88教案网

你的位置: 教案 > 高中教案 > 导航 > 《牛顿运动定律》期末知识点梳理

高中牛顿第二定律教案

发表时间:2020-11-02

《牛顿运动定律》期末知识点梳理。

一名爱岗敬业的教师要充分考虑学生的理解性,教师要准备好教案,这是每个教师都不可缺少的。教案可以让学生更好的吸收课堂上所讲的知识点,帮助教师缓解教学的压力,提高教学质量。你知道如何去写好一份优秀的教案呢?考虑到您的需要,小编特地编辑了“《牛顿运动定律》期末知识点梳理”,欢迎大家与身边的朋友分享吧!

《牛顿运动定律》期末知识点梳理

第四章牛顿运动定律
第一节牛顿第一定律理想实验的魅力
牛顿物理学的基石——惯性定律牛顿第一定律(惯性定律)定义:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它变这种状态。
惯性定义:物体所具有的保持匀速直线运动状态或静止状态的性质。
惯性与质量描述物体惯性的物理量是它们的质量。
质量是标量,只有大小,没有方向。
质量单位:千克(kg)
第二节实验:探究加速度与力、质量的关系加速度与力的关系基本思路:保持物体质量不变,测量物体在不同的力的作用下的加速度,分析加速度与力的关系。
加速度与质量的关系基本思路:保持物体所受的力相同,测量不同质量的物体在该力作用下的加速度,分析加速度与质量的关系。
制定实验方案时的两个问题
怎样由实验结果得出结论a∝F,a∝1/m
第三节牛顿第二定律牛顿第二定律定义:物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同。
公式:F=kmak是比例系数,F指的是物体所受的合力。
力的单位牛顿年第二定律的物理表达式:F=ma
力的单位:千克米每二次方秒。
第四节力学单位制基本量:被选定的、可以利用物理量之间的关系推导出其他物理量的物理量。
基本单位:基本量的单位。
导出单位:由基本量根据物理关系推导出来的其它物理量的单位。
单位制:由基本单位和导出单位组成。
国际单位制(SI):1960年第11届国际计量大会制订的一种国际通用的、包括一切计量领域的单位制。
第五节牛顿第三定律作用力和反作用力定义:物体间相互作用的这一对力。
作用力和反作用力总是互相依存、同时存在的。
牛顿第三定律定义:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
第六节用牛顿运动定律解决问题(一)从受力确定运动情况
从运动情况确定受力
第七节用牛顿运动定律解决问题(二)共点力的平衡条件平衡状态:一个物体在力的作用下保持静止或匀速直线运动状态时所处的状态。
在共点力作用下物体的平衡条件是合力为0。
超重和失重超重定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象。
加速度方向:竖直向上。
失重定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象。
加速度方向:竖直向下。
从动力学看自由落体运动物体时从静止开始下落的,即运动的初速度是0。运动过程中它只受重力的作用。

扩展阅读

高中物理《牛顿运动定律》知识点归纳


高中物理《牛顿运动定律》知识点归纳

高中物理知识点1.对牛顿第一定律的理解

(1)揭示了物体不受外力作用时的运动规律

(2)牛顿第一定律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关

(3)肯定了力和运动的关系:力是改变物体运动状态的原因,不是维持物体运动的原因

(4)牛顿第一定律是用理想化的实验总结出来的一条独立的规律,并非牛顿第二定律的特例

(5)当物体所受合力为零时,从运动效果上说,相当于物体不受力,此时可以应用牛顿第一定律

高中物理知识点2.对牛顿第二定律的理解

(1)揭示了a与F、m的定量关系,特别是a与F的几种特殊的对应关系:同时性、同向性、同体性、相对性、独立性

(2)牛顿第二定律进一步揭示了力与运动的关系,一个物体的运动情况决定于物体的受力情况和初始状态

(3)加速度是联系受力情况和运动情况的桥梁,无论是由受力情况确定运动情况,还是由运动情况确定受力情况,都需求出加速度

高中物理知识点3.对牛顿第三定律的理解

(1)力总是成对出现于同一对物体之间,物体间的这对力一个是作用力,另一个是反作用力

(2)指出了物体间的相互作用的特点:“四同”指大小相等,性质相等,作用在同一直线上,同时出现、消失、存在;“三不同”指方向不同,施力物体和受力物体不同,效果不同

高中物理知识点:用牛顿运动定律解决问题

高中物理知识点1、根据物体的受力情况确定物体的运动情况。其解题基本思路是:利用牛顿第二定律F合=ma求出物体的加速度a

;再利用运动学的有关公式求出速度vt和位移s等。

高中物理知识点2、根据物体的运动情况确定物体的受力情况。其解题基本思路是:分析清楚物体的运动情况,选用运动学公式求出物体的加速度,再利用牛顿第二定律求力。3、应用牛顿运动定律结合运动学公式解决力和运动关系的一般步骤是:

(1)确定研究对象;

(2)分析研究对象的受力情况:必要时画受力示意图;

(3)分析研究对象的运动情况,必要时画运动过程简图;

高中物理知识点(4)利用牛顿第二定律或运动学公式求加速度;

(5)利用运动学公式或牛顿第二定律进一步求解要求的物理量;

(6)运用牛顿第三定律进一步说明所求的物理量与其他量的关系。

牛顿运动定律


老师在新授课程时,一般会准备教案课件,大家应该开始写教案课件了。对教案课件的工作进行一个详细的计划,可以更好完成工作任务!你们会写适合教案课件的范文吗?下面是小编为大家整理的“牛顿运动定律”,仅供您在工作和学习中参考。

§4.《牛顿运动定律》章末测试题(二)
一、选择题(本题共10小题,每小题4分,共40分,每小题给出四个选项中,至少有一个是正确的,把正确答案全选出来)
1.关于运动状态与所受外力的关系,下面说法中正确的是()
A.物体受到恒定的力作用时,它的运动状态不发生改变
B.物体受到不为零的合力作用时,它的运动状态要发生改变
C.物体受到的合力为零时,它一定处于静止状态
D.物体的运动方向一定与它所受的合力的方向相同
2.下列说法正确的是()
A.运动得越快的汽车越不容易停下来,是因为汽车运动得越快,惯性越大
B.小球在做自由落体运动时,惯性不存在了
C.把一个物体竖直向上抛出后,能继续上升,是因为物体仍受到一个向上的推力
D.物体的惯性仅与质量有关,质量大的惯性大,质量小的惯性小
3.下列说法中正确的是()
A.一质点受两个力作用且处于平衡状态(静止或匀速运动),这两个力在同一段时间内的冲量一定相同
B.一质点受两个力作用处于平衡状态(静止或匀速运动),这两个力在同一段时间内做的功或者都为零,或者大小相等符号相反
C.在同样时间内,作用力和反作用力的功大小不一定相等,但正负号一定相反
D.在同样时间内,作用力和反作用力的功大小不一定相等,正负号也不一定相反
4.三个完全相同的物块1、2、3放在水平桌面上,它们与桌面间的动摩擦因数都相同。现用大小相同的外力F沿图示方向分别作用在1和2上,用F的外力沿水平方向作用在3上,使三者都做加速运动,令a1、a2、a3分别代表物块
1、2、3的加速度,则()
A.a1=a2=a3B.a1=a2,a2>a3
C.a1>a2,a2<a3D.a1>a2,a2>a3
5.如图所示,轻质弹簧上面固定一块质量不计的薄板,竖立在水平面上,在薄板上放一重物,用手将重物向下压缩到一定程度后,突然将手撤去,
则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧
脱离之前)重物的运动情况是()
A.一直加速运动B.匀加速运动
C.先加速运动后减速运动D.先减速运动后加速运动
6.公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板。一段时间内货物在竖直方向的振动可视为简谐运动,周期为T。取竖直向上为正方向,以某时刻作为计时起点,即t=0,其振动图象如图所示,则()
A.t=T时,货物对车厢底板的压力最大
B.t=T时,货物对车厢底板的压力最小
C.t=T时,货物对车厢底板的压力最大
D.t=T时,货物对车厢底板的压力最小
7.物块1、2放在光滑水平面上并用轻质弹簧秤相连,如图所示,今对物块1、2分别施以方向相反的水平力F1、F2。且F1大于F2,则弹簧秤的示数()
A.一定等于F1+F2B.一定等于F1-F2
C.一定大于F2小于F1D.条件不足,无法确定
8.如图所示,光滑水平面上,在拉力F作用下,AB共同以加速度a做匀加速直线运动,
某时刻突然撤去拉力F,此瞬时A和B的加速度为a1和a2,则()
A.a1=a2=0a1=a,a2=0
C.a1=a,a2=aD.a1=a,a2=-a
9.物块A1、A2、B1、B2的质量均为m,A1、A2用刚性轻杆连接,B1、B2用轻质弹簧连接,两个装置都放在水平的支托物上,处于平衡状态,如图所示,今突然迅速地撤去支托物,让物块下落,在除去支托物的瞬间,A1、A2受到的合力分别为FA1和FA2,B1、B2受到的合力分别为FB1和FB2,则()
A.FA1=0,FA2=2mg,FB1=0,FB2=2mg
B.FA1=mg,FA2=mg,FB1=0,FB2=2mg
C.FA1=0,FA2=2mg,FB1=mg,FB2=mg
D.FA1=mg,FA2=2mg,FB1=mg,FB2=mg
10.放在水平地面上的一物块,受到方向不变的水平推力
F的作用,F的大小与时间t的关系和物块速度v与时间
t的关系如图所示。取重力加速度g=10m/s2。由此两图
线可以求得物块的质量m和物块与地面之间的动摩擦因数
分别为()
A.m=0.5kg,=0.4
B.m=1.5kg,=
C.m=0.5kg,=0.2
D.m=1kg,=0.2

