程如下:

设木板槽对木块摩擦力为f,木块质量为m,据题意使用动能定理有:

二式联立可得:s2=3.2m,即木块还可滑行3.2m。

此题也可用运动学公式和牛顿定律来求解,但过程较繁,建议布置学生课后作业,并比较两种方法的优劣,看出动能定理的优势。

例3.如图3,在水平恒力F作用下,物体沿光滑曲面从高为h1的A处运动到高为h2的B处,若在A处的速度为vA,B处速度为vB,则AB的水平距离为多大?

可先让学生用牛顿定律考虑,遇到困难后,再指导使用动能定理。

A到B过程中,物体受水平恒力F,支持力N和重力mg的作用。三个力做功分别为Fs,0和-mg(h2-h1),所以动能定理写为:

从此例可以看出,以我们现在的知识水平,牛顿定律无能为力的问题,动能定理可以很方便地解决,其关键就在于动能定理不计运动过程中瞬时细节。

通过以上三例总结一下动能定理的应用步骤:

(1)明确研究对象及所研究的物理过程。

(2)对研究对象进行受力分析,并确定各力所做的功,求出这些力的功的代数和。

(3)确定始、末态的动能。(未知量用符号表示),根据动能定理列出方程

W总=Ek2—Ek1

(4)求解方程、分析结果

我们用上述步骤再分析一道例题。

例4.如图4所示,用细绳连接的A、B两物体质量相等,A位于倾角为30°的斜面上,细绳跨过定滑轮后使A、B均保持静止,然后释放,设A与斜面间的滑动摩擦力为A受重力的0.3倍,不计滑轮质量和摩擦,求B下降1m时的速度多大。

让学生自由选择研究对象,那么可能有的同学分别选择A、B为研究对象,而有了则将A、B看成一个整体来分析,分别请两位方法不同的学生在黑板上写出解题过程:

三式联立解得:v=1.4m/s

解法二:将A、B看成一整体。(因二者速度、加速度大小均一样),此时拉力T为内力,求外力做功时不计,则动能定理写为:

f=0.3mg

二式联立解得:v=1.4m/s

可见,结论是一致的,而方法二中受力体的选择使解题过程简化,因而在使用动能定理时要适当选取研究对象。

(三)课堂小结

1.对动能概念和计算公式再次重复强调。

2.对动能定理的内容,应用步骤,适用问题类型做必要总结。

3.通过动能定理,再次明确功和动能两个概念的区别和联系、加深对两个物理量的理解。

五、说明

1.由于计算功时质点的位移和动能中的速度都与参考系有关。因此对学习基础较好的学生,可以补充讲解功和动能对不同惯性系的相对性和动能定理的不变性。如时间较紧。可在教师适当提示下,让学生在课下思考解答。

2.一节课不可能对动能定理的应用讲解的非常全面、深刻,但一定要强调公式中各物理量的正确含义,因为动能定理实质上就是能的转化和守恒定律的一种表达形式,掌握好动能定理,以后才能顺利地深入研究功能关系、机械能守恒定律及能的转化和守恒定律。如果一开始就概念不清,很可能影响以后知识的学习。

动能定理


一位优秀的教师不打无准备之仗,会提前做好准备,作为教师就要早早地准备好适合的教案课件。教案可以让上课时的教学氛围非常活跃,帮助教师提前熟悉所教学的内容。那么如何写好我们的教案呢?小编收集并整理了“动能定理”,希望对您的工作和生活有所帮助。

第4节动能定理
【学习目标】
1.用实验来探究恒力做功与物体动能变化的关系,导出动能定理。
2.理解动能定理,知道动能定理的适用条件,知道用动能定理解题的基本步骤,会用动能定理解决力学问题。

【阅读指导】
1.静止在光滑水平面上的物体,质量为1kg,现用一水平推力F=1N,使物体做匀加速直线运动,1s末物体的速度为______m/s,这时物体具有的动能为_________J,这一过程中物体动能增加了_______J;在这1s内物体受到的合力F合=________N,物体在这1s内的位移为______m,合力对物体所做的功W=________J,在这个过程中合力所做的功________物体动能的变化。
2.静止在粗糙水平面上的物体,质量为1kg,物体与水平面的动摩擦因数为0.2,现用一水平推力F=4N,使物体做匀加速直线运动,1s末物体的速度为_________m/s,物体动能增加了__________J,在这个过程中物体发生的位移为__________m,力F对物体做的功为__________J,摩擦力对物体做的功为________J,物体受到的重力和支持力做功为____,所以,所有力对物体做的功的和为_______J,在该过程中物体受到的合力为_______N,合力的功为_______,在这个过程中合力做的功_________动能的变化。
3.如果物体受到几个力的共同作用,是否合力的功等于动能的变化呢?请依据我们已经学习过的知识进行推导。

4.阅读教材,说说利用动能定理来解力学问题时,应遵循什么步骤?

