88教案网

你的位置: 教案 > 初中教案 > 导航 > 解二元一次方程组学案

一元二次方程高中教案

发表时间:2020-10-19

解二元一次方程组学案。

一般给学生们上课之前,老师就早早地准备好了教案课件,到写教案课件的时候了。我们制定教案课件工作计划,才能更好地安排接下来的工作!你们清楚教案课件的范文有哪些呢?下面是小编精心为您整理的“解二元一次方程组学案”,仅供参考,欢迎大家阅读。

10.3解二元一次方程组(1)
主备:审核:初一数学备课组
班级姓名。
学习目标:
1会用代入消元法解二元一次方程组。
2通过解决问题,了解解二元一次方程组的必要性。
3体会转化的思想。
一.课前准备
1把方程写成用x表示y的形式,结果是y=。
2把代入方程,消去y,得关于x的方程。(不必化简)。
3用代入法解方程组:
二.探索新知
问题探索:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队赛了12场赢了x场,输了y场,得到20分,我们可以列出方程组:
,如何解这个二元一次方程组?

三.知识应用
例1解方程组。你还有不同解法过程吗?写写看。

试一试:解方程组
代入消元法:

代入法的基本思想是。
代入消元法的步骤是:

例2把下列各方程变形为用一个未和数的代数式表示另一个未知数的形式.
(1)4x-y=-1;(2)5x-10y+15=0.

四.当堂反馈
1用代入法解下列方程组:

2长方形的长是宽的3倍,如果长减少3cm,宽增加4cm,这个长方形就变成了一个正方形.求这个长方形的长和宽.

3一个两位数加上45恰好等于把这个两位数的个位数字与十位数字对调后组成的新两位数,这个两位数的十位数字和个位数字的和是7,你能知道这个两位数吗?

五.课后巩固
(一)填空题
1.已知:=0是二元一次方程,则的值为
2.解方程组:由①用表示,得=③,将③代入②,得,解得=,方程组的解为。
3.若,则
4.若和是同类项,则,。
(二)解下列方程组:

注意:对于一般形式的二元一次方程用代入法求解,关键是选择哪一个方程变形,消什么元,选取的恰当往往会使计算简单且不易出错,选取的原则是:
1.选择未知数的系数是1或-l的方程;
2.若未知数的系数都不是1或-1,选系数的绝对值较小的方程,将要消的元用含另一个未知数的代数式表示,再把它代入没有变形的方程中去。这样就把二元一次方程组转化为一元一次方程了。
3.对运算的结果养成检验的习惯。

六、拓展提升
1.已知方程组的解互为相反数,求的值。

2已知方程组与有相同的解,求的值。

3.若方程组的解也是方程的解,求的值。(节日祝福网 Zr120.Com)

4.已知方程组的解的和是-12,求的值。

相关阅读

10.3解二元一次方程组(二)


教案课件是每个老师工作中上课需要准备的东西,准备教案课件的时刻到来了。只有写好教案课件计划,才能规范的完成工作!你们会写适合教案课件的范文吗?下面是小编为大家整理的“10.3解二元一次方程组(二)”,欢迎阅读,希望您能阅读并收藏。

10.3解二元一次方程组(二)

教学目标:

1.会用加减消元法解二元一次方程组.

2.能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组.

3.了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法.

教学重点:

加减消元法的理解与掌握

教学难点:

加减消元法的灵活运用

教学方法:

引导探索法,学生讨论交流

教学过程:

一、情境创设

买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?

设苹果汁、橙汁单价为x元,y元.

我们可以列出方程3x+2y=23

5x+2y=33

问:如何解这个方程组?

二、探索活动

活动一:1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?

2、这些方法与代入消元法有何异同?

3、这个方程组有何特点?

解法一:3x+2y=23①

5x+2y=33②

由①式得③

把③式代入②式

33

解这个方程得:y=4

把y=4代入③式

所以原方程组的解是x=5

y=4

解法二:3x+2y=23①

5x+2y=33②

由①—②式:

3x+2y-(5x+2y)=23-33

3x-5x=-10

解这个方程得:x=5

把x=5代入①式,

3×5+2y=23

解这个方程得y=4

所以原方程组的解是x=5

y=4

把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(eliminationbyadditionorsubtraction),简称加减法.

