88教案网

你的位置: 教案 > 高中教案 > 导航 > 20xx高考物理《牛顿运动定律的综合应用》教材解析

高中物理欧姆定律教案

发表时间:2021-02-18

20xx高考物理《牛顿运动定律的综合应用》教材解析。

俗话说,磨刀不误砍柴工。作为高中教师就要在上课前做好适合自己的教案。教案可以让学生能够在教学期间跟着互动起来,使高中教师有一个简单易懂的教学思路。高中教案的内容要写些什么更好呢?下面是小编为大家整理的“20xx高考物理《牛顿运动定律的综合应用》教材解析”,仅供您在工作和学习中参考。

20xx高考物理《牛顿运动定律的综合应用》教材解析

考点11牛顿运动定律的综合应用
考点名片
考点细研究:本考点是物理教材的基础,也是历年高考必考的内容之一,其主要包括的考点有:(1)超重、失重;(2)连接体问题;(3)牛顿运动定律的综合应用、滑块滑板模型、传送带模型等。其中考查到的如:20xx年全国卷第25题、20xx年全国卷第25题、20xx年海南高考第9题、20xx年北京高考第8题、20xx年四川高考第7题、20xx年大纲卷第19题、20xx年江苏高考第5题、20xx年福建高考第15题、20xx年浙江高考第17题和第19题、20xx年广东高考第19题、20xx年山东高考第15题等。
备考正能量:牛顿运动定律是历年高考的主干知识;它不仅是独立的知识点,更是解决力、电动力学综合问题的核心规律。可单独命题(选择题、实验题),也可综合命题(解答题)。高考对本考点的考查以对概念和规律的理解及应用为主,试题难度中等或中等偏上。

一、基础与经典
1.小明家住十层,他乘电梯从一层直达十层。则下列说法正确的是()
A.他始终处于超重状态
B.他始终处于失重状态
C.他先后处于超重、平衡、失重状态
D.他先后处于失重、平衡、超重状态
答案C
解析小明乘坐电梯从一层直达十层过程中,一定是先向上加速,再向上匀速,最后向上减速,运动过程中加速度方向最初向上,中间为零,最后加速度方向向下,因此先后对应的状态应该是超重、平衡、失重三个状态,C正确。
2.如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上,已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。在物块放到木板上之后,木板运动的速度—时间图象可能是图中的()

答案A
解析放上小木块后,长木板受到小木块施加的向左的滑动摩擦力和地面向左的滑动摩擦力,在两力的共同作用下减速,小木块受到向右的滑动摩擦力作用,做匀加速运动,当两者速度相等后,可能以共同的加速度一起减速,直至速度为零,共同减速时的加速度小于木板刚开始运动时的加速度,故A正确,也可能物块与长木板间动摩擦因数较小,达到共同速度后物块相对木板向右运动,给木板向右的摩擦力,但木板的加速度也小于刚开始运动的加速度,B、C错误;由于水平面有摩擦,故两者不可能一起匀速运动,D错误。
3.如图所示,放在固定斜面上的物块以加速度a沿斜面匀加速下滑,若在物块上再施加一个竖直向下的恒力F,则()

A.物块可能匀速下滑
B.物块仍以加速度a匀加速下滑
C.物块将以大于a的加速度匀加速下滑
D.物块将以小于a的加速度匀加速下滑
答案C
解析对物块进行受力分析,设斜面的角度为θ,可列方程mgsinθ-μmgcosθ=ma,sinθ-μcosθ=,当加上力F后,由牛顿第二定律得(mg+F)sinθ-μ(mg+F)cosθ=ma1,即mgsinθ-μmgcosθ+Fsinθ-μFcosθ=ma1,ma+Fsinθ-μFcosθ=ma1,Fsinθ-μFcosθ=F(sinθ-μcosθ)=,大于零,代入上式知,a1大于a。物块将以大于a的加速度匀加速下滑。只有C项正确。
4.(多选)如图所示,质量分别为mA、mB的A、B两物块用轻线连接,放在倾角为θ的斜面上,用始终平行于斜面向上的拉力F拉A,使它们沿斜面匀加速上升,A、B与斜面间的动摩擦因数均为μ。为了增加轻线上的张力,可行的办法是()

A.减小A物块的质量B.增大B物块的质量
C.增大倾角θD.增大动摩擦因数μ
答案AB
解析对A、B组成的系统应用牛顿第二定律得:F-(mA+mB)gsinθ-μ(mA+mB)gcosθ=(mA+mB)a,隔离物体B,应用牛顿第二定律得,FT-mBgsinθ-μmBgcosθ=mBa。以上两式联立可解得:FT=,由此可知,FT的大小与θ、μ无关,mB越大,mA越小,FT越大,故A、B均正确。
5.(多选)质量分别为M和m的物块形状大小均相同,将它们通过轻绳跨过光滑定滑轮连接,如图甲所示,绳子平行于倾角为α的斜面,M恰好能静止在斜面上,不考虑M、m与斜面之间的摩擦。若互换两物块位置,按图乙放置,然后释放M,斜面仍保持静止。则下列说法正确的是()

A.轻绳的拉力等于Mg
B.轻绳的拉力等于mg
C.M运动的加速度大小为(1-sinα)g
D.M运动的加速度大小为g
答案BC
解析互换位置前,M静止在斜面上,则有:Mgsinα=mg,互换位置后,对M有Mg-FT=Ma,对m有:FT′-mgsinα=ma,又FT=FT′,解得:a=(1-sinα)g,FT=mg,故A、D错误,B、C正确。
6.如图所示,木块A的质量为m,木块B的质量为M,叠放在光滑的水平面上,A、B之间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g。现用水平力F作用于A,则保持A、B相对静止的条件是F不超过()

A.μmgB.μMg
C.μmgD.μMg
答案C
解析由于A、B相对静止,以整体为研究对象可知F=(M+m)a;若A、B即将相对滑动,以物体B为研究对象可知μmg=Ma,联立解得F=μmg,选项C正确。
7.如图甲所示,静止在光滑水平面上的长木板B(长木板足够长)的左端静止放着小物块A。某时刻,A受到水平向右的外力F作用,F随时间t的变化规律如图乙所示,即F=kt,其中k为已知常数。设物体A、B之间的滑动摩擦力大小等于最大静摩擦力Ff,且A、B的质量相等,则下列可以定性描述长木板B运动的vt图象是()

