高中概率教案
发表时间:2020-10-13《概率的基本性质》学案。
《概率的基本性质》学案
一、教学目标
学生经历用集合间的关系及运算类比得出事件间的关系及运算的教学过程,正确理解事件的包含关系,并事件、交事件、相等事件以及互斥事件、对立事件的概念,掌握概率的几个基本性质,会运用它们处理教材中的例、习题,进一步体会类比思想,提升理解能力,激发学习兴趣。
二、教学重点和难点
重点:事件的关系及运算,概率的几个基本性质。
难点:事件的关系及概率运算,类比思想的渗透。
三、教学辅助
骰子、多媒体课件
四、教学过程
1.问题导入
前面我们学习了随机事件的频率与概率的意义,得知每天发生的事情具有随机性,难预测,比如今天我刚到数学组办公室,一位学生问了一题:已知集合是掷一颗骰子,出现向上的点数为,集合是掷一颗骰子,出现向上的点数为奇数,试判断它们间的关系。你们愿意解答吗?有什么启示呢?
学生解答后,把集合改为事件,事件出现向上的点数为,事件出现向上的点数为奇数并写出掷一颗骰子的其他事件。我们的启示:类比集合的关系及运算研究事件的关系及运算,引出课题。
2.引导探究,发现概念与性质
先让学生类比得出一些关系及运算并相互交流,再观看多媒体课件内容(教材的重点内容),加深对事件的关系及运算的理解,师生形成的共识如下:
2.1事件的关系及运算
2.1.1包含关系
一般地,对于事件与事件,如果事件发生,则事件一定发生,这时称事件包含事件(或事件包含于事件),记作(或)。不可能事件记为,任何事件都包含不可能事件,。
2.1.2相等关系
如果事件发生,那么事件一定发生,反过来也对,这时,我们说这两个事件相等,记作。
2.1.3并事件
若某事件发生当且仅当事件发生或事件发生,则称此事件为事件与事件的并事件(或和事件),记作(或)。
2.1.4交事件
若某事件发生当且仅当事件发生且事件发生,则称此事件为事件与事件的交事件(或积事件),记作(或)。
2.1.5互斥事件
若为不可能事件(),那么称事件与事件互斥。其含义是:事件与事件在任何一次试验中不会同时发生。
2.1.6对立事件
若为不可能事件,为必然事件,那么称事件与事件互为对立事件。其含义是:事件与事件在任何一次试验中有且仅有一个发生。
2.2概率的几个基本性质
2.2.1范围
。必然事件的概率是,不可能事件的概率为。
2.2.2概率的加法法则
如果事件与事件互斥,则。互斥加法则。
2.2.3概率的减法法则
如果事件与事件对立,则,即,。对立减法则。
3.在应用中加深理解
例1从装有个红球和个白球的口袋任取个球,那么以下选项中的个事件是互斥但不对立事件的是()
“至少有一个红球”与“都是红球”“至少有一个白球”与“至少有一个红球”
“恰有一个白球”与“恰有两个红球”“至少有一个白球”与“都是红球”
例2如果从不包括大小王的张扑克牌中随机抽取一张,那么取到红心(事件)的概率是,取到方片(事件)的概率是,问:
(1)取到红色牌(事件)的概率是多少?
(2)取到黑色牌(事件)的概率是多少?
师生共同处理,重思路剖析及辐射。
练习
教材第面练习。
4.归纳小结,反思提升
介绍事件的关系与运算,概率的几个基本性质的理解及简单应用,渗透类比思想。
5.作业
教材第面练习。
五、板书设计
3.1.3概率的基本性质
1.引例3.概率的基本性质4.小结
2.事件的关系与运算例题练习
六、教学反思
部分学生对“任何事件都包含不可能事件,”不理解,并举例掷一颗骰子,出现向上点数为,掷一枚硬币,出现正面向上。
扩展阅读
概率的基本性质(第三课时)
概率的基本性质(第三课时)
一、教学目标:
1、知识与技能:(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;
(2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)
(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.