【课堂练习】
★夯实基础
1.关于做功和物体动能变化的关系,下列说法中正确的是()
A.合力对物体所做的功为正,物体的动能就一定增加
B.只要有摩擦力对物体做功,物体的动能就一定减少
C.外力对物体做功的代数和等于物体的末动能与初动能之差
D.外力对物体做功的代数和为负,物体的动能一定减小
2.两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑
动,最后都静止,它们滑行的距离是()
A.乙大B.甲大C.一样大D.无法比较
3.两辆汽车在同一水平路面上行驶,它们的质量之比为m1:m2=1:2,速度之比为v1:v2=2:1,当汽车急刹车后,甲、乙两辆汽车滑行的最大距离为s1和s2,两车与路面的动摩擦因数相同,不计空气阻力,则()
A.s1:s2=1:2B.s1:s2=1:1
C.s1:s2=2:1D.s1:s2=4:1
4.质量为m的物体静止在水平面上,在水平力F作用下沿水平面向前滑行s,撤去F后物体在水平面上可继续滑行2s距离后停下,则物体与地面间的动摩擦因数为__________。
5.某人将2kg的物体由静止向上提起1m,这时物体的速度为1m/s,则人对物体做了多少功?

6.如图所示,质量为m的物体,从地面上方H高处无初速度地自由落下,物体落下后陷入砂土深h处,在此过程中,重力对物体所做的功为__________,物体的重力势能________(填“增加”或“减少”)了__________,砂土对物体的平均阻力为__________。

★能力提升
7.一颗子弹以水平速度穿透厚度为3.0m的固定木板后速度减小到原来的1/2,此后它还能穿透同样材料的木板的厚度最多为_________
8.从高为h处水平抛出一个质量为m的小球,落地点与抛出点水平距离为s,则抛球时人对球所做的功为多少?

9.有一质量为0.2kg的物块,从长为4m,倾角为30°的光滑斜面顶端处由静止开始沿斜面滑下,斜面底端和水平面的接触处为很短的圆弧形,如图所示.物块和水平面间的动摩擦因数为0.2,求:
(1)物块在水平面能滑行的距离;
(2)物块克服摩擦力所做的功.(g取10m/s2)

第4节动能定理
【阅读指导】

1、10.50.510.50.5等于2、2214-20222J等于3、略4、略

【课堂练习】
1、ACD2、B3、D4、5、21J6、mg(H+h)减少mg(H+h)mg(H+h)/h7、

高三物理《动能和动能定理》教材分析


高三物理《动能和动能定理》教材分析

考点18动能和动能定理
考点名片
考点细研究:本考点的命题要点有:(1)动能及动能定理;(2)应用动能定理求解多过程问题;(3)应用动能定理求解多物体的运动问题。其中考查到的如:20xx年全国卷第20题、20xx年浙江高考第18题、20xx年天津高考第10题、20xx年四川高考第1题、20xx年全国卷第17题、20xx年海南高考第4题、20xx年天津高考第10题、20xx年山东高考第23题、20xx年浙江高考第23题、20xx年福建高考第21题、20xx年大纲全国卷第19题、20xx年北京高考第22题等。
备考正能量:本考点内容命题题型非常全面,既有选择题、又有实验题、也有计算题,以中等试题难度为主。常以生产、科技发展为命题背景,可与动力学结合,也可以与电磁学结合考查。预计今后依然会延续这些特点。

一、基础与经典
1.NBA篮球赛非常精彩,吸引了众多观众。比赛中经常有这样的场面:在临终场0.1s的时候,运动员把球投出且准确命中,获得比赛的胜利。若运动员投篮过程中对篮球做功为W,出手高度为h1,篮筐的高度为h2,球的质量为m,空气阻力不计,则篮球进筐时的动能为()
A.mgh1+mgh2-WB.mgh2-mgh1-W
C.W+mgh1-mgh2D.W+mgh2-mgh1
答案C
解析根据动能定理,球获得初动能Ek0的过程有W=Ek0-0,球离开手到进筐时的过程有-mg(h2-h1)=Ek-Ek0,得篮球进筐时的动能Ek=W+mgh1-mgh2,只有选项C正确。
2.如图所示,质量为m的物块,在恒力F的作用下,沿光滑水平面运动,物块通过A点和B点的速度分别是vA和vB,物块由A运动到B点的过程中,力F对物块做的功W为()