答案B
解析A、B相对滑动之前加速度相同,由整体法可得:F=2ma,F增大,a增大。当A、B间刚好发生相对滑动时,对木板有Ff=ma,故此时F=2Ff=kt,t=,之后木板做匀加速直线运动,故只有B项正确。
8.如图,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。下列反映a1和a2变化的图线中正确的是()

答案A
解析本题考查的是牛顿第二定律的应用。本题中开始阶段两物体一起做匀加速运动有F=(m1+m2)a,即a==,两物体加速度相同且与时间成正比。当两物体间的摩擦力达到μm2g后,两者发生相对滑动。对m2有F-f=ma2,在相对滑动之前f逐渐增大,相对滑动后f=μm2g不再变化,a2==-μg,故其图象斜率增大;而对m1,在发生相对滑动后,有μm2g=m1a1,故a1=为定值。故A选项正确。
9.(多选)神舟飞船返回时,3吨重的返回舱下降到距地面10km时,下降速度为200m/s。再减速就靠降落伞了,先是拉出减速伞,16s后返回舱的速度减至80m/s,此时减速伞与返回舱分离。然后拉出主伞,主伞张开后使返回舱的下降速度减至10m/s,此时飞船距地面高度为1m,接着舱内4台缓冲发动机同时点火,给飞船一个向上的反冲力,使飞船的落地速度减为零。将上述各过程视为匀变速直线运动,g=10m/s2。根据以上材料可得()

A.减速伞工作期间返回舱处于失重状态
B.主伞工作期间返回舱处于失重状态
C.减速伞工作期间返回舱的平均加速度大小为7.5m/s2
D.每台缓冲发动机的反冲推力约为返回舱重力的1.5倍
答案CD
解析减速伞和主伞工作期间返回舱均减速下降,处于超重状态,A、B项错;减速伞工作期间,返回舱从200m/s减速至80m/s,由运动学公式得a1==7.5m/s2,C项正确;缓冲发动机开动后,加速度大小为a3==50m/s2,由牛顿第二定律得4F-mg=ma3,解得=1.5,D项正确。
10.(多选)如图甲所示,物块的质量m=1kg,初速度v0=10m/s,在一水平向左的恒力F作用下从O点沿粗糙的水平面向右运动,某时刻后恒力F突然反向,整个过程中物块速度的平方随位置坐标变化的图象如图乙所示,g=10m/s2。下列说法中正确的是()

A.0~5s内物块做匀减速运动
B.在t=1s时刻恒力F反向
C.恒力F大小为10N
D.物块与水平面的动摩擦因数为0.3
答案BD
解析题图乙为物块运动的v2x图象,由v2-v=2ax可知,图象的斜率k=2a,得0~5m位移内a1=-10m/s2,5~13m位移内a2=4m/s2,可知恒力F反向时物块恰好位于x=5m处,t==1s,A错误,B正确。对物块受力分析可知,-F-Ff=ma1,F-Ff=ma2,得F=7N,Ff=3N,μ==0.3,C错误,D正确。
二、真题与模拟
11.20xx·海南高考](多选)如图所示,升降机内有一固定斜面,斜面上放一物块。开始时,升降机做匀速运动,物块相对于斜面匀速下滑。当升降机加速上升时()

A.物块与斜面间的摩擦力减小
B.物块与斜面间的正压力增大
C.物块相对于斜面减速下滑
D.物块相对于斜面匀速下滑
答案BD
解析当升降机匀速运动,物块相对于斜面匀速下滑时有:mgsinθ=μmgcosθ,则μ=tanθ(θ为斜面倾角)。当升降机加速上升时,设加速度为a,物体处于超重状态,超重ma。物块“重力”变为G′=mg+ma,支持力变为N′=(mg+ma)cosθmgcosθ,B正确。“重力”沿斜面向下的分力GF′=(mg+ma)sinθ,沿斜面摩擦力变为f′=μN′=μ(mg+ma)cosθμmgcosθ,A错误。f′=μ(mg+ma)cosθ=tanθ(mg+ma)cosθ=(mg+ma)sinθ=G下′,所以物块仍沿斜面匀速运动,D正确,C错误。
12.20xx·海南高考](多选)如图所示,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O,整个系统处于静止状态。现将细线剪断。将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g。在剪断的瞬间()

A.a1=3gB.a1=0
C.Δl1=2Δl2D.Δl1=Δl2
答案AC
解析剪断细线前,把a、b、c看成整体,细线上的拉力为T=3mg。因在剪断瞬间,弹簧未发生突变,因此a、b、c之间的作用力与剪断细线之前相同。则将细线剪断瞬间,对a隔离进行受力分析,由牛顿第二定律得:3mg=ma1,得a1=3g,A正确,B错误。由胡克定律知:2mg=kΔl1,mg=kΔl2,所以Δl1=2Δl2,C正确,D错误。
13.20xx·北京高考]应用物理知识分析生活中的常见现象,可以使物理学习更加有趣和深入。例如平伸手掌托起物体,由静止开始竖直向上运动,直至将物体抛出。对此现象分析正确的是()
A.受托物体向上运动的过程中,物体始终处于超重状态
B.受托物体向上运动的过程中,物体始终处于失重状态
C.在物体离开手的瞬间,物体的加速度大于重力加速度
D.在物体离开手的瞬间,手的加速度大于重力加速度
答案D
解析物体在手掌的推力作用下,由静止竖直向上加速时,物体处于超重状态。当物体离开手的瞬间,只受重力作用,物体的加速度等于重力加速度,处于完全失重状态,故A、B、C错误;物体离开手的前一时刻,手与物体具有相同的速度,物体离开手的下一时刻,手的速度小于物体的速度,即在物体离开手的瞬间这段相同的时间内,手的速度变化量大于物体的速度变化量,故手的加速度大于物体的加速度,也就是手的加速度大于重力加速度,故D正确。
14.20xx·四川高考](多选)如图所示,水平传送带以速度v1匀速运动,小物体P、Q由通过定滑轮且不可伸长的轻绳相连,t=0时刻P在传送带左端具有速度v2,P与定滑轮间的绳水平,t=t0时刻P离开传送带。不计定滑轮质量和摩擦,绳足够长。正确描述小物体P速度随时间变化的图象可能是()

答案BC
解析若v2μmPg,则P先匀减速到零再反向加速到离开传送带(也可能减速过程中就离开传送带);若v2v1,且mQgμmPg,则P先匀减速至v1,然后与传送带一起匀速运动,直到离开传送带(也可能减速过程中就离开传送带);若v2v1且mQgμmPg,满足mQg+μmPg=(mP+mQ)a2,中途减速至v1,以后满足mQg-μmPg=(mP+mQ)a3,以a3先减速到零再以相同的加速度返回直到离开传送带(也可能减速过程中就离开传送带),故C正确,A、D错误。
15.20xx·大纲卷]一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时,上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为()