2、过程与方法:通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类化与归纳的数学思想。
3、情感态度与价值观:通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。
二、重点与难点:概率的加法公式及其应用,事件的关系与运算。
三、学法与教学用具:1、讨论法,师生共同讨论,从而使加深学生对概率基本性质的理解和认识;2、教学用具:投灯片
四、教学设计:
1、创设情境:(1)集合有相等、包含关系,如{1,3}={3,1},{2,4}С{2,3,4,5}等;
(2)在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现1点或2点},C4={出现的点数为偶数}……
师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?
2、基本概念:(1)事件的包含、并事件、交事件、相等事件见课本P115;
(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;
(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;
(4)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B).
3、例题分析:
例1一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?
事件A:命中环数大于7环;事件B:命中环数为10环;
事件C:命中环数小于6环;事件D:命中环数为6、7、8、9、10环.
分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。
解:A与C互斥(不可能同时发生),B与C互斥,C与D互斥,C与D是对立事件(至少一个发生).
例2抛掷一骰子,观察掷出的点数,设事件A为“出现奇数点”,B为“出现偶数点”,已知P(A)=,P(B)=,求出“出现奇数点或偶数点”.
分析:抛掷骰子,事件“出现奇数点”和“出现偶数点”是彼此互斥的,可用运用概率的加法公式求解.
解:记“出现奇数点或偶数点”为事件C,则C=A∪B,因为A、B是互斥事件,所以P(C)=P(A)+P(B)=+=1
答:出现奇数点或偶数点的概率为1
例3如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是,取到方块(事件B)的概率是,问:
(1)取到红色牌(事件C)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
分析:事件C是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解,事件C与事件D是对立事件,因此P(D)=1—P(C).
解:(1)P(C)=P(A)+P(B)=(2)P(D)=1—P(C)=
例4袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、得到黄球、得到绿球的概率各是多少?
分析:利用方程的思想及互斥事件、对立事件的概率公式求解.
解:从袋中任取一球,记事件“摸到红球”、“摸到黑球”、“摸到黄球”、“摸到绿球”为A、B、C、D,则有P(B∪C)=P(B)+P(C)=;P(C∪D)=P(C)+P(D)=;P(B∪C∪D)=1-P(A)=1-=,解的P(B)=,P(C)=,P(D)=
答:得到黑球、得到黄球、得到绿球的概率分别是、、.
4、课堂小结:概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);3)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。
5、自我评价与课堂练习:
1.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件。
(1)恰好有1件次品恰好有2件次品;
(2)至少有1件次品和全是次品;
(3)至少有1件正品和至少有1件次品;
(4)至少有1件次品和全是正品;
2.抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数,事件B为出现2点,已知P(A)=,P(B)=,求出现奇数点或2点的概率之和。
3.某射手在一次射击训练中,射中10环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中:
(1)射中10环或9环的概率;
(2)少于7环的概率。
4.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是,从中取出2粒都是白子的概率是,现从中任意取出2粒恰好是同一色的概率是多少?
6、评价标准:
1.解:依据互斥事件的定义,即事件A与事件B在一定试验中不会同时发生知:(1)恰好有1件次品和恰好有2件次品不可能同时发生,因此它们是互斥事件,又因为它们的并不是必然事件,所以它们不是对立事件,同理可以判断:(2)中的2个事件不是互斥事件,也不是对立事件。(3)中的2个事件既是互斥事件也是对立事件。
2.解:“出现奇数点”的概率是事件A,“出现2点”的概率是事件B,“出现奇数点或2点”的概率之和为P(C)=P(A)+P(B)=+=
3.解:(1)该射手射中10环与射中9环的概率是射中10环的概率与射中9环的概率的和,即为0.21+0.23=0.44。(2)射中不少于7环的概率恰为射中10环、9环、8环、7环的概率的和,即为0.21+0.23+0.25+0.28=0.97,而射中少于7环的事件与射中不少于7环的事件为对立事件,所以射中少于7环的概率为1-0.97=0.03。
4.解:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与2粒黑子的概率的和,即为+=
7、作业:根据情况安排
第1节第3课时概率的基本性质教学案
第3课时概率的基本性质
[核心必知]
1.预习教材,问题导入
根据以下提纲,预习教材P119~P121,回答下列问题.