三、例题教学:

例1.解方程组x+2y=1①

3x-2y=5②

解:①+②得,4x=6

将代入①,得

解这个方程得:

所以原方程组的解是

巩固练习(一):练一练1.(1)

例2.解方程组5x-2y=4①

2x-3y=-5②

解:①×3,得

15x-6y=12③

②×3,得

4x-6y=-10④

③—④,得:

11x=22

解这个方程得x=2

将x=2代入①,得

5×2-2y=4

解这个方程得:y=3

所以原方程组的解是x=2

y=3

巩固练习(二):练一练1.(2)(3)(4)2.

四、思维拓展:

解方程组:

五、小结:

1、掌握加减消元法解二元一次方程组

2、灵活选用代入消元法和加减消元法解二元一次方程组

六、作业

习题10.31.(3)(4)2.

§7.2解二元一次方程组


作为老师的任务写教案课件是少不了的,大家应该在准备教案课件了。只有规划好新的教案课件工作,这对我们接下来发展有着重要的意义!有没有出色的范文是关于教案课件的?下面是小编为大家整理的“§7.2解二元一次方程组”,大家不妨来参考。希望您能喜欢!

§7.2解二元一次方程组

一.教学目标

(一)教学知识点

1.代入消元法解二元一次方程组.

2.解二元一次方程组时的“消元”思想,“化未知为已知”的化归思想.

(二)能力训练要求

1.会用代入消元法解二元一次方程组.

2.了解解二元一次方程组的“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.

(三)情感与价值观要求

1.在学生了解二元一次方程组的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,提高学习数学的信心.

2.培养学生合作交流,自主探索的良好习惯.

二.教学重点

1.会用代入消元法解二元一次方程组.

2.了解解二元一次方程组的“消元”思想,初步体现数学研究中“化未知为已知”的化归思想.

三.教学难点

1.“消元”的思想.

2.“化未知为已知”的化归思想.

四.教学方法

启发——自主探索相结合.

教师引导学生回忆一元一次方程解决实际问题的方法并从中启发学生如果能将二元一次方程组转化为一元一次方程.二元一次方程便可获解,从而通过学生自主探索总结用代入消元法解二元一次方程组的步骤.

五.教具准备

投影片两张:

第一张:例题(记作§7.2A);

第二张:问题串(记作§7.2B).

六.教学过程

Ⅰ.提出疑问,引入新课

[师生共忆]上节课我们讨论过一个“希望工程”义演的问题;没去观看义演的成人有x个,儿童有y个,我们得到了方程组成人和儿童到底去了多少人呢?

[生]在上一节课的“做一做”中,我们通过检验是不是方程x+y=8和方程5x+3y=34,得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组解的定义得出是方程组的解.所以成人和儿童分别去了5个人和3个人.

[师]但是,这个解是试出来的.我们知道二元一次方程的解有无数个.难道我们每个方程组的解都去这样试?

[生]太麻烦啦.

[生]不可能.

[师]这就需要我们学习二元一次方程组的解法.

Ⅱ.讲授新课

[师]在七年级第一学期我们学过一元一次方程,也曾碰到过“希望工程”义演问题,当时是如何解的呢?

[生]解:设成人去了x个,儿童去了(8-x)个,根据题意,得:

5x+3(8-x)=34

解得x=5

将x=5代入8-x=8-5=3

答:成人去了5个,儿童去了3个.

[师]同学们可以比较一下:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?

[生]列二元一次方程组设出有两个未知数成人去了x个,儿童去了y个.列一元一次方程设成人去了x个,儿童去了(8-x)个.y应该等于(8-x).而由二元一次方程组的一个方程x+y=8根据等式的性质可以推出y=8-x.

[生]我还发现一元一次方程中5x+3(8-x)=34与方程组中的第二个方程5x+3y=34相比较,把5x+3y=34中的“y”用“8-x”代替就转化成了一元一次方程.

[师]太好了.我们发现了新旧知识之间的联系,便可寻求到解决新问题的方法——即将新知识转化为旧知识便可.如何转化呢?

[生]上一节课我们就已知道方程组的两个未知数所包含的意义是相同的.所以将中的①变形,得y=8-x③我们把y=8-x代入方程②,即将②中的y用8-x代替,这样就有5x+3(8-x)=34.“二元”化成“一元”.

