88教案网

你的位置: 教案 > 初中教案 > 导航 > 勾股定理

高中物理动能定理教案

发表时间:2020-11-19

勾股定理。

一般给学生们上课之前,老师就早早地准备好了教案课件,大家静下心来写教案课件了。只有规划好教案课件计划,才能更好地安排接下来的工作!哪些范文是适合教案课件?下面是小编帮大家编辑的《勾股定理》,欢迎您参考,希望对您有所助益!

章节与课题§2.1勾股定理(1)课时安排1课时
主备人审核人
使用人使用日期或周次
本课时
学习目标
或学习任务1、通过拼图,用面积的方法说明勾股定理的正确性.
2.探索勾股定理的过程,发展合情推理的能力,体会数型结合的思想。
本课时
重点难点
或学习建议学习重点:用面积的方法说明勾股定理的正确.
学习难点:勾股定理的应用.
本课时
教学资源
的使用PPT课件、学案
学习过程教师
二次备课栏
自学准备与知识导学:
这是1955年希腊为纪念一位数学家曾经发行的邮票。
邮票上的图案是根据一个著名的数学定理设计的。

学习交流与问题研讨:
1、探索
问题:分别以图中的直角三角形三边为边向三角形外
作正方形,小方格的面积看做1,求这三个正方形的面积?
S正方形BCED=S正方形ACFG=S正方形ABHI=
发现:
2、实验
在下面的方格纸上,任意画几个顶点都在格点上的三角形;并分别以这个三角形的各边为一边向三角形外做正方形并计算出正方形的面积。

请完成下表:
S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的关系
112
145
41620
91625
发现:
如何用直角三角形的三边长来表示这个结论?
这个结论就是我们今天要学习的勾股定理:
如图:我国古代把直角三角形中,较短的直角边叫做“勾”,
较长的直角边叫做“股”,斜边叫做“弦”,所以勾股定理可表示为:弦

还可以表示为:
或勾

练习检测与拓展延伸:
练习1、求下列直角三角形中未知边的长

练习2、下列各图中所示的线段的长度或正方形的面积为多少。
(注:下列各图中的三角形均为直角三角形)

例1、如图,在四边形中,∠,∠,,求.

检测:
1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,则c=________;
(2)b=8,c=17,则S△ABC=________。

2、在Rt△ABC中,∠C=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是()
A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10

3、若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为()
A.12cmB.10cmC.8cmD.6cm

4、要登上8m高的建筑物,为了安全需要,需使梯子底端离建筑物6m,至少需要多长的梯子?(画出示意图)

5、飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4千米处,过了20秒,飞机距离这个男孩5千米,飞机每小时飞行多少千米?

课后反思或经验总结:
1、什么叫勾股定理;
2、什么样的三角形的三边满足勾股定理;
3、用勾股定理解决一些实际问题。

相关推荐

探索勾股定理1


第一章勾股定理
1.探索勾股定理(一)

一、学生起点分析
八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.

二、教学任务分析
本节课是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第一节第1课时.
勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用.本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值.

三、教学目标分析
●知识与技能目标
用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.
●数学思考
让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.
●解决问题
进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.
●情感与态度
在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习.
四、教法学法
1.教学方法:引导—探究—发现法.
2.学习方法:自主探究与合作交流相结合.

五、教学过程设计
本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.

第一环节:创设情境,引入新课
内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:
会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”
的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)
意图:紧扣课题,自然引入,同时渗透爱国主义教育.
效果:激发起学生的求知欲和爱国热情.

第二环节:探索发现勾股定理
1.探究活动一:
内容:(1)投影显示如下地板砖示意图,让学生初步观察:

(2)引导学生从面积角度观察图形:

问:你能发现各图中三个正方形的面积之间有何关系吗?
学生通过观察,归纳发现:
结论1以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.
效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;
2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.
2.探究活动二:
内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?
(1)观察下面两幅图:

(2)填表:
A的面积
(单位面积)B的面积
(单位面积)C的面积
(单位面积)
左图
右图
(3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)
学生的方法可能有:
方法一:
如图1,将正方形C分割为四个全等的直角三角形和一个小正方形,.
方法二:
如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,.
方法三:
如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,.
(4)分析填表的数据,你发现了什么?
学生通过分析数据,归纳出:
结论2以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C的面积计算是一个难点,为此设计了一个交流环节.
效果:学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2.
3.议一议:
内容:(1)你能用直角三角形的边长、、来表示上图中正方形的面积吗?
(2)你能发现直角三角形三边长度之间存在什么关系吗?
(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?
勾股定理(gou-gutheorem):
如果直角三角形两直角边长分别为、,斜边长为,那么

即直角三角形两直角边的平方和等于斜边的平方.
数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的
直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.
(在西方称为毕达哥拉斯定理)
意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.
效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力.
2.通过作图培养学生的动手实践能力.

第三环节:勾股定理的简单应用
内容:
例如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,
树顶落在离树根24m处.大树在折断之前高多少?
(教师板演解题过程)
练习:1、基础巩固练习:
(口答)求下列图形中未知正方形的面积或未知边的长度:

2、生活中的应用:
小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?
意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.
效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.

第四环节:课堂小结
内容:教师提问:
1.这一节课我们一起学习了哪些知识和思想方法?
2.对这些内容你有什么体会?请与你的同伴交流.
在学生自由发言的基础上,师生共同总结:
1.知识:勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么.
2.方法:①观察—探索—猜想—验证—归纳—应用;
②面积法;
③“割、补、拼、接”法.
3.思想:①特殊—一般—特殊;
②数形结合思想.
意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.
效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.

第五环节:布置作业
内容:
作业:1.教科书习题1.1;
2.阅读《读一读》——勾股世界;
3.观察下图,探究图中三角形的三边长是否满足.

意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.
效果:学生进一步加强对本课知识的理解和掌握.

六、教学设计反思
(1)设计理念
依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.
(2)突出重点、突破难点的策略
为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.
(3)分层教学,拓展资源
基础训练
1.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刚搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,则梯脚与墙角的距离应为米.
2.如图,小张为测量校园内池塘A,B两点的距离,他在池塘边选定一点
C,使∠ABC=90°,并测得AC长26m,BC长24m,则A,B两点间的距离
为m.
3.如图,阴影部分是一个半圆,则阴影部分的面积为.(不取
近似值)
4.底边长为16cm,底边上的高为6cm的等腰三角形的腰长为cm.
5.一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/h的速度向东南方向航行,它们离开港口半小时后相距km.
提高训练
6.一个长为10m为梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8m,梯子的顶端下滑2m后,底端滑动m.
7.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角
三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积的和
是cm2.
8.已知Rt△ABC中,∠C=90°,若cm,cm,则Rt△ABC的面积为().
(A)24cm2(B)36cm2(C)48cm2(D)60cm2
9.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个
正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为
S1,S2,S3,则S1,S2,S3之间的关系是().
(A)(B)
(C)(D)无法确定
10.暑假中,小明和同学们到某海岛去探宝旅游,按照如图所示的
路线探宝.他们登陆后先往东走8km,又往北走2km,遇到障碍后又往
西走3km,再折向北走6km处往东一拐,仅走1km就找到了宝藏,则
登陆点到埋宝藏点的直线距离为km.
知识拓展
11.如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,求图中阴影部分的面积.

12.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它恰好落在斜边AB上,且与AE重合,求CD的长.

意图:进行分层训练,既满足了不同学生的需求,同时也便于老师及时地了解学生的情况.老师可以根据学生的情况选择上述题目进行练习,也可留作家庭作业.
效果:通过分层练习,充分激发学生的学习热情,教师应留给学生充分的时间思考,在独立思考的基础上,鼓励学生相互讨论,得出结果.
(4)评价方式
根据新课标的评价理念,在本课主要从以下几个方面对学生学习情况进行评价:
首先,在探索勾股定理的过程中,对学生的参与热情、情感态度、探究的积极性、探究的效果等学习情况进行评价.
其次,在“勾股定理的简单应用”这一教学环节中,通过例题和练习,可有效地评价学生理解和掌握知识的情况.
第三,在“课堂小结”这一环节中,教师可从学生的自由发言和交流中,了解到各个教学目标的达成情况.
第四,通过课后作业的完成情况,进一步了解学生对勾股定理的理解和掌握的程度.
教师根据这些评价结果做出相应的反馈和调节,调整、设计下节课或下阶段的教学内容,以达到尽可能好的教学效果.