在掷骰子试验中,定义如下事件:
C1={出现1点};C2={出现2点};C3={出现3点};C4={出现4点};C5={出现5点};C6={出现6点};D1={出现点数不大于1};D2={出现点数不大于3};D3={出现点数不大于5};E={出现的点数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出现的点数为奇数}.
(1)事件C1与事件H间有什么关系?
提示:事件H包含事件C1.
(2)事件C1与事件D1间有什么关系?
提示:事件C1_与事件D1_相等.
(3)事件C1与事件C2的并事件是什么?
提示:事件C1∪C2_表示出现1点或2点,即C1∪C2={出现1点或2点}.
(4)事件D2与G及事件C2间有什么关系?
提示:D2∩G=C2.
(5)事件C1与事件C2间有什么关系?
提示:这两个事件为互斥事件.
(6)事件E与事件F间有什么关系?
提示:这两个事件为对立事件.
2.归纳总结,核心必记
(1)事件的关系
①包含关系:一般地,对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作BA(或AB).不可能事件记作,任何事件都包含不可能事件.
②相等关系:一般地,若BA,且AB,那么称事件A与事件B相等,记作A=B.
(2)事件的运算
①并事件:若某事件C发生当且仅当事件A发生或事件B发生,则称此事件C为事件A与事件B的并事件(或和事件),记作C=A∪B(或C=A+B).
②交事件:若某事件C发生当且仅当事件A发生且事件B发生,则称此事件C为事件A与事件B的交事件(或积事件),记作C=A∩B(或C=AB).
(3)概率的性质
①范围:任何事件的概率P(A)∈[0,1].
②必然事件的概率:必然事件的概率P(A)=1.
③不可能事件的概率:不可能事件的概率P(A)=0.
④概率加法公式:如果事件A与事件B互斥,则有P(A∪B)=P(A)+P(B).
⑤对立事件的概率:若事件A与事件B互为对立事件,那么A∪B为必然事件,则有P(A∪B)=P(A)+P(B)=1,即P(A)=1-P(B).
[问题思考]
(1)在掷骰子的试验中,事件A={出现的点数为1},事件B={出现的点数为奇数},A与B应有怎样的关系?
提示:AB.
(2)在同一试验中,对任意两个事件A、B,P(A∪B)=P(A)+P(B)一定成立吗?
提示:不一定,只有A与B互斥时,P(A∪B)=P(A)+P(B)才一定成立.
(3)若P(A)+P(B)=1,则事件A与事件B是否一定对立?试举例说明.
提示:事件A与事件B不一定对立.例如:掷一枚均匀的骰子,记事件A为出现偶数点,事件B为出现1点或2点或3点,则P(A)+P(B)=12+12=1.当出现2点时,事件A与事件B同时发生,所以事件A与事件B不互斥,显然也不对立.
[课前反思]
通过以上预习,必须掌握的几个知识点:
(1)事件的关系:;
(2)事件的运算:;
(3)概率的性质:;
(4)互斥、对立事件的概率:.
在五一劳动节小长假中,某商场举办抽奖促销活动,根据顾客购物金额多少共设10个奖项,规定每人仅限抽奖一次.
[思考1]某位顾客抽奖一次能否同时抽到一等奖和二等奖?
提示:不能同时抽到.
[思考2]抽到的各奖次间是互斥事件还是对立事件?
提示:是互斥事件而不是对立事件.
