88教案网

你的位置: 教案 > 高中教案 > 导航 > 最小二乘估计教案

高中语文必修二教案

发表时间:2020-11-19

最小二乘估计教案。

俗话说,居安思危,思则有备,有备无患。作为高中教师就需要提前准备好适合自己的教案。教案可以更好的帮助学生们打好基础,让高中教师能够快速的解决各种教学问题。那么如何写好我们的高中教案呢?下面是小编帮大家编辑的《最小二乘估计教案》,欢迎您参考,希望对您有所助益!

最小二乘估计

教学目标:1、掌握最小二乘法的思想
2、能根据给出的线性回归方程系数公式建立线性回归方程
教学重点:最小二乘法的思想
教学难点:线性回归方程系数公式的应用
教学过程
回顾:上节课我们讨论了人的身高与右手一拃长之间的线性关系,用了很多种方法来刻画这种线性关系,但是这些方法都缺少数学思想依据。
问题1、用什么样的线性关系刻画会更好一些?
想法:保证这条直线与所有点都近(也就是距离最小)。
最小二乘法就是基于这种想法。
问题2、用什么样的方法刻画点与直线的距离会方便有效?
设直线方程为y=a+bx,样本点A(xi,yi)
方法一、点到直线的距离公式

方法二、

显然方法二能有效地表示点A与直线y=a+bx的距离,而且比方法一更方便计算,所以我们用它来表示二者之间的接近程度。
问题3、怎样刻画多个点与直线的接近程度?
例如有5个样本点,其坐标分别为(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5)与直线y=a+bx的接近程度:
从而我们可以推广到n个样本点:(x1,y1),(x2,y2),…(xn,yn)与直线y=a+bx的接近程度:
使得上式达到最小值的直线y=a+bx就是我们所要求的直线,这种方法称为最小二乘法
问题4、怎样使达到最小值?
先来讨论3个样本点的情况
设有3个点(x1,y1),(x2,y2),(x3,y3),则由最小二乘法可知直线y=a+bx与这3个点的接近程度由下面表达式刻画:
…………………①
整理成为关于a的一元二次函数,如下所示:
利用配方法可得
从而当时,使得函数达到最小值。
将代入①式,整理成为关于b的一元二次函数,
同样使用配方法可以得到,当
时,使得函数达到最小值。
从而得到直线y=a+bx的系数a,b,且称直线y=a+bx为这3个样本点的线性回归方程。
用同样的方法我们可以推导出n个点的线性回归方程的系数:
其中
由我们知道线性回归直线y=a+bx一定过。
例题与练习
例1在上一节练习中,从散点图可以看出,某小卖部6天卖出热茶的杯数(y)与当天气温(x)之间是线性相关的。数据如下表
气温(xi)/oC261813104-1
杯数(yi)/杯202434385064
(1)试用最小二乘法求出线性回归方程。
(2)如果某天的气温是-3oC,请预测可能会卖出热茶多少杯。
解:(1)先画出其散点图
ixiyixi2xiyi
12620676520
21824324432
31334169442
41038100380
545016200
6-1641-64
合计7023012861910
可以求得
则线性回归方程为
y=57.557-1.648x
(2)当某天的气温是-3oC时,卖出热茶的杯数估计为:
练习1已知x,y之间的一组数据如下表,则y与x的线性回归方程y=a+bx必经过点(D)
x0123
y1357

(A)(2,2)(B)(1.5,0)(C)(1,2)(D)(1.5,4)

练习2某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:
商店名称ABCDE
销售额(x)/千万元35679
利润额(y)/百万元23345
(1)画出销售额和利润额的散点图;
(2)若销售额和利润额具有相关关系,计算利润额y对销售额x的回归直线方程。

解:(1)

(2)数据如下表:
ixiyixi2xiyi
13296
2532515
3633618
4744928
5958145
合计3017200112
可以求得b=0.5,a=0.4
线性回归方程为:
小结
1、最小二乘法的思想
2、线性回归方程的系数:

作业:P60习题1-8第1题

精选阅读

高二数学必修三《用样本估计总体》优秀教案


高中数学必修三《用样本估计总体》教案

教学目标:

【知识与技能】

(1)了解通过抽样调查收集数据的方法;会设计简单的方案收集数据。

(2)通过抽样调查,初步感受抽样的必要性,体会用样本估计总体的思想。

(3)了解实验也是获得数据的有效方法。

【过程与方法】

(1)通过生活实例的引入,使学生学会以数学的角度提出和理解问题,应用统计思想解决实际问题。

(2)让学生通过动手实验来体验一种在生产和科研中经常用到的“捉——放——捉”的方法。

【情感〃态度〃价值观】

(1)通过简单的方案设计和师生双边的教学活动,让学生在运用统计的知识解决实际问题时,体验互动交流精神。

(2)通过实际参与收集整理.描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步

建立统计观念,培养重视调查研究的良好习惯和科学态度。

教学重难点:让学生通过动手实验来体验一种在生产和科研中经常用到的“捉--放--捉”的方法。

教学过程:

(一)创设情境导入新课

导语:在我们熟知的一些科学家、历史人物中有很多在像和你们一样年轻的时候就显现出了他们在数学上的天赋,如“曹冲称象”就利用他所掌握的数学知识解决了实际问题。今天我也想请大家帮我解决一个问题,我这瓶子中装有一些豆子,你能用几种方法估计出这个瓶子中豆子的数目?(二)合作交流解读探究

【问题1】瓶子中有多少豆子?