A.tanθ和B.tanθ和
C.tanθ和D.tanθ和
答案D
解析对物块上滑过程由牛顿第二定律得mgsinθ+μmgcosθ=ma,根据运动规律可得v2=2a·,2=2a·,联立可得μ=tanθ,h=。故D项正确。
16.20xx·福建高考]如图,滑块以初速度v0沿表面粗糙且足够长的固定斜面,从顶端下滑,直至速度为零。对于该运动过程,若用h、s、v、a分别表示滑块的下降高度、位移、速度和加速度的大小,t表示时间,则下列图象最能正确描述这一运动规律的是()

答案B
解析对物体受力分析,由于物体在斜面上能够停止,物体所受的滑动摩擦力大于物体重力沿斜面的分力。设斜面倾角为α,由牛顿第二定律可知,Ff-mgsinα=ma,FN=mgcosα,又Ff=μFN,解得a=μgcosα-gsinα,加速度a为定值,D错误。由v=v0-at可知,vt图线应为倾斜的直线,C错误。由s=v0t-at2可知,st图线为抛物线,B正确。由几何关系可知h=s·sinα,即ht图线应类似于st图线,A错误。
17.20xx·江西宜春三中检测]如图所示,质量为M、中空为半球形的光滑凹槽放置于光滑水平地面上,光滑槽内有一质量为m的小铁球,现用一水平向右的推力F推动凹槽,小铁球与光滑凹槽相对静止时,凹槽圆心和小铁球的连线与竖直方向成α角,则下列说法正确的是()

A.小铁球受到的合外力方向水平向左
B.凹槽对小铁球的支持力为
C.系统的加速度为a=gtanα
D.推力F=Mgtanα
答案C
解析根据小铁球与光滑凹槽相对静止的状态可知,系统有向右的加速度,小铁球受到的合外力方向水平向右,凹槽对小铁球的支持力为,A、B错误。小球所受合外力为mgtanα,加速度a=gtanα,推力F=(m+M)gtanα,C正确,D错误。
18.20xx·海口联考](多选)如图所示,水平传送带A、B两端相距s=3.5m,工件与传送带间的动摩擦因数μ=0.1。工件滑上A端瞬时速度vA=4m/s,到达B端的瞬时速度设为vB,则(g=10m/s2)()

A.若传送带不动,则vB=3m/s
B.若传送带以速度v=4m/s逆时针匀速转动,vB=3m/s
C.若传送带以速度v=2m/s顺时针匀速转动,vB=3m/s
D.若传送带以速度v=2m/s顺时针匀速转动,vB=2m/s
答案ABC
解析若传送带不动,由匀变速规律可知v-v=-2as,a=μg,代入数据解得vB=3m/s,当满足选项B、C中的条件时,工件所受滑动摩擦力跟传送带不动时一样,还是向左,加速度还是μg,所以工件到达B端时的瞬时速度仍为3m/s,故选项A、B、C正确,D错误。
19.20xx·福州质检]如图所示,劲度系数为k的轻弹簧竖直放置,下端固定在水平地面上。一质量为m的小球,从离弹簧上端高h处自由下落,接触弹簧后继续向下运动。观察小球开始下落到小球第一次运动到最低点的过程,下列关于小球的速度v或加速度a随时间t变化的图象中符合实际情况的是()

答案A
解析此过程可分为三段,第一段小球向下做自由落体运动,加速度a=g,方向竖直向下,速度v=gt;第二段小球向下做加速运动,加速度a=,弹簧的压缩量x变大,加速度a变小,方向向下;第三段运动小球向下做减速运动,加速度a=,弹簧的压缩量x变大,加速度a变大,方向向上,到达最低点时ag,而且小球接触弹簧后at图线不是线性关系,所以C、D都错误。又由vt图象的斜率变化代表加速度的变化,故选项A正确。
20.20xx·山东烟台期中](多选)如图所示,横截面为直角三角形的三棱柱质量为M,放在粗糙的水平地面上,两底角中其中一个角的角度为α(α45°)。三棱柱的两倾斜面光滑,上面分别放有质量为m1和m2的两物体,两物体间通过一根跨过定滑轮的细绳相连接,定滑轮固定在三棱柱的顶端,若三棱柱始终处于静止状态。不计滑轮与绳以及滑轮与轮轴之间的摩擦,重力加速度大小为g,则将m1和m2同时由静止释放后,下列说法正确的是()

A.若m1=m2,则两物体可静止在斜面上
B.若m1=m2cotα,则两物体可静止在斜面上
C.若m1=m2,则三棱柱对地面的压力小于(M+m1+m2)g
D.若m1=m2,则三棱柱所受地面的摩擦力大小为零
答案BC
解析若m1=m2,m2的重力沿斜面向下的分力大小为m2gsin(90°-α),m1的重力沿斜面向下的分力大小为m1gsinα,由于α45°,则m2gsin(90°-α)