[思考3]怎样认识互斥事件和对立事件?
名师指津:1.互斥事件与对立事件的区别与联系
(1)区别:两个事件A与B是互斥事件,包括如下三种情况:①若事件A发生,则事件B就不发生;②若事件B发生,则事件A就不发生;③事件A,B都不发生.
而两个事件A,B是对立事件,仅有前两种情况,因此事件A与B是对立事件,则A∪B是必然事件,但若A与B是互斥事件,则不一定是必然事件,亦即事件A的对立事件只有一个,而事件A的互斥事件可以有多个.
(2)联系:互斥事件和对立事件在一次试验中都不可能同时发生,而事件对立是互斥的特殊情况,即对立必互斥,但互斥不一定对立.
2.从集合的角度理解互斥事件与对立事件
(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.
(2)事件A的对立事件A-所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.
?讲一讲
1.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,判断下列每对事件是不是互斥事件,如果是,再判别它们是不是对立事件.
(1)恰有1名男生与恰有2名男生;
(2)至少有1名男生与全是男生;
(3)至少有1名男生与全是女生;
(4)至少有1名男生与至少有1名女生.
[尝试解答]判别两个事件是否互斥,就要考察它们是否能同时发生;判别两个互斥事件是否对立,就要考察它们是否必有一个发生.
(1)因为“恰有1名男生”与“恰有2名男生”不可能同时发生,所以它们是互斥事件;当恰有2名女生时它们都不发生,所以它们不是对立事件.
(2)因为恰有2名男生时“至少有1名男生”与“全是男生”同时发生,所以它们不是互斥事件.
(3)因为“至少有1名男生”与“全是女生”不可能同时发生,所以它们互斥;由于它们必有一个发生,所以它们对立.
(4)由于选出的是1名男生1名女生时“至少有1名男生”与“至少有1名女生”同时发生,所以它们不是互斥事件.
(1)判断事件是否互斥的两步骤
第一步,确定每个事件包含的结果;
第二步,确定是否有一个结果发生会意味着两个事件都发生,若是,则两个事件不互斥,否则就是互斥的.
(2)判断事件对立的两步骤
第一步,判断是互斥事件;
第二步,确定两个事件必然有一个发生,否则只有互斥,但不对立.
?练一练
1.一个射手进行一次射击,有下面四个事件:事件A:命中环数大于8;事件B:命中环数小于5;事件C:命中环数大于4;事件D:命中环数不大于6.则()
A.A与D是互斥事件B.C与D是对立事件
C.B与D是互斥事件D.以上都不对
解析:选A由互斥事件、对立事件的定义可判断A正确.故选A.
对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机}.
[思考1]若事件A发生,则事件D发生吗?它们是什么关系?
提示:若事件A发生则事件D一定发生,它们是包含关系.
[思考2]事件B和事件D能同时发生吗?
提示:不能同时发生.
[思考3]事件D与事件A,C间有什么关系?
名师指津:A∪C=D,即“至少有一弹击中”包含两种情况:一种是恰有一弹击中,一种是两弹都击中.
?讲一讲
2.在投掷骰子试验中,根据向上的点数可以定义许多事件,如:A={出现1点},B={出现3点或4点},C={出现的点数是奇数},D={出现的点数是偶数}.
(1)说明以上4个事件的关系;
(2)求两两运算的结果.
[尝试解答]在投掷骰子的试验中,根据向上出现的点数有6种基本事件,记作Ai={出现的点数为i}(其中i=1,2,…,6).则A=A1,B=A3∪A4,C=A1∪A3∪A5,D=A2∪A4∪A6.
(1)事件A与事件B互斥,但不对立,事件A包含于事件C,事件A与D互斥,但不对立;事件B与C不是互斥事件,事件B与D也不是互斥事件;事件C与D是互斥事件,也是对立事件.
(2)A∩B=,A∩C=A,A∩D=.
