88教案网

你的位置: 教案 > 初中教案 > 导航 > 3.3等式与方程

高中函数与方程教案

发表时间:2020-11-19

3.3等式与方程。

3.3等式与方程

教学目标

1、学生掌握方程的定义以及等式与方程的区别;

2、使学生掌握方程的解的定义,并且能某个值是否为指定方程的解。

教学重点

检验方程的解的方法

教学难点

区分等式与方程;等式与恒等式;恒等式与方程。

版面设计

方程与方程的解

一、等式与恒等式:

二、方程与整式方程:

三、方程的解与方程的根:

例1:例2:

教学设计

一、复习引入:

⑴猜年龄:

将你的年龄乘以2再减去5,你的得数是多少?如果是21,我就能猜出你的年龄是13。

⑵找规律:

如果设小明的年龄为x岁,那么“乘以2再减去5”就是2x-5,所以得到方程(equation):2x-5=21

二、新课传授:

1.等式与恒等式:

①等式:

像1+2=3,5.3-(-1.2)=6.5,x+2x=3x,x+3=5等这样用等号“=”来表示相等关系的式子,叫做等式。

等式左边的式子叫做等式的左边;

等式右边的式子叫做等式的右边;

等式的一般形式是:A=B

②恒等式:

像1+2=3,5.3-(-1.2)=6.5,x+2x=3x,a+b=b+a等这样等号两边的值永远相等的式子叫做恒等式。

2.方程与整式方程:

①方程:

这种含有未知数的等式叫做方程。

②整式方程:

方程的两边都是整式时,称为整式方程。

【练习】:课后1、2两题(指定学生口答)

1.方程的解与方程的根:

①方程的解:

能使方程左、右两边的值相等的未知数的值叫做方程的解;

②一元方程:

只含有一个未知数的方程称为一元方程;

一元方程的解也叫做方程的根。

2.一元一次方程:

只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

例1检验下列各数是不是方程7x+1=10-2x的解:

⑴x=1;⑵x=-2。

解:⑴将x=1分别代入方程的左、右两边,得

左边=7×1+1=8,

右边=10-2×1=8,

∵左边=右边,

∴x=1是方程7x+1=10-2x的解。

⑵将x=-2分别代入方程的左、右两边,得

左边=7×(-2)+1=-13,

右边=10-2×(-2)=14,

∵左边≠右边,

∴x=-2不是方程7x+1=10-2x的解。

例2判断下列方程哪些是一元一次方程:

⑴5x+4=11;⑵;⑶2x-y=1;

⑷;⑸。

解:⑴、⑷是一元一次方程,⑵、⑶、⑸不是一元一次方程。

【练习】课后习题1、3(口答);2(1、2)(指定学生板演)。

三、作业:

课后习题

同步练习

精选阅读

3.4等式的基本性质


教案课件是老师需要精心准备的,规划教案课件的时刻悄悄来临了。只有规划好教案课件工作计划,才能规范的完成工作!你们了解多少教案课件范文呢?以下是小编收集整理的“3.4等式的基本性质”,供您参考,希望能够帮助到大家。

3.4等式的基本性质

一、教学目标

1、知识目标:

(1)通过天平实验让学生探索等式具有的性质并予以归纳。

(2)能利用等式的性质解一元一次方程。

2、能力目标:通过实验培养学生探索能力、观察能力、归纳能力和应用新知的能力

。3、情感目标:通过实验操作增强合作交流的意识。

二、教材分析:

1、地位与作用:在掌握了一元一次方程的概念及其初步应用后,需要解决的是一元一次方程的解法,借助于等式的性质来解一元一次方程。为下几节的学习铺平道路.首先通过天平的实验操作,使学生学会观察、尝试分析、归纳等式的性质。然后,利用等式的基本性质解一元一次方程。通过解方程的学习提高了学生观察问题、解决问题的能力.

2、重点:利用等式的性质解方程。

3、难点:对等式的性质的理解及应用。

三、教学准备:天平,砝码.