精选阅读

20xx高考物理复习知识点:牛顿运动定律综合运用


20xx高考物理复习知识点:牛顿运动定律综合运用
1.一有固定斜面的小车在水平面上做直线运动,小球通过细绳与车顶相连.小球某时刻正处于如图所示状态.设斜面对小球的支持力为N,细绳对小球的拉力为T,关于此时刻小球的受力情况,下列说法正确的
A.若小车向左运动,N不可能为零?
B.若小车向右运动,N不可能为零
C.若小车向左运动,T可能为零
D.若小车向右运动,T不可能为零
2.如图所示,质量为M的木板,上表面水平,放在水平桌面上,木板上面有一质量为m的物块,物块与木板及木板与桌面间的动摩擦因数均为,若要以水平外力F将木板抽出,则力F的大小至少为()
A.B.
C.D.
3.一物块以一定的初速度沿斜面向上滑出,利用速度传感器可以在计算机屏幕上得到其速度大小随时间的变化关系图像如图所示,则:
A.该斜面的倾角为300B.沿斜面上升的最大距离为2m
C.该斜面的动摩擦因数为
D.该斜面的动摩擦因数
4.如图示,m1m2,滑轮质量和摩擦均不计,则当m1和m2匀加速运动的过程中,弹簧秤的读数是
A.(m1+m2)gB.(m1-m2)g
C.2m1m2g/(m1+m2)D.4m1m2g/(m1+m2)
5.如图所示,物体A、B、C质量分别为m、2m、3m,A与天花板间,B与C之间用轻弹簧连接,当系统平衡后,突然将AB间绳烧断,在绳断的瞬间,A、B、C的加速度分别为(以向下的方向为正方向)
A、g,g,g
B、-5g,2.5g,0
C、-5g,2g,0
D、-g,2.5g,3g
6.如图所示,DO是水平面,AB是斜面。初速为10m/s的物体从D点出发沿路面DBA恰好可以达到顶点A,如果斜面改为AC,再让该物体从D点出发沿DCA恰好也能达到A点,则物体第二次运动具有的初速度:(已知物体与路面之间的动摩擦因数处处相同且不为零,斜面与水平面间都有微小圆弧连接,物体经过时动能不损失。
A.可能大于10m/s,具体数值与斜面的倾角有关
B.可能小于10m/s,具体数值与斜面的倾角有关
C.一定等于10m/s,具体数值与斜面的倾角无关
D.可能等于10m/s,具体数值与斜面的倾角有关
7.如图所示,小车上有一定滑轮,跨过定滑轮的绳上一端系一重球,另一端系在弹簧秤上,弹簧秤固定在小车上.开始时小车处在静止状态.当小车匀加速向右运动时
A.弹簧秤读数不变,小车对地面的压力不变
B.弹簧秤读数变大,小车对地面的压力变大
C.弹簧秤读数变大,小车对地面的压力不变
D.弹簧秤读数不变,小车对地面的压力变大
8.如图所示,质量为的粗糙斜面上有一质量为的木块在匀减速下滑,则地面受到的压力应
A.等于B.大于
C.小于D.无法确定
9.如图所示,在光滑水平面上放着紧靠在一起的A、B两物体,B的质量是A的2倍,B受到向右的恒力FB=2N,A受到的水平力FA=(9-2t)N(t的单位是s)。从t=0开始计时,则
A.A物体3s末的加速度是初始时刻的
B.t4s后,B物体做匀加速直线运动
C.t=4.5s时,A物体的速度为零
D.t4.5s时,A、B的加速度方向相反
10.升降机沿竖直方向运动,在其水平地板上放有一物体,若物体
对地板的压力大小随时间的变化关系如图所示,则升降机运
动的速度随时间的变化图象可能是
11.如图12所示,一质量为1kg的小球套在一根固定的直杆上,直杆与水平面夹角θ为30°。现小球在F=20N的竖直向上的拉力作用下,从A点静止出发向上运动,已知杆与球间的动摩擦因数为36。试求:
(1)小球运动的加速度a1;
(2)若F作用1.2s后撤去,小球上滑过程中距A点最大距离sm;
(3)若从撤去力F开始计时,小球经多长时间将经过距A点上方为2.25m的B点。
12如图所示,在倾角为θ的光滑斜面上端系有一劲度系数为k的轻质弹簧,弹簧下端连一个质量为m的小球,球被一垂直于斜面的挡板A挡住,此时弹簧没有形变.若挡板A以加速度a(a
(1)小球向下运动多少距离时速度最大?
(2)从开始运动到小球与挡板分离所经历的时间为多少?
13.如图所示,已水平传送带以2m/s的速度传送物块,水平部分长为2m,其右端与一倾角为β=370的光滑斜面相连,斜面长为0.4m,一物块无初速度地放在传送带的最左端,已知物块与传送带间的动摩擦因数为,试问,物块能否达到斜面的顶端,若能请说明理由,若不能则请求出物块从出发后9.5s内运动的路程(传送带与斜面间平滑连接,取g=10m/s2)
14.质量分别为m1和m2的两个小物块用轻绳连接,绳跨过位于倾角α=30°的光滑斜面顶端的轻滑轮,滑轮与转轴之间的摩擦不计,斜面固定在水平桌面上,如图所示。第一次,m1悬空,m2放在斜面上,用t表示m2自斜面底端由静止开始运动至斜面顶端所需的时间。第二次,将m1和m2位置互换,使m2悬空,m1放在斜面上,发现m1自斜面底端由静止开始运动至斜面顶端所需的时间为。求m1与m2之比。
15.如图所示,平板A长L=5m,质量M=5kg,放在水平桌面上,板右端与桌边相齐.在A上距右端s=3m处放一物体B(大小可忽略),其质量m=2kg,已知A、B间动摩擦因数μ1=0.1,A与桌面间和B与桌面间的动摩擦因数μ2=0.2,原来系统静止.现在在板的右端施一大小恒定的水平力F持续作用在物体A上直到将A从B下抽出才撤去,且使B最后停于桌的右边缘,求:(1)物体B运动的时间是多少?(2)力F的大小为多少?
16.一卡车拖挂一相同质量的车厢,在水平直道上以的速度匀速行驶,其所受阻力可视为与车重成正比,与速度无关。某时刻,车厢脱落,并以大小为的加速度减速滑行。在车厢脱落后,司机才发觉并紧急刹车,刹车时阻力为正常行驶时的3倍。假设刹车前牵引力不变,求卡车和车厢都停下后两者之间的距离。
17传送带与水平面夹角37°,皮带以10m/s的速率运动,皮带轮沿顺时针方向转动,如图所示。今在传送带上端A处无初速地放上一个质量为的小物块,它与传送带间的动摩擦因数为0.5,若传送带A到B的长度为16m,g取,则物体从A运动到B的时间为多少?
18.如图所示,质量的小车停放在光滑水平面上,在小车右端施加一水平恒力F=8N。当小车向右运动速度达到3m/s时,在小车的右端轻放一质量m=2kg的小物块,物块与小车间的动摩擦因数,假定小车足够长,问:
(1)经过多长时间物块停止与小车间的相对运动?
(2)小物块从放在车上开始经过所通过的位移是多少?(g取)
参考答案:1C2D3AC4D5B6C7C8B9ABD10ABD11(1)2.5m/s2(2)2.4m(3)0.2s或0.6s
12(1)xm=mgsinθk.(2)t=2m?gsinθ-a?ka13(1)不能达斜面顶端(2)10m1411/19
15(1)3s(2)26N1636m172s182s;8.4m

20xx高考物理《牛顿运动定律力学单位制》材料分析


20xx高考物理《牛顿运动定律力学单位制》材料分析

考点一|牛顿第二定律

1.内容及表达式
物体加速度的大小跟所受外力的合力成正比,跟它的质量成反比,加速度的方向跟合外力方向相同.表达式:F=ma.
2.适用范围(加试要求)
(1)只适用于惯性参考系(相对地面静止或做匀速直线运动的参考系).
(2)只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.