[师]这位同学很善于思考.他用了我们在数学研究中“化未知为已知”的化归思想,从而使问题得到解决.下面我们完整地解一下这个二元一次方程组.

解:

由①得y=8-x③

将③代入②得

5x+3(8-x)=34

解得x=5

把x=5代入③得y=3.

所以原方程组的解为

下面我们试着用这种方法来解答上一节的“谁的包裹多”的问题.

[师生共析]解二元一次方程组:

分析:我们解二元一次方程组的第一步需将其中的一个方程变形用含一个未知数的代数式表示另一个未知数,把表示了的未知数代入未变形的方程中,从而将二元一次方程组转化为一元一次方程.

解:由①得x=2+y③

将③代入②得(2+y)+1=2(y-1)

解得y=5

把y=5代入③,得

x=7.

所以原方程组的解为即老牛驮了7个包裹,小马驮了5个包裹.

[师]在解上面两个二元一次方程组时,我们都是将其中的一个方程变形,即用其中一个未知数的代数式表示另一个未知数,然后代入第二个未变形的方程,从而由“二元”转化为“一元”而得到消元的目的.我们将这种方法叫代入消元法.这种解二元一次方程组的思想为消元思想.我们再来看两个例子.

出示投影片(§7.2A)

[例题]解方程组

(1)

(2)

(由学生自己完成,两个同学板演).

解:(1)将②代入①,得

3×+2y=8

3y+9+4y=16

7y=7

y=1

将y=1代入②,得

x=2

所以原方程组的解是

(2)由②,得x=13-4y③

将③代入①,得

2(13-4y)+3y=16

-5y=-10

y=2

将y=2代入③,得

x=5

所以原方程组的解是

[师]下面我们来讨论几个问题:

出示投影片(§7.2B)

(1)上面解方程组的基本思路是什么?

(2)主要步骤有哪些?

(3)我们观察例1和例2的解法会发现,我们在解方程组之前,首先要观察方程组中未知数的特点,尽可能地选择变形后的方程较简单和代入后化简比较容易的方程变形,这是关键的一步.你认为选择未知数有何特点的方程变形好呢?

(由学生分组讨论,教师深入参与到学生讨论中,发现学生在自主探索、讨论过程中的独特想法)

[生]我来回答第一问:解二元一次方程组的基本思路是消元,把“二元”变为“一元”.

[生]我们组总结了一下解上述方程组的步骤:第一步:在已知方程组的两个方程中选择一个适当的方程,把它变形为用一个未知数的代数式表示另一个未知数.

第二步:把表示另一个未知数的代数式代入没有变形的另一个方程,可得一个一元一次方程.

第三步:解这个一元一次方程,得到一个未知数的值.

第四步:把求得的未知数的值代回到原方程组中的任意一个方程或变形后的方程(一般代入变形后的方程),求得另一个未知数的值.

第五步:用“{”把原方程组的解表示出来.

第六步:检验(口算或笔算在草稿纸上进行)把求得的解代入每一个方程看是否成立.

[师]这个组的同学总结的步骤真棒,甚至连我们平时容易忽略的检验问题也提了出来,很值得提倡.在我们数学学习的过程中,应该养成反思自己解答过程,检验自己答案正确与否的习惯.

[生]老师,我代表我们组来回答第三个问题.我们认为用代入消元法解二元一次方程组时,尽量选取一个未知数的分数是1的方程进行变形;若未知数的系数都不是1,则选取系数的绝对值较小的方程变形.但我们也有一个问题要问:在例2中,我们选择②变形这是无可厚非的,把②变形后代入①中消元得到的是一元一次方程系数都为整数也较简便.可例1中,虽然可直接把②代入①中消去x,可得到的是含有分母的一元一次方程,并不简便,有没有更简捷的方法呢?

[师]这个问题提的太好了.下面同学们分组讨论一下.如果你发现了更好的解法,请把你的解答过程写到黑板上来.

[生]解:由②得2x=y+3③

③两边同时乘以2,得

4x=2y+6④

由④得2y=4x-6

把⑤代入①得

3x+(4x-6)=8

解得7x=14,x=2

把x=2代入③得y=1.