从勾股定理谈起


第十三讲从勾股定理谈起
勾股定理揭示了直角三角形三边之间的关系,大约在公元前1100多年前,商高已经证明了普通意义下的勾股定理,在国外把勾股定理称为“毕达哥拉斯定理”.
勾股定理是平面几何中一个重要定理,其广泛的应用体现在:勾股定理是现阶段线段计算、证明线段平方关系的主要方法,运用勾股定理的逆定理,通过计算也是证明两直线垂直位置关系的一种有效手段.
直角三角形是一类特殊三角形,有着丰富的性质:两锐角互余(角的关系)、勾股定理(边的关系),30°角所对的直角边等于斜边的一半(边角关系),这些性质在求线段的长度、证明线段倍分关系、证明线段平方关系等方面有广泛的应用.
例题求解
【例1】如图,以等腰直角三角形ABC的斜边AB为边向内作等边△ABD,连结DC,以DC为边作等边△DCE,B、E在CD的同侧,若AB=,则BE=.
(重庆市中考题)
思路点拨因BE不是直角三角形的边,故不能用勾股定理直接计算,需找出与BE相等的线段转化问题.
注千百年来,勾股定理的证明吸引着数学爱好者,目前有400多种证法,许多证法的共同特点是通过弦图的割补、借助面积加以证明,美国第20任总统加菲尔德(1831—1881)曾给出一个简单证法.
勾股定理的发现是各族人民早期文明的特征,有人建议,将来与“外星人”交往,可以把勾股定理转化为光电讯号,传向异域,他们一定懂得勾股定理.
现已确定的2002年8月在北京举行的国际数学家大会的会标来源于弦图的图案.
【例2】2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么(a+b)2的值为()
A.13B.19C.25D.169
(山东省中考题)
思路点拨利用勾股定理、面积关系建立a、b的方程组.
【例3】如图,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC=60°,求∠ACB的度数.
(“祖冲之杯”邀请赛试题)
思路点拨不可能简单地由角的关系推出∠ACB的度数,解本例的关键是由条件构造出含30°角的直角三角形.

【例4】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,设AC=b,BC=a,AB=c,CD=h.
求证:(1);
(2);
(3)以、、为边的三角形,是直角三角形.
思路点拨(1)只需证明,从左边推导到右边;(2)证明(;(3)证明.在证明过程中,注意面积关系式的应用.
【例5】一个直角三角形的边长都是整数,它的面积和周长的数值相等,这样的直角三角形是否存在?若存在,确定它三边的长,若不存在,说明理由.
(北京市竞赛题)
思路点拨假设存在符合条件的直角三角形,它的三边长为a、b、c,其中c为斜边,则,于是将存在性问题的讨论转化为求方程组的解.
注当勾股定理不能直接运用时,常需要通过等线段的代换、作辅助垂线等途径,为勾股定理的运用创造必要的条件,有时又需要由线段的数量关系去判断线段的位置关系,这就需要熟悉一些常用的勾股数组.
从代数角度,考察方程的正整数解,古代中国人发现了“勾三股,四弦五”,古希腊人找到了这个方程的全部整数解(用代数式表示的勾股数组).
17世纪,法国数学家费尔马提出猜想:当≥3时,方程无正整数解.
1994年,曼国普林斯顿大学维尔斯教授历尽艰辛证明了这个猜想,被誉为20世纪最伟大的成果.
一般地,在有等边三角形、正方形的条件下,可将图形旋转60°或90°,旋转过程中角度、线段的长度保持不变,在新的位置上分散的条件相对集中,以便挖掘隐含条件,探求解题思路.
学力训练
1.如图,AD是△ABC的中线,∠ADC=45°,把△ACD沿AD对折,点C落在点C′的位置,则BC′与BC之间的数量关系是.(山西省中考题)
2.如图,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP重合,若AP=3,则PP′的长等于.
3.如图,已知AB=13,BC=14,AC=15,AD⊥BC于D,则AD=.
(武汉市选拔赛试题)
4.如图,四边形ABCD中,AB=3cm,BC=4cm,CD=12㎝,DA=13cm,且∠ABC=90°,则四边形ABCD的面积是cm2.
5.如图,一个长为10米的梯子,斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离()
A.等于1米B.大于l米C.小于l米D.不确定
(宁波市中考题)