1.牛顿第二定律的“五性”
矢量性F=ma是矢量式,a与F同向瞬时性a与F对应同一时刻因果性F是产生a的原因同一性a、F、m对应同一个物体,应用时统一使用SI制独立性每一个力都产生各自的加速度2.合力、加速度、速度间的决定关系
(1)物体所受合力的方向决定了其加速度的方向,只要合力不为零,不管速度是大是小,或是零,物体都有加速度,只有合力为零时,加速度才为零.一般情况下,合力与速度无必然的联系.
(2)合力与速度同向时,物体加速运动;合力与速度反向时,物体减速运动.
(3)a=是加速度的定义式,a与Δv、Δt无直接关系;a=是加速度的决定式,a∝F,a∝.

1.(20xx·临海市调研)下列对牛顿第二定律的表达式F=ma及其变形公式的理解正确的是()
A.由F=ma可知,物体所受的合力与物体的质量成正比,与物体的加速度成反比
B.由m=可知,物体的质量与其所受合力成正比,与其运动的加速度成反比
C.由a=可知,物体的加速度与其所受合力成正比,与其质量无关
D.由m=可知,物体的质量可以通过测量它的加速度和它所受的合力求出
D[牛顿第二定律的表达式F=ma表明了各物理量之间的数量关系,即已知两个量,可求第三个量.但物体的质量是由物体本身决定的,与受力无关,作用在物体上的合力,是由和它相互作用的物体作用产生的,与物体的质量和加速度无关;但物体的加速度与质量有关,故排除A、B、C,选D.]
2.关于牛顿第二定律的下列说法中,不正确的是()
A.物体加速度的大小由物体的质量和物体所受合外力的大小决定,与物体的速度无关
B.物体加速度的方向只由它所受合外力的方向决定,与速度方向无关
C.物体所受合外力的方向和加速度的方向及速度方向总是相同的
D.一旦物体所受合外力为零,则物体的加速度立即为零,其运动速度将不再变化
【解析】对于某个物体,合外力的大小决定了加速度的大小,合外力的方向决定了加速度的方向,而速度的方向与加速度方向无关.根据牛顿第二定律的瞬时性特征,合外力一旦为零,加速度立即为零,则速度不再发生变化,以后以此时的速度做匀速直线运动,综上所述,A、B、D正确,C错误.
【答案】C
3.如图321所示,质量为1kg的物体与桌面的动摩擦因数为0.2,物体在7N的水平拉力作用下获得的加速度大小为(g取10m/s2)()

图321
A.0B.5m/s2
C.8m/s2D.12m/s2
B[物体所受合外力F合=F-μmg=5N,加速度a==5m/s2,选项B正确.]
4.(加试要求)如图322所示,一木块在光滑水平面上受一恒力F作用,前方固定一足够长的弹簧,则当木块接触弹簧后()

图322
A.木块立即做减速运动
B.木块在一段时间内速度仍可增大
C.当F等于弹簧弹力时,木块速度最大
D.弹簧压缩量最大时,木块加速度为0
BC[当木块接触弹簧后,水平方向受到向右的恒力F和弹簧水平向左的弹力.弹簧的弹力先小于恒力F,后大于恒力F,木块所受的合力方向先向右后向左,则木块先做加速运动,后做减速运动,当弹力大小等于恒力F时,木块的速度最大,加速度为0.当弹簧压缩量最大时,弹力大于恒力F,合力向左,加速度大于0,故B、C正确,A、D错误.]考点二|力学单位制

1.力学中的基本物理量及单位
(1)力学中的基本物理量是长度、质量、时间.
(2)力学中的基本单位:基本物理量的所有单位都是基本单位.如:毫米(mm)、克(g)、毫秒(ms)等等.三个基本物理量的单位在国际单位制中分别为米(m)、千克(kg)、秒(s).
2.单位制
(1)由基本单位和导出单位组成的单位系统叫做单位制.
(2)国际单位制(SI):国际计量大会制定的国际通用的、包括一切计量领域的单位制,叫做国际单位制.
3.单位制的应用
问题中的已知量的单位都用国际单位制表示时,计算的结果也是用国际单位制表示的.因此,用国际单位制进行计算时,可以不必一一写出各个已知量的单位,只在数字后面写出正确的单位就可以了.高中阶段进行物理量的计算时,一律采用国际单位制.
在进行计算或检查的过程中,如果发现所求结果的单位与采用的单位制中该量的单位不一致,那么该公式或计算结果肯定是错误的.

(20xx·浙江10月学考)kg和s是国际单位制两个基本单位的符号,这两个基本单位对应的物理量是()
A.质量和时间B.质量和位移
C.重力和时间D.重力和位移
A[kg是质量对应的单位,s是时间对应的单位,位移的单位是m,重力的单位是N且不是国际单位制基本单位,故A正确.]
(20xx·浙江10月学考)下列均属于国际制基本单位的是()
A.m、N、JB.m、kg、J
C.m、kg、sD.kg、m/s、N
C[7个国际单位:米、千克、秒、安培、开尔文、摩尔和坎德拉.故选C.]

1.下列叙述中正确的是()
A.在力学的国际单位制中,力的单位、质量的单位、位移的单位选定为基本单位
B.牛顿、千克、米/秒2、焦、米都属于力的单位
C.在厘米、克、秒单位制中,重力加速度g的值等于9.8厘米/秒2
D.在力学的计算中,若涉及的物理量都采用国际单位制中的单位,则所计算的物理量的单位也是国际单位制中的单位
D[力的单位不是基本单位,焦、米不是力的单位,厘米、克、秒单位制中,重力加速度的值不是9.8厘米/秒2而是980厘米/秒2,A、B、C错误;D正确.]
2.在国际单位制中规定“质量”为力学基本物理量,它对应的单位名称是()
A.米B.千克
C.秒D.牛顿
【答案】B
3.(20xx·东阳模拟)关于物理量和物理量的单位,下列说法中正确的是()
A.在力学范围内,国际单位制规定长度、质量、力为三个基本物理量
B.后人为了纪念牛顿,把“牛顿”作为力学中的基本单位
C.1N=1kg·m·s-2
D.“秒”“克”“摄氏度”都属于国际单位制中的单位
C[力学中的三个基本物理量为长度、质量、时间,选项A错误;“牛顿”是为了纪念牛顿而作为力的单位,但不是基本单位,选项B错误;根据“牛顿”的定义,1N=1kg·m·s-2,选项C正确;“克”“摄氏度”不是国际单位制中的单位,选项D错误.]
4.在国际单位制中,与质量、长度和时间对应的基本单位是()
A.克、米、秒B.千克、米、小时
C.克、厘米、分钟D.千克、米、秒
D[在国际单位制中选定七个基本单位,其中力学有三个基本单位,即质量、长度和时间对应的单位,它们的单位分别是千克(kg)、米(m)、秒(s).D选项正确.]
5.国际单位制由基本单位和导出单位组成.下列物理单位属于基本单位的是()
A.m/sB.N
C.mD.J
C[在国际单位制中,长度的基本单位为米,符号为m,故C项正确.]考点三|瞬时加速度问题