A∪B=A1∪A3∪A4={出现点数1或3或4},
A∪C=C={出现点数1或3或5},
A∪D=A1∪A2∪A4∪A6={出现点数1或2或4或6}.
B∩C=A3={出现点数3},
B∩D=A4={出现点数4}.
事件间运算的方法
(1)利用事件间运算的定义.列出同一条件下的试验所有可能出现的结果,分析并利用这些结果进行事件间的运算.
(2)利用Venn图.借助集合间运算的思想,分析同一条件下的试验所有可能出现的结果,把这些结果在图中列出,进行运算.?
练一练
2.盒子里有6个红球,4个白球,现从中任取三个球,设事件A={3个球中有1个红球,2个白球},事件B={3个球中有2个红球,1个白球},事件C={3个球中至少有1个红球},事件D={3个球中既有红球又有白球}.
问(1)事件D与A、B是什么样的运算关系?
(2)事件C与A的交事件是什么事件?
解:(1)对于事件D,可能的结果为1个红球2个白球,或2个红球1个白球,故D=A∪B.
(2)对于事件C,可能的结果为1个红球2个白球,2个红球1个白球,三个均为红球,故C∩A=A.
?讲一讲
3.一名射击运动员在一次射击中射中10环、9环、8环,7环,7环以下的概率分别为0.24,0.28,0.19,0.16,0.13.计算这名射击运动员在一次射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率;
(3)射中环数小于8环的概率.
[思路点拨]先判断所求事件与已知事件的关系,然后选择公式求解.
[尝试解答]设“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”的事件分别为A,B,C,D,E,可知它们彼此之间互斥,且P(A)=0.24,P(B)=0.28,P(C)=0.19,P(D)=0.16,P(E)=0.13.
(1)P(射中10环或9环)=P(A∪B)=P(A)+P(B)=0.24+0.28=0.52,所以射中10环或9环的概率为0.52.
(2)事件“至少射中7环”与事件E“射中7环以下”是对立事件,则P(至少射中7环)=1-P(E)=1-0.13=0.87.
所以至少射中7环的概率为0.87.
(3)事件“射中环数小于8环”包含事件D“射中7环”与事件E“射中7环以下”两个事件,
则P(射中环数小于8环)=P(D∪E)=P(D)+P(E)=0.16+0.13=0.29.
(1)运用概率加法公式解题的步骤
①确定诸事件彼此互斥;
②先求诸事件分别发生的概率,再求其和.
(2)求复杂事件的概率通常有两种方法
一是将所求事件转化成彼此互斥的事件的并;
二是先求对立事件的概率,进而再求所求事件的概率.
?练一练
3.(2016洛阳模拟)经统计,在某储蓄所一个营业窗口等候的人数及相应的概率如下:
排队人数012345人及5人以上
概率0.10.160.30.30.10.04
求:(1)至多2人排队等候的概率是多少?
(2)至少3人排队等候的概率是多少?
解:记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A、B、C、D、E、F互斥.
(1)记“至多2人排队等候”为事件G,则G=A∪B∪C,
所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)
=0.1+0.16+0.3=0.56.
(2)法一:记“至少3人排队等候”为事件H,则H=D∪E∪F,
所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.
法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,
所以P(H)=1-P(G)=0.44.
——————————————[课堂归纳感悟提升]———————————————
1.本节课的重点是了解事件间的包含关系和相等关系,理解互斥事件和对立事件的概念及关系,难点是了解并利用两个互斥事件的概率加法公式解题.
2.本节课要掌握以下几方面的规律方法
(1)判断两事件互斥、对立的两个步骤,见讲1.
(2)事件间运算的方法,见讲2.
(3)用概率加法公式解题的步骤及求复杂事件概率的两种方法,见讲3.
3.本节课的易错点有两个:
(1)混淆互斥、对立事件概念致错,如讲1;
(2)分不清事件间的关系而错用公式导致解题失误,如讲3.