6.如果一个三角形的一条边是另一条边的2倍,并且有一个角是30°,那么这个三角形的形状是()
A.直角三角形B.钝角三角形C.锐角三角形D.不能确定
7.在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=()

8.在由单位正方形组成的网格图中标出了AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是()
A.CD,EF,GHB.AB,CD,EFC.AB,CD,GHD.AB,EF,GH
(北京市竞赛题)
9.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)使三角形的三边长分别为3,2,;(2)使三角形为钝角三角形且面积为4.
(吉林省中考题)
10.如图,在△ABC中,AB=AC,∠A=120°,MN垂直平分AB,求证:CM=2BM.
(南道市中考题)
11.如图,在Rt△ABC中,∠A=90°,D为斜边BC中点,DE⊥DF,求证:.

12.如图,在△ABC中,AB=5,AC=13,边BC上的中线AD=6,则BC的长为.
(湖北省预赛试题)
13.如图,设P是等边△ABC内的一点,PA=3,PB=4,PC=5,则∠APB的度数是.
14.如图,一个直角三角形的三边长均为正整数,已知它的一条直角边的长恰是1997,那么另一条直角边的长为.

15.若△ABC的三边a、b、c满足条件:,则这个三角形最长边上的高为.
16.在锐角△ABC中,已知某两边a=1,b=3,那么第三边的变化范围是()
A.2c4B.2c≤3C.2c<c<
(“祖冲之杯”邀请赛试题)
17.如图,用3个边长为l的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为()
A.B.C.D.
(天津市竞赛题)

18.△ABC三边BC、CA、AB的长分别为a、b、c,这三边的高依次为、、,若a≤,b≤,则这个三角形为()
A.等边三角形B.等腰非直角三角形C.直角非等腰三角形D.等腰直角三角形
(武汉市选拔赛试题)
19.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠CAB交CD于E,交CB于F,且EG∥AB交CB于G,则CF与CB的大小关系是()
A.CFGBB.CF=GBC.GFGBD.无法确定
20.如图,已知△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,F、F分别是AB、AC边上的点,且DF⊥DF,若BE=12,CF=5,求△DEF的面积.
21.如图,在△ABC中,AB=AC,(1)若P是BC边上的中点,连结AP,求证:BP×CP=AB2一AP2;(2)若P是BC边上任意一点,上面的结论还成立吗?
若成立,请证明,若不成立,请说明理由;(3)若P是BC边延长线上一点,线段AB、AP、BP、CP之间有什么样的关系?请证明你的结论.

22.如图,在△ABC中,∠BAC=90°,AB=AC,E、F分别是BC上两点,若∠EAF=45°,试推断BE、CF、EF之间的数量关系,并说明理由.
23.如图,∠ACB=90°,AD是∠CAB的平分线,BC=4,CD=,求AC的长.
(河南省竞赛题)

24.(1)四年一度的国际数学家大会于2002年8月20日在北京召开.大会会标如图甲.它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.
若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.
(2)现有一张长为6.5cm.宽为2㎝的纸片,如图乙,请你将它分割成6块,再拼合成一个正方形.(要求:先在图乙中画出分割线,再画出拼成的正方形并标明相应数据)
(烟台市中考题)
25.如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=CD,求证:BD2=AB2+BC2.
(北京市竞赛题)