四、教学过程:

动(一):温故知新:实验一:天平一边放重300克的一本书,另一边放50克的砝码多少各个才能使天平保持平衡?准备天平,让学生边做边观察边思考

活动(二):提出问题、解决问题:问题一:你能解决这个问题吗?在天平平衡后,两边分别同时放上两个砝码,天平还能保持平衡吗?试一试。问题二:如果把天平看成等式,你能得到什么规律,试一试用文字语言叙述后再用字母表示先合作、交流,后找多名学生归纳规律,在学生都理解后教师出示:等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。设x=y,则:X+c=y+cx-c=y-c(c为一个代数式)问题三:如果天平两边砝码的质量同时扩大相同的倍数或同时缩小为原来的几分之一,那么天平还保持平衡吗?你能得到什么规律?并用字母表示。小组进行实验,总结规律。等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式。设x=y,则:cx=cyx/c=y/c(c为一个不为零的数)

活动(三)拓展运用:例1解下列方程:(1)X+2=5(2)3=X-5第一题教师领学生完成,给出解方程的完整步骤,逐步培养学生推理能力。第二题学生口答,教师板书,锻炼学生组织语言能力。例2解下列方程:(1)-3X=15(2)-N/3-2=10学生独立完成(两生黑板练习),后两生给与评价。

活动(四):议一议:通过对以上两个方程的求解,请你思考一下,用什么方法可以知道你的解对不对?合作交流并回答

活动(五):练一练:课本随堂练习。

活动(六):小结反思:通过上面的学习,你有什么收获?另外你有什么感触?活动(七):布置作业:必做题推荐作业:

新教材初一数学3.1.2等式的性质教学设计


“自学互帮导学法”课堂教学设计
课题课时第一课时课型
新授课修改意见
教学目标
1、了解等式的两条性质;
2、会用等式的性质解简单的(用等式的一条性质)一元一次方程;
3、培养学生观察、分析、概括及逻辑思维能力;
教学重点
理解和应用等式的性质
教学难点
应用等式的性质解一元一次方程.
学情分析作为初一学生,在小学时已经对等量关系和等式的性质有所了解,通过本节课的学习,目的是要使学生从天平的特点中归纳得出等式的性质.
学法指导坚持“以学生为主体,以教师为主导”的原则。即“以学生活动为主导,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则。根据初一学生的心理发展规律。联系实际安排教学内容,采用学生参与高度的学导式讨论教学法、师生交谈法、图象信号法、问答法、教学课堂讨论法,使学生动口、主动探索、发现问题、解决问题、互动合作、归纳概括、形成能力,突出学生的主体地位。在采用问答法时,特别注重不同难度的问题。
教学过程
教学内容教师活动学生活动效果预测(可能出现的问题)补救措施修改意见
一、知识回顾:
1.什么是方程?
2.指出下列式子中哪些是方程,哪些不是,并说明为什么?
3+x=5
3x+2y=7
2+3=3+2
a+b=b+a(a、b已知)
5x+7=3x-5
3.上面的式子的共同特点是什么?
4.什么叫方程的解?
5.什么叫一元一次方程?知识回顾,能激起学生对知识的再显,并进一步回顾掌握小学已学过的方程的概念和列方程。也为下面一元一次方程的概念建构做好准备,引出课题学生独立思考再小组讨论回答
学生回答不完全
老师引导学生完成:
利用这些问题让学生对知识的巩固,为下面作铺垫,做好新旧知识的衔接。

二.新知识的猜想:

估计下列方程的解:

判断
①4+x=7,②2x,③3x+1,④a+b=b+a,⑤a2+b2⑥c=2πr⑦1+2=3,⑧ab,⑨S=ah,⑩2x-3y0
上述这组式子中,()是等式,()不是等式,为什么?
在老师帮助下能完成
老师总结补充
列方程解决实际问题再一次让学生感觉方程的优越,提高学生主动利用方程的意识。

三.新知识探究:
观察探索1

提问:如果天平两边加(减)去相同的质量,天平会有什么变化?
让学生先独立思考,然后教师课件演示。你又发现了什么规律?怎样用等式描述?
等式两边加(或减)同一个数(或式子),结果仍相等。
即:如果a=b,那么a+(-)c=b+(-)c

得出等式两边同时减去同一个数,等式仍然成立。
并且由以上两条规律得出:等式的两边同时加上或减去同一个数,等式仍然成立。
归纳不完整
通过交流让学生用自己的语言表达,提高学生的语言表达能力
四.巩固练习
用适当的数或式子填空,使结果仍是等式。