先让学生初步探讨问题,交流方案;

【学生实验参考方案】

(一)(全面调查)直接数瓶子中的豆子;

(二)(抽样调查)

<1>先将豆子若干等份,数出其中一份豆子的数量,以此估计总量。

<2>用称重的方法,先称出所有豆子的重量m,再称出一杯豆子的重量

n,并数清这杯豆子的粒数p,则这一杯豆子平均每粒重m/p,以此

就可以估计出瓶子中豆子的粒数q:

q≈p/n×m

<3>采用“捉--放--捉”的方法;(本节课的主要实验方法)

【课堂实验】

实验步骤:(1)从瓶子中取出一些豆子,记录这些豆子的粒数m;

(2)给这些豆子做上记号;

(3)把这些豆子放回瓶子中,充分摇匀;

(4)从瓶子中再取出一些豆子,记录这些豆子的粒数p和其中带

有记号的豆子的粒数n;

(5)利用得到的数据m,p,n,估计原来瓶子中豆子的粒数q,

q≈p/n×m

(6)数出瓶子中豆子的总数,验证你的估计。

【注意】1,注意让学生体会活动(3)“充分摇匀”的必要性,可以向学生指出这样做的目的是使样本能更好地代表总体。

2,各小组通过实验所得到的最后结果可能有所不同,教学中要

注意让学生体会不同的样本可能得到的结果。

3,若要得到较准确的数据,可在活动(3)------(5)多做几次,

最后求q的平均值。但这种方法本身就是一种估算,不能说是

一种准确值。

【问题2】鱼塘里有多少鱼?你用什么方法可以估计。

<1>讨论各参考方案的合理性,可行性;

<2>定方案,回答实际问题。

(参考答案)我们可以利用“捉--放--捉”的方法;

○1先从池塘的不同地方捕捞若干条(m条)鱼做上标记,然后放回池塘里;

○2经过一段时间,等有标记的鱼完全混合鱼群中以后,再在同样的地方捕捞,若捕捞出p条鱼,其中有标记的鱼有n条;则

池塘里的鱼

q≈p/n×m

【注意】此时可给出“捉-放-捉”方法的名称。

(三)应用迁移巩固提升

例,为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合鱼

群中以后,再捕捞200条,若其中有标记的鱼有10条,则估

计池塘里有鱼___条。

(四)总结反思

【总结】本节课我们通过动手实验来体验一种在生产和科研中经常用到的“捉--放--捉”的方法,这个方法利用了用样本估计总体的思想。实际中常用来估计一个总体的数量,例如估计鱼塘中鱼的条数,森林里某种动物的个数。

(五)课后作业

●请每个小组设计一个“调查某物总体数目”的题目;

●并在过程中可以利用“捉-放-捉”这一方法进行调查。

●简明地写出操作步骤。

实验记录表

小组成员

实验内容估计瓶子中豆子的数目

试验步骤:

(1)从瓶子中取出一些豆子,记录这些豆子的粒数(m=);(2)给这些豆子做上记号;

(3)把这些豆子放回瓶子中,充分摇匀;

(4)从瓶子中再取出一些豆子,记录这些豆子的粒数(p=)和其中带有记号的豆子的粒数(n=);

(5)利用得到的数据m,p,n,估计原来瓶子中豆子的粒数q,

q=m×p/n=()=()粒

结论:

该瓶中有豆子约()粒;

平均数及其估计


第23课时平均数及其估计
【学习导航】
学习要求
1.知道平均数是对调查数据的一种简明的描述,它表示变量一切可能值的算术平均值,从而实现对总体可靠度的估计,学习时仔细体会它的实际意义。
2.熟练掌握平均数的计算公式。
【课堂互动】
自学评价
案例某校高一(1)班同学在老师的布置下,用单摆进行测试,以检验重力加速度.全班同学两人一组,在相同的条件下进行测试,得到下列实验数据(单位:m/s2):
9.629.549.789.9410.019.669.889.6810.32
9.769.459.999.819.569.789.729.939.94
9.659.799.429.689.709.849.90
怎样利用这些数据对重力加速度进行估计?
【分析】
我们常用算术平均数(其中(=1,2,…,n)为n个实验数据)作为重力加速度的“最理想”的近似值.它的依据是什么?
处理实验数据的原则是使这个近似值与实验数据之间的离差最小.
设这个近似值为,那么它与n个实验值(=1,2,…,n)的离差分别为,,…,.由于上述离差有正有负,故不宜直接相加.可以考虑将各个离差的绝对值相加,研究||+||+…+||取最小值时的值.但由于含绝对值,运算不太方便,所以考虑离差的平方和,即()2+()2+…+()2,当此和最小时,对应的的值作为近似值,因为
()2+()2+…+()2=