课下能力提升(十七)
[学业水平达标练]
题组1互斥事件与对立事件
1.(2016大同高一检测)给出以下结论:①互斥事件一定对立.②对立事件一定互斥.
③互斥事件不一定对立.④事件A与B的和事件的概率一定大于事件A的概率.⑤事件A与B互斥,则有P(A)=1-P(B).其中正确命题的个数为()
A.0个B.1个C.2个D.3个
解析:选C对立必互斥,互斥不一定对立,∴②③正确,①错;又当A∪B=A时,P(A∪B)=P(A),∴④错;只有A与B为对立事件时,才有P(A)=1-P(B),∴⑤错.
2.从1,2,…,9中任取两数,①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是()
A.①B.②④C.③D.①③
解析:选C从1,2,…,9中任取两数,有以下三种情况:(1)两个奇数;(2)两个偶数;(3)一个奇数和一个偶数.至少有一个奇数是(1)和(3),其对立事件显然是(2).故选C.
3.掷一枚骰子,记A为事件“落地时向上的数是奇数”,B为事件“落地时向上的数是偶数”,C为事件“落地时向上的数是3的倍数”.其中是互斥事件的是________,是对立事件的是________.
解析:A,B既是互斥事件,也是对立事件.
答案:A,BA,B
题组2事件的运算
4.给出事件A与B的关系示意图,如图所示,则()
A.ABB.AB
C.A与B互斥D.A与B互为对立事件
解析:选C由互斥事件的定义可知C正确.
5.(2016台州高一检测)掷一枚骰子,“向上的点数是1或2”为事件A,“向上的点数是2或3”为事件B,则()
A.AB
B.A=B
C.A+B表示向上的点数是1或2或3
D.AB表示向上的点数是1或2或3
解析:选C设A={1,2},B={2,3},A∩B={2},A∪B={1,2,3},∴A+B表示向上的点数为1或2或3.
题组3用互斥、对立事件求概率
6.若A、B是互斥事件,则()
A.P(A∪B)1B.P(A∪B)=1
C.P(A∪B)1D.P(A∪B)≤1
解析:选D∵A,B互斥,∴P(A∪B)=P(A)+P(B)≤1.(当A、B对立时,P(A∪B)=1).
7.某射手在一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为()
A.0.5B.0.3C.0.6D.0.9
解析:选A此射手在一次射击中不超过8环的概率为1-0.2-0.3=0.5.故选A.
8.市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是()
A.0.665B.0.56C.0.24D.0.285
解析:选A由题意知本题是一个相互独立事件同时发生的概率,∵甲厂产品占70%,甲厂产品的合格率是95%,∴从市场上买到一个甲厂生产的合格灯泡的概率是0.7×0.95=0.665,故选A.
9.盒子里装有6个红球,4个白球,从中任取3个球.设事件A表示“3个球中有1个红球,2个白球”,事件B表示“3个球中有2个红球,1个白球”.已知P(A)=310,P(B)=12,求“3个球中既有红球又有白球”的概率.
解:记事件C为“3个球中既有红球又有白球”,则它包含事件A“3个球中有1个红球,2个白球”和事件B“3个球中有2个红球,1个白球”,而且事件A与事件B是互斥的,所以P(C)=P(A∪B)=P(A)+P(B)=310+12=45.
10.在数学考试中,小明的成绩在90分以上的概率是0.18,在80分~89分的概率是0.51,在70分~79分的概率是0.15,在60分~69分的概率是0.09,在60分以下的概率是0.07,计算:
(1)小明在数学考试中取得80分以上成绩的概率;
(2)小明考试及格的概率.
解:记小明的成绩“在90分以上”“在80分~89分”“在70分~79分”“在60分~69分”为事件A,B,C,D,这四个事件彼此互斥.
(1)小明成绩在80分以上的概率是P(A∪B)=P(A)+P(B)=0.18+0.51=0.69.