要求:
1、观察等式变形前后两边各有什么变化

2、应怎么变化可使等式依然相等

关键:同侧对比
注意符号小组间交流.完成后与小组同学交流,说说
教师补充巩固学生对概念的理解,引起学生对方程要素的有意注意,加深学生的印象。。

五.观察探索2

等式的性质2
等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
即:如果a=b,那么ac=bc
如果a=b,那么a/c=b/c(c不等于0)归纳得出:等式两边同时乘或除以同一个数(除数不能为0),等式仍然成立。
培养学生的团结合作的意识,激发学生潜能,增强学生集体荣誉感,进而达到本课情感升华。
六.练习:

用适当的数或式子填空,使结果仍是等式。

两边都____
得x=____
关键:同侧对比注意符号小组共同完成
用等式的性质变形时,
①两边必须同时进行计算;
②加(或减),乘(或除以)的数必须是同一个数;
③除数不能为0通过对这道题的探索得出来解一元一次方程的一般步骤:

七.知识巩固1.判断对错,对的说明根据等式的哪一条性质;错的说出为什么。
如果x=y,那么()
(2)如果x=y,那么()
(3)如果x=y,那么()
(4)如果x=y,那么()
(5)如果x=y,那么()
2.下面的解法对不对?如果不对,错在哪里?应怎样改正?
让学生各抒己见,教师都应给予积极的鼓励。)
八.练习利用等式性质解下列方程并检验:
(1)x-5=6
(2)0.3x=45
(3)2-3x=3
(4)5x+4=0独立完成
小组相互检查
针对前几个环节出现的问题作出针对性的补偿
九.课堂小结
1.本节课我们学了什么知识?
2.2.你有什么收获?1、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
2、等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
3、解一元一次方程的实质就是利用等式的性质求出未知数的值x=a(常数)

板书设计3.1.2等式的性质
定义:例题:练习题:
步骤:
参考书目及
推荐资料
七年级上册数学教材
教学反思

方程(组)与不等式(组)问题


教案课件是每个老师工作中上课需要准备的东西,是认真规划好自己教案课件的时候了。此时就可以对教案课件的工作做个简单的计划,新的工作才会如鱼得水!适合教案课件的范文有多少呢?小编特地为大家精心收集和整理了“方程(组)与不等式(组)问题”,供您参考,希望能够帮助到大家。

第1课时方程(组)与不等式(组)问题

方程(组)与不等式(组)是解决应用题、实际问题和许多方面的数学问题的重要基础知识,应用范围非常广泛。很多数学问题,特别是有未知数的几何问题,就需要用方程(组)与不等式(组)的知识来解决,在解决问题时,把某个未知量设为未知数,根据有关的性质、定理或公式,建立起未知数和已知数间的等量关系或不等关系,列出方程(组)与不等式(组)来解决,这对解决和计算有关的数学问题,特别是综合题,是非常需要的。

近几年中考注重对学生“知识联系实际”的考查,实际问题中往往蕴含着方程与不等式,分析问题中的等量关系和不等关系,建立方程(组)模型和不等式(组)模型,从而把实际问题转化为数学模型,然后用数学知识来解决。

方程(组)与不等式(组)是代数中的重要内容,有的已知方程(组)的解求方程(组)、应用题的条件编制、也有根据方程进行数学建模等等.解决有关方程(组)与不等式(组)的试题,首先弄清题目的要求;其次,充分考虑结果的多样性,使答案简明、准确.

类型之一根据图表信息列方程(组)或不等式解决问题

在具体的生活中根据图示得到方程或不等式,由此解决实际问题,根本在于得到数量之间的关系。

1.(河北省)如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是g.

2.(济南市)教师节来临之际,群群所在的班级准备向每位辛勤工作的教师献一束鲜花,每束由4支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花两种鲜花,同一种鲜花每支的价格相同.请你根据第一、二束鲜花提供的信息,求出第三束鲜花的价格.

3.(济南市)某厂工人小王某月工作的部分信息如下:

信息一:工作时间:每天上午8∶20~12∶00,下午14∶00~16∶00,每月25元;

信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.

生产产品件数与所用时间之间的关系见下表:

生产甲产品件数(件)生产乙产品件数(件)所用总时间(分)

1010350

3020850

信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.