两类模型(加试要求)
(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.
(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.
1.求解瞬时加速度问题的一般步骤
第一步:分析原来物体的受力情况.
第二步:分析物体在突变时的受力情况.
第三步:由牛顿第二定律列方程.
第四步:求出瞬时加速度,并讨论其合理性.
2.求解瞬时加速度问题时应抓住“两点”
(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.
(2)加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变.

1.如图323所示,两小球悬挂在天花板上,a、b两小球用细线连接,上面是一轻质弹簧,a、b两球的质量分别为m和2m,在细线烧断瞬间,a、b两球的加速度为(取向下为正方向)()

图323
A.0,gB.-g,g
C.-2g,gD.2g,0
C[在细线烧断之前,a、b可看成一个整体,由二力平衡知,弹簧弹力等于整体重力,故大小为3mg,方向向上.当细线烧断瞬间,弹簧的形变量不变,故弹力不变,故a受向上3mg的弹力和向下mg的重力,故加速度aa==2g,方向向上.对b而言,细线烧断后只受重力作用,故加速度ab==g,方向向下.如以向下方向为正,有aa=-2g,ab=g.故选项C正确.]
2.(20xx·东阳市联考)如图324所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,物块2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有()

图324
A.a1=a2=a3=a4=0
B.a1=a2=a3=a4=g
C.a1=a2=g,a3=0,a4=g
D.a1=g,a2=g,a3=0,a4=g
C[在抽出木板的瞬间,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a1=a2=g;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对物块3向上的弹力大小和对物块4向下的弹力大小仍为mg,因此物块3满足mg=F,a3=0;由牛顿第二定律得物块4满足a4==g,所以C正确.]
3.(多选)质量均为m的A、B两个小球之间连接一个质量不计的弹簧,放在光滑的台面上.A球紧靠墙壁,如图325所示,今用恒力F将B球向左挤压弹簧,达到平衡时,突然将力撤去,此瞬间()

图325
A.A球的加速度为
B.A球的加速度为0
C.B球的加速度为
D.B球的加速度为
BD[撤去恒力F前,A和B都平衡,它们的合力都为0,且弹簧弹力为F.突然将力F撤去,对A来说水平方向依然受弹簧弹力和墙壁的弹力,二力平衡,所以A球的合力为0,加速度为0,A项错,B项对.而B球在水平方向只受水平向右的弹簧的弹力作用,加速度a=,故C项错,D项对.]
4.(加试要求)(20xx·平湖选考模拟)(多选)如图326所示,质量为m的小球与弹簧Ⅰ和水平细绳Ⅱ相连,Ⅰ、Ⅱ的另一端分别固定于P、Q两点.小球静止时,Ⅰ中拉力的大小为F1,Ⅱ中拉力的大小为F2,当仅剪断Ⅰ、Ⅱ其中一根的瞬间,球的加速度a应是()

图326
A.若剪断Ⅰ,则a=g,方向竖直向下
B.若剪断Ⅱ,则a=,方向水平向左
C.若剪断Ⅰ,则a=,方向沿Ⅰ的延长线方向
D.若剪断Ⅱ,则a=g,方向竖直向上

AB[没有剪断Ⅰ、Ⅱ时,小球受力情况如图所示.在剪断Ⅰ的瞬时,由于小球的速度为0,绳Ⅱ上的力突变为0,则小球只受重力作用,加速度为g,选项A正确,选项C错误;若剪断Ⅱ,由于弹簧的弹力不能突变,F1与重力的合力大小仍等于F2,所以此时加速度为a=,方向水平向左,选项B正确,选项D错误.]

20xx高考物理复习微专题02牛顿运动定律与图象综合问题学案


俗话说,磨刀不误砍柴工。教师要准备好教案,这是每个教师都不可缺少的。教案可以让学生们能够在上课时充分理解所教内容,帮助教师在教学期间更好的掌握节奏。怎么才能让教案写的更加全面呢?下面的内容是小编为大家整理的20xx高考物理复习微专题02牛顿运动定律与图象综合问题学案,欢迎您阅读和收藏,并分享给身边的朋友!

微专题02牛顿运动定律与图象综合问题
已知物体的速度、加速度图象分析受力情况
1.v-t图象
根据图象的斜率判断加速度的大小和方向,进而根据牛顿第二定律求解合外力.
2.at图象
要注意加速度的正负,正确分析每一段的运动情况,然后结合物体受力情况根据牛顿第二定律列方程.
(20xx全国新课标Ⅰ)(多选)如图(a),一物块在t=0时刻滑上一固定斜面,其运动的vt图线如图(b)所示.若重力加速度及图中的v0、v1、t1均为已知量,则可求出()
A.斜面的倾角
B.物块的质量
C.物块与斜面间的动摩擦因数
D.物块沿斜面向上滑行的最大高度
解析:选ACD小球滑上斜面的初速度v0已知,向上滑行过程为匀变速直线运动,末速度0,那么平均速度即v02,所以沿斜面向上滑行的最远距离s=v02t1,根据牛顿第二定律,向上滑行过程v0t1=gsinθ+μgcosθ,向下滑行v1t1=gsinθ-μgcosθ,整理可得gsinθ=v0+v12t1,从而可计算出斜面的倾斜角度θ以及动摩擦因数,选项AC对.根据斜面的倾斜角度可计算出向上滑行的最大高度ssinθ=v02t1×v0+v12gt1=v0v0+v14g,选项D对.仅根据速度时间图象,无法找到物块质量,选项B错.
(1)弄清图象斜率、截距、交点、拐点的物理意义.
(2)应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”、“图象与物体”间的关系,以便对有关物理问题作出准确判断.
(20xx漳州八校联考)如图甲所示,一个质量为3kg的物体放在粗糙水平地面上,从零时刻起,物体在水平力F作用下由静止开始做直线运动.在0~3s时间内物体的加速度a随时间t的变化规律如图乙所示.则()
A.F的最大值为12N
B.0~1s和2~3s内物体加速度的方向相反
C.3s末物体的速度最大,最大速度为8m/s
D.在0~1s内物体做匀加速运动,2~3s内物体做匀减速运动
解析:选C第1~2s内物体加速度恒定,故所受作用力恒定,根据牛顿第二定律F合=ma知合外力为12N,由于物体在水平方向受摩擦力作用,故作用力F大于12N,故A错误;物体在力F作用下由静止开始运动,加速度方向始终为正,与速度方向相同,故物体在前3s内始终做加速运动,第3s内加速度减小说明物体速度增加得慢了,但仍是加速运动,故B错误;因为物体速度始终增加,故3s末物体的速度最大,再根据Δv=aΔt知速度的增加量等于加速度与时间的乘积,在at图象上即为图象与时间轴所围图形的面积,Δv=12×(1+3)×4m/s=8m/s,物体由静止开始做加速运动,故最大速度为8m/s,所以C正确;第2s内物体的加速度恒定,物体做匀加速直线运动,在0~1s内物体做加速度增大的加速运动,2~3s内物体做加速度减小的加速运动,故D错误.
1.(20xx重庆理综)若货物随升降机运动的v-t图象如图所示(竖直向上为正),则货物受到升降机的支持力F与时间t关系的图象可能是()