所以当时离差的平方和最小,故可用作为表示这个物理量的理想近似值,称其为这n个数据,,…,的平均数或均值,一般记为.
用计算器操作,验证:求得重力加速度的最佳近似值为m/s2.
【小结】
1.个实数的和简记为
2.已知个实数,则称为这个数据的平均数(average)或均值(mean)
3.若取值为的频率分别为,则其平均数为

【精典范例】
例1某校高一年级的甲、乙两个班级(均为50人)的语文测试成绩如下(总分:150),试确定这次考试中,哪个班的语文成绩更好一些。
甲班
1128610684100
87112949499
10810096115111
10410711910793
92102938494
1059810294107
901209895119
10495108111105
1029811211299
941009084114
乙班
1169510996106
9498105101115
10810011098107
10710611112197
107111114106104
9810899110103
10411210111396
8710810610397
107114122101107
10495111111110

【分析】我们可用一组数据的平均数衡量这组数据的水平,因此,分别求得甲、乙两个班级的平均分即可。
【解】用科学计算器分别求得甲班的平均分为101.1,乙班的平均分为105.4,故这次考试乙班成绩要好于甲班。

例2下面是某校学生日睡眠时间的抽样频率分布表(单位:h),试估计该学生的日平均睡眠时间。
睡眠时间人数频率
50.05
170.17
330.33
370.37
60.06
20.02
1001
【分析】要确定这100名学生的平均睡眠时间,就必须计算其总睡眠时间,由于每组中的个体睡眠时间只是一个范围,可以用各组区间的组中值近似地表示。
【解】解法1总睡眠时间约为
故平均睡眠时间约为7.39h
解法2求组中值与对应频率之积的和
答估计该校学生的日平均睡眠时间约为7.39h

例3某单位年收入在10000到15000、15000到20000、20000到25000、25000到30000、30000到35000、35000到40000及40000到50000元之间的职工所占的比分别为10%,15%,20%,25%,15%,10%和5%,试估计该单位职工的平均年收入。
【分析】上述比就是各组的频率
【解】:估计该单位职工的平均年收入为
=26125(元)
答:估计该单位人均年收入约为2125元。

例4学校对王老师与张老师的工作态度、教学成绩及业务学习三个方面做了一个初步的评估,成绩如下表:
工作态度教学成绩业务学习
王老师989596
张老师909998
(1)如果以工作态度、教学成绩及业务学习三个方面的平均分来计算他们的成绩,作为评优的依据,你认为谁会被评为优秀?
(2)如果三项成绩的比例依次为20%、60%、20%来计算他们的成绩,结果又会如何?
【解】(1)王老师的平均分是.张老师的均分是:.王老师的平均分较高,评王老师为优秀.
(2)王老师的平均分是

张老师的平均分为

张老师的得分高,评张老师为优秀.

追踪训练
1.期中考试之后,班长算出了全班40个人数学成绩的平均分为M,如果把M当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均值为N,那么为()
A.B.1C.D.2
2.从某校全体高考考生的数学成绩中任意抽取20名考生的成绩(单位:分,总分:150分)为102,105,131,95,83,121,140,100,97,96,
95,121,124,135,106,109,110,101,98,97,试估计该校全体考生数学平均成绩。
解:
样本的平均数为108.3
估计该校全体考生数学平均成绩为108分

3.某教师出了一份共3道题的测试卷,每道题1分,全班得3分、2分、1分和0分的学生所占比例分别为30%,50%,10%,10%。
(1)若全班共10人,则平均分是多少?
(2)若全班共20人,则平均分是多少?
(3)如果该班人数未知,能求出该班的平均分吗?
解:(1)=2
(2)=2
(3)可以

第8课时平均数及其估计
分层训练
1.某运动员参加体操比赛,当评委亮分后,其成绩往往是先去掉一个最高分、去掉一个最低分,再计算剩下分数的平均值,这是因为
()
(A)减少计算量(B)避免故障
(C)剔除异常值(D)活跃赛场气氛
2.某房间中10个人平均身高为1.74米,身高为1.85米的第11人进入房间后,求11个人的平均身高。

3.如上题,某房间中10个人平均身高为1.74米,求第11人身高为多少时,使得房间中所有11人的平均身高达到1.78米。

4.从1,2,3,4,5,6这6个数中任取2个,求所有这样的两数之积的平均数。

5.用甲、乙两台半自动车床加工同一型号的产品,各生产1000只产品中次品数分别用x和y表示。经过一段时间的观察,发现x和y的频率分布如下表,问:哪一台车床生产的产品质量较好?
x0123
p0.70.10.10.1
y0123
p0.50.30.20

6.某工厂一个月(30天)中的日产值如下:
日产值(万元)5.15.25.35.45.55.65.7
天数2368731
试计算该厂这个月的平均日产值。

7.证明:.