根据以上信息,回答下列问题:

(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分?

(2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?

类型之二借助方程组合或不等式(组)解决方案问题

借助二元一次方程组和一元一次不等式(组)求解方案问题是中考一种新题型,考察了同学们综合运用方程组和不等式深入的分析、比较、归纳和说理的能力.

4.(济南市)某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.

(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;

(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.

5.(宜宾市)暑假期间,小明到父亲经营的小超市参加社会实践活动.一天小明随父亲从银行换回来58张,共计200元的零钞用于顾客付款时找零.细心的小时清理了一下,发现其中面值为1元的有20张,面值为10元的有7张,剩下的均为2元和5元的钞票.你能否用所学的数学方法算出2元和5元的钞票的各有多少张吗?请写出演算过程.

6.(重庆市)为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县。根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨。

(1)求这批赈灾物资运往D、E两县的数量各是多少?

(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍。其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨。则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;

(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:

A地B地C地

运往D县的费用(元/吨)220200200

运往E县的费用(元/吨)250220210

为即使将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?

7.(宁波市)5月1日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.

(1)求A地经杭州湾跨海大桥到宁波港的路程.

(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?

(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?

类型之三借助方程、不等式或函数求极值问题

“在生活中学数学,到生活中用数学”,是新课标所倡导的一个主旨之一,我们可以利用数学知识求解生活中的实际问题,有些问题可以借助于方程、不等式和函数知识来求一些问题的极值问题,这就要求我们建立恰当的数学模式来解决.

8.(达州市)“512”汶川大地震震惊全世界,面对人类特大灾害,在党中央国务院的领导下,全国人民万众一心,众志成城,抗震救灾.现在两市各有赈灾物资500吨和300吨,急需运往汶川400吨,运往北川400吨,从两市运往汶川、北川的耗油量如下表:

汶川(升/吨)北川(升/吨)

A市0.50.8

B市1.00.4

(1)若从A市运往汶川的赈灾物资为吨,求完成以上运输所需总耗油量y(升)与x(吨)的函数关系式.

(2)请你设计一种最佳运输方案,使总耗油量最少,并求出完成以上方案至少需要多少升油?

9.(湖北省黄石市)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:

A型利润B型利润

甲店200170

乙店160150

(1)设分配给甲店A型产品件,这家公司卖出这100件产品的总利润为W(元),求W关于的函数关系式,并求出的取值范围;

(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;

(3)为了促销,公司决定仅对甲店型产品让利销售,每件让利元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?

10.(河南))某校八年级举行英语演讲比赛,拍了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A、B两种笔记本的价格分别是12元和8元,他们准备购买者两种笔记本共30本.

(1)如果他们计划用300元购买奖品,那么能卖这两种笔记本各多少本?

(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B

种笔记本数量的,但又不少于B种笔记本数量的,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.

①请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;

②请你帮助他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?

第1课时方程(组)与不等式(组)问题答案

1.【解析】由天平的平衡得到巧克力和果冻重量之间的数量关系设每块巧克力的重量为x克,每块果冻的重量为y克,由题意列方程组得:,解方程组即可。

【答案】20

2.【答案】解:设康乃馨每支元,水仙花每支元

由题意得:解得:

第三束花的价格为

答:第三束花的价格是17元.

3.【解析】通过表格当中的信息,我们可以利用列方程组来求出生产甲、乙两种产品的时间,然后利用列函数关系式表示出小王得到的总钱数,然后利用一次函数的增减性求出钱数的最大值.

【答案】(1)解:设生产一件甲种产品需分,生产一件乙种产品需分,由题意得:

解这个方程组得:

生产一件甲产品需要15分,生产一件乙产品需要20分.

(2)解:设生产甲种产品用分,则生产乙种产品用分,则生产甲种产品件,生产乙种产品件.

又,得

由一次函数的增减性,当时取得最大值,此时(元)

此时甲有(件),

乙有:(件)

4.【答案】解:(1)由租用甲种汽车x辆,则租用乙种汽车(8-x)辆

由题意得:

解得:

即共有2种租车方案:

第一种是租用甲种汽车5辆,乙种汽车3辆;

第二种是租用甲种汽车6辆,乙种汽车2辆.