解析:选Bv-t图线斜率表示加速度,所以加速度图象如图所示.由牛顿第二定律可知F-mg=ma,所以支持力F=ma+mg,重力保持不变,所以Ft图象相当于at图象向上平移,B正确.
2.(20xx海南卷)沿固定斜面下滑的物体受到与斜面平行向上的拉力F的作用,其下滑的速度—时间图线如图所示.已知物体与斜面之间的动摩擦因数为常数,在0~5s、5~10s、10~15s内F的大小分别为F1、F2和F3,则()
A.F1<F2B.F2>F3
C.F1>F3D.F1=F3
解析:选A由vt图象可知,0~5s内加速度a1=0.2m/s2,沿斜面向下,根据牛顿第二定律有mgsinθ-f-F1=ma1,F1=mgsinθ-f-0.2m;5~10s内加速度a2=0,根据牛顿第二定律有mgsinθ-f-F2=ma2,F2=mgsinθ-f;10~15s内加速度a3=-0.2m/s2,沿斜面向上,根据牛顿第二定律有mgsinθ-f-F3=ma3,F3=mgsinθ-f+0.2m.故可得:F3>F2>F1,选项A正确.
已知物体的受力图象分析运动情况
1.Ft图象
要结合物体受到的力,根据牛顿第二定律求出加速度,分析每一时间段的运动性质.
2.Fa图象
首先要根据具体的物理情景,对物体进行受力分析,然后根据牛顿第二定律推导出两个量间的函数关系式,根据函数关系式结合图象,明确图象的斜率、截距或面积的意义,从而由图象给出的信息求出未知量.
(多选)静止在水平地面上的物块,受到水平向右的拉力F作用,F随时间t的变化情况如图所示.设物块与地面间的最大静摩擦力与滑动摩擦力大小相等,都是1N,则()
A.在0~1s时间内物块的加速度逐渐增大
B.在3s时,物块的加速度最大
C.在3s时,物块的速度最大
D.在8s时,物块的速度最大
解析:选BD在0~1s时间内,F小于或等于最大静摩擦力,可知物块处于静止状态,故A错误;t=3s时,拉力最大,且大于最大静摩擦力,故物块所受合力最大,物块的加速度最大,故B正确;t=3s后,拉力仍然大于最大静摩擦力,物块仍然做加速运动,速度仍增大,t=8s后,拉力小于最大静摩擦力,物块做减速运动,所以t=8s时,物块的速度最大,故C错误,D正确.
(多选)如图(a)所示,用一水平外力F拉着一个静止在倾角为θ的光滑斜面上的物体,逐渐增大F,物体做变加速运动,其加速度a随外力F变化的图象如图(b)所示,若重力加速度g取10m/s2,根据图(b)中所提供的信息可以计算出()
A.物体的质量
B.斜面倾角的正弦值
C.加速度增大到6m/s2时物体的位移
D.物体静止在斜面上时的外力F
解析:选ABD对物体受力分析,受水平外力、重力、支持力,如图所示.
x方向:Fcosθ-mgsinθ=ma,
y方向:N-Fsinθ-mgcosθ=0,
从图象中取两个点(20N,2m/s2),(30N,6m/s2)代入解得m=2kg,θ=37°,故A、B正确.当a=0时,可解得F=15N,即最小拉力为15N.题中并未说明力F随时间变化的情况,故无法求出加速度为6m/s2时物体的速度大小,无法求出位移,故C错误,D正确.
3.(20xx黑龙江哈师大附中月考)“蹦极”是一项刺激的极限运动,运动员将一端固定的长弹性绳绑在踝关节处,从几十米高处跳下.在某次蹦极中,弹性绳弹力F的大小随时间t的变化图象如图所示,其中t2、t4时刻图线的斜率最大.将蹦极过程近似为在竖直方向的运动,弹性绳中弹力与伸长量的关系遵循胡克定律,空气阻力不计.下列说法中正确的是()
A.t1~t2时间内运动员处于超重状态
B.t2~t4时间内运动员的机械能先减小后增大
C.t3时刻运动员的加速度为零
D.t4时刻运动员具有向下的最大速度
解析:选B在t1~t2时间内,合力向下,运动员加速下降,处于失重状态,故A错误;在t2、t4时刻图线的斜率最大,说明弹力变化最快,由于弹力与弹性绳的伸长量成正比,说明伸长量变化最快,即速度最大,而速度最大时弹力与重力平衡;由于整个过程重力势能、弹性势能和动能的总和保持不变,而t2~t4时间内弹性势能先变大后变小,故运动员的机械能先减小后增大,故B正确;t3时刻弹力最大,运动员运动到最低点,合力向上,故加速度向上,不为零,故C错误;t4时刻运动员受到的重力和弹力平衡,加速度为零,具有向上的最大速度,故D错误.
4.(多选)如图(甲)所示,物体原来静止在水平地面上,用一水平力F拉物体,在F从0开始逐渐增大的过程中,物体先静止后又做变加速运动,其加速度a随外力F变化的图象如图(乙)所示,设最大静摩擦力与滑动摩擦力相等.重力加速度g取10m/s2.根据题目提供的信息,下列判断正确的是()
A.物体的质量m=2kg
B.物体与水平面间的动摩擦因数μ=0.6
C.物体与水平面的最大静摩擦力fmax=3N
D.在F为10N时,物体的加速度a=2m/s2
解析:选AD根据牛顿第二定律F-μmg=ma,F1=7N,a1=0.5m/s2;F2=14N,a2=4m/s2,联立解得m=2kg,μ=0.3,A正确,B错误.最大静摩擦力f=μmg=6N,C错误.当F=10N时,代入得a=2m/s2,D正确.