二、填空题(本题共4小题,每小题5分,共20分)
11.如图所示,高为h的车厢在平直轨道上匀减速向右行驶,加速度大小为a,车厢顶部A点处有油滴滴落到车厢地板上,
车厢地板上的O点位于A点的正下方,则油滴落地点必在O
点的(填“左”、“右”)方,离O点距离为

12.在失重条件下,会生产出地面上难以生产的一系列产品,如形状呈绝对球形的轴承滚珠,拉长几百米长的玻璃纤维等。用下面的方法,可以模拟一种无重力的环境,以供科学家进行科学实验。飞行员将飞机升到高空后,让其自由下落,可以获得25s之久的零重力状态,若实验时,飞机离地面的高度不得低于500m,科学家们最大承受两倍重力的超重状态,则飞机的飞行高度至少应为m。(重力加速度g=10m/s2)
13.如图所示,质量为m的物体放在水平地面上,
物体与水平地面间的摩擦因数为,对物体施加一个
与水平方向成角的力F,则物体在水平面上运动时
力F的值应满足的条件是≤F≤。
14.如图所示,小车上固定一弯折硬杆ABC,杆C
端固定一质量为m的小球,已知∠ABC=,当小车
以加速度a向左做匀加速直线运动时,杆C端
对小球的作用力大小为。
三、计算题(本题共3小题,第15题10分,第16题、17题均15分)
15.如图所示,火车车厢中有一倾角为30°的斜面,当火车以10m/s2的加速度沿水平方向向左运动时,斜面上的物体m还是与车厢相对静止,分析物体m所受的摩擦力的方向。

16.如图所示的传送皮带,其水平部分ab的长度为2m,倾斜部分bc的长度为4m,bc与水平面的夹角为=37°,将一小物块A(可视为质点)轻轻放于a端的传送带上,物块A与传送带间的动摩擦因数为=0.25。传送带沿图示方向以v=2m/s的速度匀速运动,若物块A始终未脱离皮带,试求小物块A从a端被传送到c端所用的时间。(g=10m/s2,sin37°=0.6,cos37°=0.8)

17.一小圆盘静止在桌布上,位于一方桌的水平桌面的中央。桌布的一边与桌的AB边重合,如图所示。已知盘与桌布间的动摩擦因数为,盘与桌面间的摩擦因数为。现突然以恒定加速度a将桌布抽离桌面,加速度的方向是水平的且垂直于AB边。若圆盘最后未从桌面掉下,则加速度a满足的条件是什么?(以g表示重力加速度)

《牛顿运动定律》检测题(二)参考答案
一、选择题
1.B2.D3.BD4.C5.C6.C7.C8.D9.B10.A
二、填空题
11.右12.675013.≤F≤14.
三、计算题
15.解:如图所示,假定所受的静摩擦力沿斜面向上,用正交分解法,有
FNcos30°+Fsin30°=mg
FNsin30°-Fcos30°=ma
解上述两式,得F=5m(1-)FN<0为负值,说明F的方向与假定的方向相反,应是沿斜面向下

16.解:物块A放于传送带上后,物块受力图如图所示。

A先在传送带上滑行一段距离,此时A做匀加速运动(相对地面),直到A与传送带匀速运动的速度相同为止,此过程A的加速为a1,则有:mg=ma1a1=g
A做匀加速运动的时间是:
这段时间内A对地的位移是:
当A相对地的速度达到2m/s时,A随传送带一起匀速运动,所用时间为,
物块在传送带的之间,受力情况如图(b),由于=0.25<tan37°=0.75,A在bc段将沿倾斜部分加速下滑,此时A受到的为滑动摩擦力,大小为cos37°,方向沿传送带向上,由牛顿第二定律:
sin37°-cos37°=(sin37°-cos37°)=4m/s2
A在传送带的倾斜部分bc,以加速度向下匀加速运动,由运动学公式
其中=4m,=2m/s
解得:=1s('=-2s舍),物块从a到c端所用时间为t:t=t1+t2+t3=2.4s
17.解:设圆盘的质量为m,桌长为,在桌布从圆盘下抽出的过程中,盘的加速度为a1,有
桌布抽出后,盘在桌面上做匀减速运动,以a2表示加速度的大小,有
设盘刚离开桌布时的速度为v1,移动的距离为x1,离开桌布后在桌面上再运动距离x2后便停下,有v=2a1x1,v=2a2x2
盘没有从桌面上掉下的条件是x2≤-x1
设桌布从盘下抽出所经历时间为t,在这段时间内桌布移动的距离为x,有x=at2,
x1=a1t2
而x=+x1,由以上各式解得a≥