《勾股定理逆定理》导学设计


《勾股定理逆定理》导学设计

3.2勾股定理逆定理
班级姓名
一、教学目标:
1.会阐述勾股定理的逆定理。
2.会应用勾股定理的逆定理判定一个三角形是直角三角形
3.在探索勾股定理的逆定理的过程中,发展合情推理能力,体会“形”与“数”的内在联系。
二、教学重点:勾股定理的逆定理
三、教学难点:会应用勾股定理的逆定理解决一些简单的实际问题
四、教学过程
(一)、情境创设:温故知新
1.已知△ABC中,∠C=90°,a=7,c=25,则b=.
2.已知△ABC中,∠A=25°,∠B=65°,则∠C=°,此时△ABC为三角形.
3.勾股定理及它的逆命题,几何语言的阐述,思考它们都是真命题吗?
(二)、探究活动:
如图,已知△ABC中,a2+b2=c2,△ABC是否为直角三角形?您会证明么?
ac

b
勾股定理的逆定理:如果三角形的三边长a、b、C满足,那么这个三角形是直角三角形。满足a2+b2=c2的三个正整数a,b,c,称为。

练习(1)、下列各数组中,不能作为直角三角形的三边长的是()
A、3,4,5B、10,6,8C、4,5,6D、12,13,5
(2)若△ABC的两边长为8和15,则能使△ABC为直角三角形的第三条边长的平方是()
A.161B.289;
C.17D.161或289.
(3)、4个三角形的边长分别为:①a=5,b=12,c=13;②a=2,b=3,c=4;③a=2.5,b=6,c=6.5;④a=21,b=20,c=29.其中,直角三角形的个数是()
A、4B、3C、2D、1
(4)、下列各组数是勾股数吗?为什么?
⑴12,15,18;⑵7,24,25;
⑶15,36,39;⑷12,35,36.
小结:

练习.如图,判断△ABC的形状,并说明理由.

思考:(1)如果△ABC满足c2=a2-b2,这个三角形是直角三角形吗?如果是,哪个角是直角?
(2)一个直角三角形的三边长为3,4,5.如果将这三边同时扩大3倍,那么得到的三角形还是直角三角形吗?如果扩大4倍呢?扩大n倍呢?

探索规律,像3,4,5;6,8,10;5,12,13等满足a2+b2=c2的一组正整数,称为勾股数.
(1)填表:
a369…3n
b4816…
c51520…5n
a369…3n
b4816…
c51520…5n

(五).课堂小结:通过这节课的学习活动你有哪些收获?
学了这么多,来小试身手吧!
一、选择题
1.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列条件中,能判断△ABC为直角三角形的是()
A.a+b=cB.a:b:c=3:4:5C.a=b=2cD.∠A=∠B=∠C
2.若三角形三边长分别是6,8,10,则它最长边上的高为()
A.6B.4.8C.2.4D.8
3如图,在四边形ABCD中,已知:AB=1,BC=2,CD=2,AD=3,且AB⊥BC.
试说明AC⊥CD.

4.要做一个如图所示的零件,按规定∠B与∠D都应为直角,工人师傅量得所做零件的尺寸如图,这个零件符合要求吗?为什么?

5.已知:如图一个零件,AD=4,CD=3,∠ADC=90°,AB=13,BC=12.求图形的面积.

6*(选做).在△ABC中,BC=m2-n2,AB=m2+n2,AC=2mn(mn0)
(1)试判断△ABC的形状,并说明理由;
(2)利用所给的BC、AC、AB的长度的表达式,写出一组勾股数,使其中一个数是28.

家作班级姓名
1.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列条件中,能判断△ABC为直角三的为()
A.a+b=cB.a:b:c=3:4:5C.(c+a)(c-a)=b2D.∠B-∠C=∠A,

2.下列各数组中,不能作为直角三角形的三边长的是()
A.3,4,5B.10,6,8C.4,5,6D.12,13,5

3.若三角形三边长分别是3,4,15,则它最长边上的高为。

4.若△ABC的两边长为9和15,则能使△ABC为直角三角形的第三边是。

5.4个三角形的边长分别为:①a=5,b=12,c=13;②a=2,b=3,c=4;③a=2.5,b=6,c=6.5;
④a=21,b=20,c=29.其中,直角三角形的个数是个。

6.一个直角三角形三边长为连续自然数,则这三个数为.

7.一个三角形的三边长的比为5:12:13,周长为60cm,则其面积为.

8.在△ABC中,如果(a+b)(a-b)=c2,那么∠A=°

9.已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状。

思考题:若△ABC的三边a、b、c满足条件a2+b2+c2+338=10a+24b+26c。
试判断△ABC的形状,并说明理由.