A.Wmv-mv
B.W=mv-mv
C.W=mv-mv
D.由于F的方向未知,W无法求出
答案B
解析对物块由动能定理得:W=mv-mv,故选项B正确。
3.质量为10kg的物体,在变力F作用下沿x轴做直线运动,力随坐标x的变化情况如图所示。物体在x=0处,速度为1m/s,一切摩擦不计,则物体运动到x=16m处时,速度大小为()

A.2m/sB.3m/sC.4m/sD.m/s
答案B
解析根据力F随x变化关系图象与横轴所夹图形面积表示功知,力F做功W=40J+20J-20J=40J。由动能定理,W=mv2-mv,解得v=3m/s。选项B正确。
4.如图所示,在光滑水平面上有一长木板,质量为M,在木板左端放一质量为m的物块,物块与木板间的滑动摩擦力为Ff,给物块一水平向右的恒力F,当物块相对木板滑动L距离时,木板运动位移为x,则下列说法正确的是()

A.此时物块的动能为FL
B.此时物块的动能为(F-Ff)L
C.此时物块的动能为F(L+x)-FfL
D.此时木板的动能为Ffx
答案D
解析考虑物块的动能,对物块列动能定理
(F-Ff)(L+x)=mv2-0,所以A、B、C错误,
对木板有:Ff·x=Mv2-0,
故只有选项D正确。
5.如图所示,质量为m的小球,从离地面H高处由静止释放,落到地面后继续陷入泥中h深度而停止,设小球受到空气阻力为f,则下列说法正确的是()

A.小球落地时动能等于mgH
B.小球陷入泥中的过程中克服泥土阻力所做的功小于刚落到地面时的动能
C.整个过程中小球克服阻力做的功等于mg(H+h)
D.小球在泥土中受到的平均阻力为mg(1+H/h)
答案C
解析小球下落高度为H的过程中需要克服空气阻力做功,故其落地时的动能为(mg-f)H,选项A错误;设小球刚落地时的动能为Ek,小球在泥土中运动的过程中克服阻力做功为W1,由动能定理得mgh-W1=0-Ek,解得W1=mgh+Ek,故选项B错误;若设全过程中小球克服阻力做功为W2,则mg(H+h)-W2=0,解得W2=mg(H+h),故选项C正确;若设小球在泥土中运动时,受到的平均阻力为F阻,则全程由动能定理得mg(H+h)-fH-F阻h=0,解得F阻=,故选项D错误。
6.如图所示,质量为m的小车在水平恒力F推动下,从山坡(粗糙)底部A处由静止起运动至高为h的坡顶B,获得的速度为v,A、B之间的水平距离为s,重力加速度为g。下列说法正确的是()

A.小车重力所做的功是mgh
B.合外力对小车做的功是mv2
C.推力对小车做的功是mv2+mgh
D.阻力对小车做的功是Fs-mv2-mgh
答案B
解析小车重力所做的功为-mgh,A错误。由动能定理得合外力对小车做的功W=mv2,B正确。根据动能定理Fs-mgh+Wf=mv2,其中Wf为负值,推力对小车做的功大于mv2+mgh,C错误。阻力对小车做的功为-,故D错误。
7.(多选)一足够长的水平传送带以恒定速率v运动,将一质量为m的物体(视为质点)轻放到传送带左端,则物体从左端运动到右端的过程中,下列说法正确的是()

A.全过程中传送带对物体做功为mv2
B.全过程中物体对传送带做功为-mv2
C.物体加速阶段摩擦力对物体做功的功率逐渐增大
D.物体加速阶段摩擦力对传送带做功的功率恒定不变
答案ACD
解析物体从左端运动到右端的过程中,速率从零增大到v,根据动能定理知传送带对物体做的功为mv2,选项A正确;物体在传送带上先做初速度为零的匀加速直线运动,后做匀速直线运动到右端,则物体相对传送带滑动过程的位移大小s1=t,对应的时间内传送带的位移大小s2=vt,得s2=2s1,全过程中物体对传送带做功为-fs2=-f·2s1=-mv2,选项B错误;物体加速阶段摩擦力对物体做功的功率P′=f·at′,即P′逐渐增大,选项C正确;物体加速阶段摩擦力对传送带做功的功率P=-fv,即P恒定不变,选项D正确。
8.(多选)汽车沿平直的公路以恒定功率P启动,经过一段时间t达到最大速度v,若所受阻力f始终不变,则在t这段时间内()
A.汽车牵引力恒定
B.汽车牵引力做的功为Pt
C.汽车加速度不断减小
D.汽车牵引力做的功为mv2
答案BC
解析根据P=Fv知,速度不断增大,则牵引力不断减小,根据牛顿第二定律得a=,可知加速度不断减小,选项A错误,C正确;因功率P恒定,牵引力做功W=Pt,选项B正确;根据动能定理有W-fs=mv2-0,得Wmv2,选项D错误。
9.(多选)如图所示,斜面AB和水平面BC是由同一板材上截下的两段,在B处用小圆弧连接。将小铁块(可视为质点)从A处由静止释放后,它沿斜面向下滑行,进入平面,最终静止于P处。若从该板材上再截下一段,搁置在A、P之间,构成一个新的斜面,再将铁块放回A处,并轻推一下使之沿新斜面向下滑动。关于此情况下铁块的运动情况,下列描述正确的是()