牛顿运动定律的应用


经验告诉我们,成功是留给有准备的人。高中教师要准备好教案,这是高中教师需要精心准备的。教案可以让学生能够在课堂积极的参与互动,帮助高中教师更好的完成实现教学目标。你知道怎么写具体的高中教案内容吗?为了让您在使用时更加简单方便,下面是小编整理的“牛顿运动定律的应用”,仅供参考,大家一起来看看吧。

教学目标
1、知识目标:
(1)能结合物体的运动情况进行受力分析.
(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.
2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.
3、情感目标:培养严谨的科学态度,养成良好的思维习惯.

教学建议

教材分析
本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.

教法建议
1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.
2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.
3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.

教学设计示例

教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.

教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.

示例:

一、受力分析方法小结

通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)

1、练习:请对下例四幅图中的A、B物体进行受力分析.

答案:

2、受力分析方法小结

(1)明确研究对象,把它从周围物体中隔离出来;

(2)按重力、弹力、摩擦力、外力顺序进行受力分析;

(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.

不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.

二、动力学的两类基本问题

1、已知物体的受力情况,确定物体的运动情况.

2、已知物体的运动情况,确定物体的受力情况.

3、应用牛顿运动定律解题的一般步骤:

选取研究对象;(注意变换研究对象)

画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)

进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)

根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)

对解的合理性进行讨论.

四、处理连接体问题的基本方法

1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.

2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)

3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.

以上各问题均通过典型例题落实.

探究活动
题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.
题量:4-6道.
要求:给出题目详细解答,并注明选题意图及该题易错之处.
评价:可操作性、针对性,可调动学生积极性.


高二物理知识点:牛顿运动定律   


一名优秀的教师就要对每一课堂负责,高中教师要准备好教案为之后的教学做准备。教案可以让学生们充分体会到学习的快乐,使高中教师有一个简单易懂的教学思路。关于好的高中教案要怎么样去写呢?为此,小编从网络上为大家精心整理了《高二物理知识点:牛顿运动定律   》,欢迎您参考,希望对您有所助益!

高二物理知识点:牛顿运动定律

1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种运动状态为止.

(1)运动是物体的一种属性,物体的运动不需要力来维持.

(2)定律说明了任何物体都有惯性.

(3)不受力的物体是不存在的.牛顿第一定律不能用实验直接验证.但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的.它告诉了人们研究物理问题的另一种新方法:通过观察大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律.

(4)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系.

2.惯性:物体保持匀速直线运动状态或静止状态的性质.

(1)惯性是物体的固有属性,即一切物体都有惯性,与物体的受力情况及运动状态无关.因此说,人们只能“利用”惯性而不能“克服”惯性.

(2)质量是物体惯性大小的量度.

3.牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F合=ma

(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础.

(2)对牛顿第二定律的数学表达式F合=ma,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力.

(3)牛顿第二定律揭示的是力的瞬间效果.即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬间效果是加速度而不是速度.

(4)牛顿第二定律F合=ma,F合是矢量,ma也是矢量,且ma与F合的方向总是一致的.F合可以进行合成与分解,ma也可以进行合成与分解.

4.牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上.

(1)牛顿第三运动定律指出了两物体之间的作用是相互的,因而力总是成对出现的,它们总是同时产生,同时消失.

(2)作用力和反作用力总是同种性质的力.

(3)作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可叠加.

5.牛顿运动定律的适用范围:宏观低速的物体和在惯性系中.

6.超重和失重

(1)超重:物体有向上的加速度称物体处于超重.处于超重的物体对支持面的压力FN(或对悬挂物的拉力)大于物体的重力mg,即FN=mg+ma.

(2)失重:物体有向下的加速度称物体处于失重.处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg.即FN=mg-ma.当a=g时FN=0,物体处于完全失重.

(3)对超重和失重的理解应当注意的问题

不管物体处于失重状态还是超重状态,物体本身的重力并没有改变,只是物体对支持物的压力(或对悬挂物的拉力)不等于物体本身的重力.

超重或失重现象与物体的速度无关,只决定于加速度的方向.“加速上升”和“减速下降”都是超重;“加速下降”和“减速上升”都是失重.

在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生压强等.

7、处理连接题问题----通常是用整体法求加速度,用隔离法求力。