8.为了检验某自来水消毒设备的效果,现从消毒后的水中随机抽取50升,化验每升水中大肠杆菌的个数,结果如下:
大肠杆菌个数/升01234
频数17201021
则所取50升水中平均含有大肠杆菌_____个/升
估计全部消毒过的自来水中平均每升水的大肠杆菌的含量为_______个。

拓展延伸
9.有一个容量为100的某校毕业生起始月薪的样本,数据的分组及各组的频数如下:

起始月薪(百元)

频数7112623
起始月薪(百元)

频数15846
估计这100名毕业生起始月薪的平均值

10.个体户李某经营一家快餐店,下面是快餐店所有工作人员8月份的工资表:

某大

厨二

厨采购员杂

工服务生会


3000450350400320320410
(1)计算所有人员8月份的平均工资
(2)计算出的平均工资能否反映打工人员这个月收入的一般水平?为什么?
(3)去掉李某的工资后,再计算平均工资,这能代表打工人员当月的收入水平吗?

高二数学必修三考点解析:用样本估计总体


一位优秀的教师不打无准备之仗,会提前做好准备,作为教师准备好教案是必不可少的一步。教案可以让学生更好的消化课堂内容,让教师能够快速的解决各种教学问题。教案的内容具体要怎样写呢?下面是小编为大家整理的“高二数学必修三考点解析:用样本估计总体”,欢迎您参考,希望对您有所助益!

高二数学必修三考点解析:用样本估计总体

1、数据的两个特征:集中趋势和波动性。集中趋势指的是数据的“一般水平”或曰“平均水平”,波动性指的是数据围绕“平均值”的变化情况。
2、反映数据“大多数水平”(集中趋势)的量——众数
众数:即样本数据中频数最大(或频率最高)的数据。
特点:①可以不存在或不止一个;
②不受极端数据的影响,求法简单;
③可靠性差,如0,0,2,3,5这组数据中,众数是0,它很难真实反映这组数据的“平均水平”(集中趋势);
④众数在难以定义“平均数”或“中位数”时常用,故一般可用于统计非数字型数据,如“牛,羊,马,鱼,牛”这组数据中,众数是“牛”;
⑤众数在销售统计中常用
3、反映数据“中间水平”(集中趋势)的量——中位数
中位数:把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数。
特点:①中位数把样本数据分为两部分,一部分大于中位数,另一部分小于中位数;
②中位数不受少数几个极端值的影响;
③由于当样本数据为偶数个时,中位数等于中间两个数据的平均值,因此有时中位数未必在样本数据中.【同步练习题】
1、某“中学生暑假环保小组”的同学,随机调查了“幸福小区”10户家庭一周内使用环保方便袋的数量,数据如下:(单位:只):6,5,7,8,7,5,8,10,5,9,利用上述数据估计该小区2000户家庭一周内需要环保方便袋约()
A.2000只B.14000只C.21000只D.98000只
2、在2008年的世界无烟日(5月31日),小华学习小组为了解本地区大约有多少成年人吸烟,随机调查了100个成年人,结果其中有15个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是()
A.调查的方式是普查B.本地区只有85个成年人不吸烟
C.样本是15个吸烟的成年人D.本地区约有15℅的成年人吸烟
3、为了解一批节能灯的使用寿命,宜采用的方式进行调查.(填:“全面调查”或“抽样调查”)
4、为了了解某所初级中学学生对2008年6月1日起实施的“限塑令”是否知道,从该校全体学生1200名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约有名学生“不知道”.

函数的最大值和最小值教案


1.本节教材的地位与作用
本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义.
2.教学重点
会求闭区间上连续开区间上可导的函数的最值.
3.教学难点
高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法.
4.教学关键
本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点.
【教学目标】
根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标:
1.知识和技能目标
(1)理解函数的最值与极值的区别和联系.
(2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值.
(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤.
2.过程和方法目标
(1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值.
(2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处.
(3)会求闭区间上连续,开区间内可导的函数的最大、最小值.
3.情感和价值目标
(1)认识事物之间的的区别和联系.
(2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题.
(3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神.
【教法选择】
根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用.
本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学.
【学法指导】
对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.