所以原方程组的解为

[师]真了不起,能把我们所学的知识灵活应用,而且不拘一格,将“2y”整体上看作一个未知数代入方程①,这是一个“科学的发明”.

Ⅲ.随堂练习

课本P192

1.用代入消元法解下列方程组

解:(1)

将①代入②,得

x+2x=12

x=4.

把x=4代入①,得

y=8

所以原方程组的解为

(2)

将①代入②,得

4x+3(2x+5)=65

解得x=5

把x=5代入①得

y=15

所以原方程组的解为

(3)

由①,得x=11-y③

把③代入②,得

11-y-y=7

y=2

把y=2代入③,得

x=9

所以原方程组的解为

(4)

由②,得x=3-2y③

把③代入①,得

3(3-2y)-2y=9

得y=0

把y=0代入③,得x=3

所以原方程组的解为

注:在随堂练习中,可以鼓励学生通过自主探索与交流,各个学生消元的具体方法可能不同,不必强调解答过程统一.

Ⅳ.课时小结

这节课我们介绍了二元一次方程组的第一种解法——代入消元法.了解到了解二元一次方程组的基本思路是“消元”即把“二元”变为“一元”.主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程.解这个一元一次方程,便可得到一个未知数的值,再将所求未知数的值代入变形后的方程,便求出了一对未知数的值.即求得了方程的解.

Ⅴ.课后作业

1.课本习题7.2

2.解答习题7.2第3题

Ⅵ.活动与探究

已知代数式x2+px+q,当x=-1时,它的值是-5;当x=-2时,它的值是4,求p、q的值.

过程:根据代数式值的意义,可得两个未知数都是p、q的方程,即

当x=-1时,代数式的值是-5,得

(-1)2+(-1)p+q=-5①

当x=-2时,代数式的值是4,得

(-2)2+(-2)p+q=4②

将①、②两个方程整理,并组成方程组

解方程组,便可解决.

结果:由④得q=2p

把q=2p代入③,得

-p+2p=-6

解得p=-6

把p=-6代入q=2p=-12

所以p、q的值分别为-6、-12.

七.板书设计

§7.2解二元一次方程组(一)

一、“希望工程”义演

二、“谁的包裹多”问题

三、例题

四、解方程组的基本思路:消元即二元—→一元

五、解二元一次方程组的基本步骤

解二元一次方程组2


第七章二元一次方程组
2.二元一次方程组的解法(二)
一、学生起点分析
在学习本节之前,学生已经掌握了有理数、整式的运算、一元一次方程等知识,了解了二元一次方程、二元一次方程组等基本概念,具备了进一步学习二元一次方程组的解法的基本能力.

二、教学任务分析
《二元一次方程组的解法》是义务教育课程标准北师大版实验教科书八年级(上)第七章《二元一次方程组》的第二节(两课时).第1课时,让学生学习了二元一次方程组的解法——代入消元法.本节课为第2课时,学习二元一次方程组的另一解法——加减消元法.
加减消元法也是解二元一次方程组的基本方法之一,它要求两个方程中必须有某一个未知数的系数的绝对值相等(或利用等式的基本性质在方程两边同时乘以一个适当的不为0的数,使两个方程中某一个未知数的系数的绝对值相等),然后利用等式的基本性质在方程两边同时相加或相减消元.

三、教学目标分析
1.教学目标
1.会用加减消元法解二元一次方程组.
2.让学生在自主探索和合作交流中,进一步理解二元一次方程组的“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.
3.通过对具体的二元一次方程组的观察、分析,选择恰当的方法解二元一次方程组,培养学生的观察、分析能力.
4.通过学生比较两种解法的差别与联系,体会透过现象抓住事物的本质这一认识方法.
2.教学重点
用加减消元法解二元一次方程组.
3.教学难点
在解题过程中进一步体会“消元”思想和“化未知为已知”的化归思想.

四、教学过程设计
本节课设计了五个教学环节:第一环节:情境引入;第二环节:讲授新知;第三环节:巩固新知;第四环节:课堂小结;第五环节:布置作业.