A.铁块一定能够到达P点
B.铁块的初速度必须足够大才能到达P点
C.铁块能否到达P点与铁块质量有关
D.铁块能否到达P点与铁块质量无关
答案AD
解析设A距离地面的高度为h,动摩擦因数为μ,对全过程运用动能定理有mgh-μmgcosθ·sAB-μmgsBP=0,得mgh-μmg(sABcosθ+sBP)=0,而sABcosθ+sBP=,即h-μ=0,铁块在新斜面上有mgsinα-μmgcosα=ma,由几何关系有sinα-μcosα==0,可知a=0,铁块在新斜面上做匀速运动,与铁块的质量m无关,铁块一定能够到达P点,选项A、D正确,B、C错误。
10.(多选)如图所示,用竖直向下的恒力F通过跨过光滑定滑轮的细线拉动放在光滑水平面上的物体,物体沿水平面移动过程中经过A、B、C三点,设AB=BC,物体经过A、B、C三点时的动能分别为EkA、EkB、EkC,则它们间的关系是()

A.EkB-EkA=EkC-EkB
B.EkB-EkAEkC-EkB
D.EkC2EkB
答案CD
解析由动能定理得EkB-EkA=WAB,EkC-EkB=WBC,物体所受的合外力做的功为拉力的水平分力所做的功。由几何关系可知,从A运动到B的过程中拉力在水平方向的平均分力大小大于从B到C过程中拉力在水平方向的平均分力大小,因此WABWBC,选项A、B错误,C、D正确。
二、真题与模拟
11.20xx·四川高考]韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员。他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1900J,他克服阻力做功100J。韩晓鹏在此过程中()
A.动能增加了1900JB.动能增加了2000J
C.重力势能减小了1900JD.重力势能减小了2000J
答案C
解析由动能定理可知,ΔEk=1900J-100J=1800J,故A、B均错误。重力势能的减少量等于重力做的功,故C正确、D错误。
12.20xx·浙江高考](多选)如图所示为一滑草场。某条滑道由上、下两段高均为h,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ。质量为m的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin37°=0.6,cos37°=0.8)。则()

A.动摩擦因数μ=
B.载人滑草车最大速度为
C.载人滑草车克服摩擦力做功为mgh
D.载人滑草车在下段滑道上的加速度大小为g
答案AB
解析滑草车受力分析如图所示,在B点处有最大速度v,在上、下两段所受摩擦力大小分别为f1、f2,

f1=μmgcos45°,
f2=μmgcos37°,
整个过程由动能定理列方程:
mg·2h-f1·-f2·=0
解得:μ=,A项正确。
滑草车在上段滑道运动过程由动能定理列方程:
mgh-f1·=mv2
解得:v=,B项正确。
由式知:Wf=2mgh,C项错误。
在下段滑道上:mgsin37°-μmgcos37°=ma2,
解得:a2=-g,故D项错误。
13.20xx·全国卷](多选)如图,一固定容器的内壁是半径为R的半球面;在半球面水平直径的一端有一质量为m的质点P。它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W。重力加速度大小为g。设质点P在最低点时,向心加速度的大小为a,容器对它的支持力大小为N,则()

A.a=B.a=
C.N=D.N=
答案AC
解析设质点在最低点的速度为v,根据动能定理,mgR-W=mv2,在最低点,向心加速度a==,A正确,B错误;根据牛顿第二定律,N-mg=ma,则N=mg+ma=,C正确,D错误。
14.20xx·全国卷]如图,一半径为R、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平。一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道。质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小。用W表示质点从P点运动到N点的过程中克服摩擦力所做的功。则()

A.W=mgR,质点恰好可以到达Q点
B.WmgR,质点不能到达Q点
C.W=mgR,质点到达Q点后,继续上升一段距离
D.Wx2C.h1=h2D.h1h2
答案D
解析设物块经过O点时的速度为v,任一斜面的倾角为α,在斜面上上升的竖直高度为h,水平距离为x;根据动能定理得-mgh-μmgcosα·=0-mv2,则得h=,v相同,α越大时,tanα越大,则h越大,h1h2,选项C错误,选项D正确;水平距离x==,知α越大时,tanα越大,则x越小,x1