(2)第一种租车方案的费用为元;

第二种租车方案的费用为元

∴第一种租车方案更省费用.

5.【答案】解:设面值为2元的有x张,设面值为2元的有y张,依题意得

解得

经检验,符合题意

答:面值为2元的有16张,设面值为2元的有15张.

6.【解析】解应用题的一般步骤是:审、设、列、解、验、答。正确找出题中的等量或不等关系是解题的关键。本题利用一次函数的增减性确定了总费用的最大值。

【答案】(1)设这批赈灾物资运往县的数量为吨,运往县的数量为吨.

由题意,得解得

答:这批赈灾物资运往县的数量为180吨,运往县的数量为100吨.

(2)由题意,得

解得即.

为整数,的取值为41,42,43,44,45.

则这批赈灾物资的运送方案有五种.

具体的运送方案是:

方案一:A地的赈灾物资运往D县41吨,运往E县59吨;

B地的赈灾物资运往D县79吨,运往县21吨.

方案二:A地的赈灾物资运往D县42吨,运往E县58吨;

B地的赈灾物资运往D县78吨,运往E县22吨.

方案三:A地的赈灾物资运往D县43吨,运往E县57吨;

B地的赈灾物资运往D县77吨,运往E县23吨.

方案四:A地的赈灾物资运往D县44吨,运往E县56吨;

B地的赈灾物资运往D县76吨,运往E县24吨.

方案五:A地的赈灾物资运往D县45吨,运往E县55吨;

B地的赈灾物资运往D县75吨,运往E县25吨.

(3)设运送这批赈灾物资的总费用为元.由题意,得

因为w随的增大而减小,且,为整数.

所以,当x=41时,w有最大值.则该公司承担运送这批赈灾物资的总费用最多为:w=60930(元).

7.【答案】解:(1)设地经杭州湾跨海大桥到宁波港的路程为千米,

由题意得,解得.

∴A地经杭州湾跨海大桥到宁波港的路程为180千米.

(2)(元),

∴该车货物从地经杭州湾跨海大桥到宁波港的运输费用为380元.

(3)设这批货物有车,

由题意得,

整理得,

解得,(不合题意,舍去),

这批货物有8车.

8.【答案】解:(1)由从A市运往汶川x吨得:A市运往北川(500-x)吨,

B市运往汶川(400-x)吨,运往北川(x-100)吨

∴y=0.5x+0.8(500-x)+1.0(400-x)+0.4(x-100),

=0.5x+400-0.8x+400-x+0.4x-40,

=-0.9x+760

由题意得

(也可由得100≤x≤400)

解得100≤x≤400.

∴y=-0.9x+760(100≤x≤400)

(2)由(1)得y=-0.9x+760.

∵-0.9<0,

∴y随x的增大而减小

又∵100≤x≤400,

∴当x=400时,y的值最小,即最小值是

y=-0.9×400+760=400(升)

这时,500-x=100,400-x=0,x-100=300.

∴总耗油量最少的最佳运输方案是从A市运往汶川400吨,北川100吨;B市的300吨全部运往北川.

此方案总耗油量是400升.

9.【答案】解:依题意,甲店B型产品有件,乙店A型有件,B型有件,则

(1)

由解得.

(2)由,.

,,39,40.

有三种不同的分配方案.

①x=38时,甲店A型38件,B型32件,乙店A型2件,B型28件.

②x=39时,甲店A型39件,B型31件,乙店A型1件,B型29件.

③x=40时,甲店A型40件,B型30件,乙店A型0件,B型30件.

(3)依题意:

①当时,,即甲店A型40件,B型30件,乙店A型0件,B型30件,能使总利润达到最大.

②当时,,符合题意的各种方案,使总利润都一样.

③当时,,即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达到最大.

10.【答案】(1)设能买A种笔记本x本,则能买B种笔记本(30-x)本.

依题意得:,解得.

因此,能购买两种笔记本各15本.

(2)①依题意得:,

即.

且有解得.

所以,(元)关于(本)的函数关系式为:,自变量的取值范围是,且为整数.

②对于一次函数,

随的增大而增大,且,为整数,

故当为时,值最小.

此时,,(元).

因此,当买A种笔记本8本,B种笔记本22本时,所花费用最少,为272元.