第一环节:情境引入
内容:巩固练习,在练习中发现新的解决方法
怎样解下面的二元一次方程组呢?(学生在练习本上做,教师巡视、引导、解疑,注意发现学生在解答过程中出现的新的想法,可以让用不同方法解题的学生将他们的方法板演在黑板上,完后进行评析,并为加减消元法的出现铺路.)
学生可能的解答方案1:
解1:把②变形,得:,③
把③代入①,得:,
解得:.
把代入②,得:.
所以方程组的解为.

学生可能的解答方案2:
解2:由②得,③
把当做整体将③代入①,得:,
解得:.
把代入③,得:.
所以方程组的解为.
(此种解法体现了整体的思想)
学生可能的解答方案3:
解3:根据等式的基本性质
方程①+方程②得:,
解得:,
把代入①,解得:,
所以方程组的解为.
通过上面的练习发现,同学们对代入消元法都掌握得很好了,基本上都能够按要求解出二元一次方程组的解(如方案1),可是也有同学发现(方案2)的解法比(方案1)的解法简单,他是将5y作为一个整体代入消元,依然体现了代入法的核心是代入“消元”,通过“消元”,使“二元”转化为“一元”,从而使问题得以解决,那么(方案3)的解法又如何?它达到“消元”的目的了吗?
(留些时间给学生观察,注意引导学生观察方程中某一未知数的系数,如x的系数或y的系数)
引导学生发现方程①和②中的5y和-5y互为相反数,根据相反数的和为零(方案3)将方程①和②的左右两边相加,然后根据等式的基本性质消去了未知数y,得到了一个关于x的一元一次方程,从而实现了化“二元”为“一元”的目的.
这就是我们这节课要学习的二元一次方程组的解法中的第二种方法——加减消元法.
意图:在练习的过程中学会思考、分析,通过思考自然地得出我们要研究和解决的问题.
效果:通过学生练习、对比、讨论,既巩固了已学的用代入法解二元一次方程组的知识,又在此过程中发现了新的解二元一次方程组的方法——加减消元法.
说明:如果班机学生不能发现方法3,教师可以适当引导,如在方法二中,我们直接解出5y,代入另一式子从而消去一个未知数,是否可以不解出直接消去这个未知数呢,两个式子中y的系数有什么关系?能否通过等式加减直接消去这个未知数呢?

第二环节:讲授新知
内容1:
(教师板书课题)
下面我们就用刚才的方法解下面的二元一次方程组.(教师规范表达解答过程,为学生作出示范)
例解下列二元一次方程组
分析:观察到方程①、②中未知数x的系数相等,可以利用两个方程相减消去未知数x.
解:②-①,得:,
解得:,
把代入①,得:,
解得:,
所以方程组的解为.
(解答完本题后,口算检验,让学生养成进行检验的习惯,同时教师需强调以下两点
(1)注意解此题的易错点是②-①时是(2x+3y)-(2x-5y)=-1-7,方程左边去括号时注意符号.另外解题时,①-②或②-①都可以消去未知数x,不过在①-②得到的方程中,y的系数是负数,所以在上面的解法中选择②-①;
(2)把y=-1代入①或②,最后结果是一样的,但我们通常的作法是将所求出的一个未知数的值代入系数较简单的方程中求出另一个未知数的值.
师生一起分析上面的解答过程,归纳出下面的一些规律:
在方程组的两个方程中,若某个未知数的系数是相反数,则可直接把这两个方程的两边分别相加,消去这个未知数;若某个未知数的系数相等,可直接把这两个方程的两边分别相减,消去这个未知数得到一个一元一次方程,从而求出它的解,这种解二元一次方程组的方法叫做加减消元法,简称加减法)
内容2:巩固练习
[师生共析]
(先留一定的时间让学生观察此方程组,让学生说明自己观察到方程有什么特点,能不能自己解决此方程组,用什么方法解决?如学生提出用代入消元法,可以让学生先按此法完成,然后再问能不能用刚学过的加减消元法解决?让学生讨论尝试,学生可能得到的结论如下)
1.对于用加减消元法解,x、y的系数既不相同也不是相反数,没有办法用加减消元法.
2.是不是可以这样想,将方程组中的方程用等式的基本性质将这个方程组中的x或y的系数化成相等(或互为相反数)的情形,再用加减消元法,达到消元的目的.
3.只要在方程①和方程②的两边分别除以2和3,x的系数不就变成“1”了吗?这样就可以用加减消元法了.
4.不同意3的做法.如果这样做,是可以解决这一问题,但y的系数和常数项都变成了分数,这样解是不是变麻烦了吗?那还不如用代入消元法了.不如找x的系数2和3的最小公倍数6,在方程①两边同乘以3,得③,在方程②两边同乘以2,得④,然后③-④,就可以将x消去,得,把代入①得,.所以方程组的解为
(在引导的过程中,肯定学生的好的想法.)其实在我们学习数学的过程中,二元一次方程组中未知数的系数不一定刚好是1或-1,或同一个未知数的系数刚好相同或相反.我们遇到的往往就是这样的方程组,我们要想比较简捷地把它解出来,就需要转化为同一个未知数系数相同或相反的情形,从而用加减消元法,达到消元的目的.请大家把解答过程写出来.
解:①×3,得:,③
②×2,得:,④
③-④,得:.
将代入①,得:.
所以原方程组的解是.
内容3:议一议
根据上面几个方程组的解法,请同学们思考下面两个问题:
(1)加减消元法解二元一次方程组的基本思路是什么?
(2)用加减消元法解二元一次方程组的主要步骤有哪些?
(由学生分组讨论、总结并请学生代表发言)
[师生共析]
(1)用加减消元法解二元一次方程组的基本思路仍然是“消元”.
(2)用加减法解二元一次方程组的一般步骤是:
①变形----找出两个方程中同一个未知数系数的绝对值的最小公倍数,然后分别在两个方程的两边乘以适当的数,使所找的未知数的系数相等或互为相反数.
②加减消元,得到一个一元一次方程.
③解一元一次方程.
④把求出的未知数的解代入原方程组中的任一方程,求出另一个未知数的值,从而得方程组的解.
注意:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等).通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程右边的形式,再作如上加减消元的考虑.
意图:使学生明确使用加减法的条件,体会在某些条件下使用加减法的优越性.
效果:通过本环节的学习,加深和巩固了学生对加减消元法的认识.