20xx高考物理复习微专题03牛顿运动定律的应用_分离条件分析学案新人教版


微专题03牛顿运动定律的应用——分离条件分析
两物体分离的特点
如图A、B两个物体靠在一起,放在光滑的水平面上,质量分别为MA=3kg,MB=6kg.今用水平力FA向右推A,用水平力FB向右拉B,FA和FB随时间的变化关系分别为:
FA=(9-2t)N,FB=(3+2t)N
(1)试分析两者分离前的运动情况;
(2)求分离时两者的速度和加速度;
(3)从t=0到分离时两者通过的位移.
解析:(1)以A、B组成的系统为研究对象,由牛顿第二定律,得
F=FA+FB=(MA+MB)a①
又FA=(9-2t)N,FB=(3+2t)N②
由①②得:F=12N,a=43m/s2
分离前两物体一起做初速度为零的匀加速运动.
设分离前两物体之间的正压力为F′
由a=9-2t-F′MA=F′+3+2tMB,得t=0时,F′=5N
由于FA随t的增加而减小,FB随t的增加而增加,可以断定,分离前随着时间的增加,两物体之间的正压力F′逐渐减小,分离时两者之间的正压力F′为零.
(2)分离时两者的速度和加速度相等,加速度仍为a=43m/s2.此时两者之间的弹力为零,由加速度相等得
a=FAMA=FBMB=9-2t3=3+2t6
分离前的运动时间为t=2.5s,则分离时的速度
v=at=3.3m/s
(3)位移s=12at2=4.2m
答案:(1)见解析(2)3.3m/s43m/s2(3)4.2m
弹簧与物块的分离
如图所示,质量均为m=3kg的物块A、B紧挨着放置在粗糙的水平地面上,物块A的左侧连接一劲度系数为k=100N/m的轻质弹簧,弹簧另一端固定在竖直墙壁上.开始时两物块压紧弹簧并恰好处于静止状态,现使物块B在水平外力F作用下向右做a=2m/s2的匀加速直线运动直至与A分离,已知两物块与地面的动摩擦因数均为μ=0.5,g=10m/s2.求:
(1)物块A、B分离时,所加外力F的大小;
(2)物块A、B由静止开始运动到分离所用的时间.
解析:(1)开始时弹簧的压缩量为x1,则kx1=2μmg
得x1=0.3m.
物块A、B分离时,A、B间的相互作用力为零.
对B:F-μmg=ma,F=21N.
(2)物块A、B分离时,对A有
kx2-μmg=ma,x2=0.21m
又x1-x2=12at2,解得t=0.3s.
答案:(1)21N(2)0.3s
如图所示,一劲度系数为k=800N/m的轻弹簧两端各焊接着两个质量均为m=12kg的物体A和B,物体A、B和轻弹簧竖立静止在水平地面上.现要加一竖直向上的力F在上面物体A上,使物体A开始向上做匀加速运动,经0.4s物体B刚要离开地面.设整个过程中弹簧都处于弹性限度内,取g=10m/s2,求:此过程中所加外力F的最大值和最小值.
解析:A原静止时,设弹簧压缩x1,
由受力平衡和胡克定律有:kx1=mg①
物体A向上做匀加速运动,开始时弹簧的压缩形变量最大,向上的弹力最大,则所需外力F最小,设为F1
由牛顿第二定律:F1+kx1-mg=ma②
当B刚要离地时,弹簧由缩短变为伸长,此时弹力变为向下拉A,则所需外力F最大,设为F2
对B:kx2=mg③
对A:F2-kx2-mg=ma④
由位移公式对A有:x1+x2=12at2⑤
又t=0.4s⑥
由①②③④⑤⑥可得:
x1=x2=mgk=12×10800m=0.15m
a=3.75m/s2F1=45NF2=285N
答案:285N45N
1.如图所示,劲度系数为k的轻弹簧一端固定于墙上,另一端连接一物体A.用质量与A相同的物体B推物体A使弹簧压缩,A、B与地面的动摩擦因数分别为μA和μB,且μA<μB,释放A、B,两者向右运动一段时间之后将会分离,则A、B分离时弹簧的()
A.伸长量为μB+μAmgkB.压缩量为μB+μAmgk
C.伸长量为μB-μAmgkD.压缩量为μB-μAmgk
解析:选C弹簧压缩时A、B一起运动不会分离,当A、B分离时其相互作用力为0,
对B:μBmg=ma.
对A:μAmg+kx=ma
解得x=μB-μAmgk.
2.如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态.现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移x的关系如图乙所示(g=10m/s2),则下列结论正确的是()
A.物体与弹簧分离时,弹簧处于压缩状态
B.弹簧的劲度系数为7.5N/cm
C.物体的质量为3kg
D.物体的加速度大小为5m/s2
解析:选D物体与弹簧分离时弹簧恢复原长,A错误,
刚开始物体处于静止状态,有mg=kx.
拉力F1=10N时,F1+kx-mg=ma
物体与弹簧分离后F2=30N,F2-mg=ma
代入数据解得m=2kg,k=500N/m=5N/cm,a=5m/s2.故B、C错误,D正确.
3.如图,把长方体切成质量分别为m和M的两部分,切面与地面的夹角为30°,忽略一切摩擦,至少用多大的水平力F推m,才能使m相对M上滑?
解析:以m为研究对象,当m刚要上滑时,m与地面刚好分离,m与地面之间的正压力为零,m受重力mg、推力F和M施加的支持力N1作用,且在竖直方向处于平衡,有:
N1cos30°=mg,N1=mgcos30°
以M为研究对象,M受重力Mg、地面的支持力N和m对M的压力N′作用,在水平方向,由牛顿第二定律,得:
N1′sin30°=Ma,
由牛顿第三定律,N1′=N1得:a=N1′sin30°M=mgtan30°M
以m和M组成的系统为研究对象,由牛顿第二定律有:
F=(m+M)a=m+Mmgtan30°M
答案:m+Mmgtan30°M