第三环节:巩固新知
内容:
⑴回忆上一节的练习和习题,看哪些题用代入消元法解起来比较简单?哪些题我们用加减消元法简单?我们分组讨论,并派一个代表阐述自己的意见,试说明两种解方程组的方法的共同特点和各自的优势.
1.关于二元一次方程组的两种解法:代入消元法和加减消元法,通过比较,我们发现其实质都是消元,即通过消去一个未知数,化“二元”为“一元”.
2.只有当方程组的某一方程中某一未知数的系数的绝对值是1时,用代入消元法较简单,其他的用加减消元法较简单.
⑵完成课本随堂练习
⑶补充练习:
①选择:二元一次方程组的解是().
A.B.C.D.
②,求x,y的值.
意图:通过练习,使学生熟练地用加减法解二元一次方程组并能在练习中摸索运算技巧,培养能力.
效果:通过本环节的练习,学生能够较熟练地运用加减法解二元一次方程组.

第四环节:课堂小结
内容:
1.关于二元一次方程组的两种解法:代入消元法和加减消元法.比较这两种解法我们发现其实质都是消元,即通过消去一个未知数,化“二元”为“一元”.
2.用加减消元法解方程组的条件:某一未知数的系数的绝对值相等.
3.用加减法解二元一次方程组的步骤:
①变形,使某个未知数的系数绝对值相等.
②加减消元.
③解一元一次方程.
④求另一个未知数的值,得方程组的解.
意图:巩固和加深对化归思想的理解和运用.
效果:学生能够在课堂上畅所欲言,并通过自己的归纳总结,进一步巩固了所学知识.

第五环节:布置作业
1.课本习题7.3
2.阅读读一读你知道计算机是如何解方程组吗.

五、教学设计反思
本节课是让学生学习二元一次方程组的加减消元解法.在学习二元一次方程组的解法中,关键是领会其本质思想——消元,体会“化未知为已知”的化归思想.因而在教学过程中教师应通过问题情境的创设,激发学生的学习兴趣,并通过精心设计的问题,引导学生在已有知识的基础上,自己比较、分析得出二元一次方程组的解法,在巩固议练活动中,加深学生对“化未知为已知”的化归思想的理解.特别是如何由代入消元法到加减消元法,过渡自然。