(2)法一:小明及格的概率是P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=0.18+0.51+0.15+0.09=0.93.
法二:小明不及格的概率为0.07,则小明及格的概率为1-0.07=0.93.
[能力提升综合练]
1.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()
A.“至少有1个白球”和“都是红球”
B.“至少有1个白球”和“至多有1个红球”
C.“恰有1个白球”和“恰有2个白球”
D.“至多有1个白球”和“都是红球”
解析:选C该试验有三种结果:“恰有1个白球”、“恰有2个白球”、“没有白球”,故“恰有1个白球”和“恰有2个白球”是互斥事件但不是对立事件.
2.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为()
A.60%B.30%C.10%D.50%
解析:选D设A={甲获胜},B={甲不输},C={甲、乙和棋},则A、C互斥,且B=A∪C,故P(B)=P(A∪C)=P(A)+P(C),即P(C)=P(B)-P(A)=50%.
3.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为()
A.15B.25C.35D.45
解析:选C记取到语文、数学、英语、物理、化学书分别为事件A、B、C、D、E,则A、B、C、D、E互斥,取到理科书的概率为事件B、D、E概率的和.∴P(B∪D∪E)=P(B)+P(D)+P(E)=15+15+15=35.
4.对一批产品的长度(单位:毫米)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为()
A.0.09B.0.20C.0.25D.0.45
解析:选D由图可知抽得一等品的概率为0.3,抽得三等品的概率为0.25,则抽得二等品的概率为1-0.3-0.25=0.45.
5.(2016合肥高一检测)为维护世界经济秩序,我国在亚洲经济论坛期间积极倡导反对地方贸易保护主义,并承诺包括汽车在内的进口商品将最多在5年内把关税全部降低到世贸组织所要求的水平,其中21%的进口商品恰好5年关税达到要求,18%的进口商品恰好4年关税达到要求,其余进口商品将在3年或3年内达到要求,则包括汽车在内的进口商品不超过4年的时间关税达到要求的概率为________.
解析:设“包括汽车在内的进口商品恰好4年关税达到要求”为事件A,“不到4年达到要求”为事件B,则“包括汽车在内的进口商品在不超过4年的时间关税达到要求”是事件A∪B,而A,B互斥,
∴P(A∪B)=P(A)+P(B)=0.18+(1-0.21-0.18)=0.79.
答案:0.79
6.同时掷两枚骰子,既不出现5点也不出现6点的概率为49,则5点或6点至少出现一个的概率是________.
解析:记既不出现5点也不出现6点的事件为A,则P(A)=49,5点或6点至少有一个的事件为B.
因A∩B=,A∪B为必然事件,所以A与B是对立事件,则P(B)=1-P(A)=1-49=59.
故5点或6点至少有一个出现的概率为59.
答案:59
7.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率是512,试求得到黑球、黄球、绿球的概率各是多少?
解:从袋中任取一球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A、B、C、D,则有
P(B∪C)=P(B)+P(C)=512;
P(C∪D)=P(C)+P(D)=512;
P(B∪C∪D)=P(B)+P(C)+P(D)=1-P(A)=1-13=23.
解得P(B)=14,P(C)=16,P(D)=14.
所以得到黑球、黄球、绿球的概率各是14,16,14.
平面的基本性质
总课题点、线、面之间的位置关系总课时第5课时
分课题平面的基本性质(一)分课时第1课时
教学目标初步了解平面的概念;了解平面的基本性质(公理);能正确使用集合符号表示有关点、线、面的位置关系;能运用平面的基本性质解决一些简单的问题.
重点难点正确使用集合符号表示点、线、面的位置关系,平面的基本性质.
引入新课
1.平面的概念:
光滑的桌面、平静的湖面等都是我们熟悉的平面形象,数学中的平面概念是现实平面加以抽象的结果.
平面的特征:平面没有大小、厚薄和宽窄,平面在空间是无限延伸的.
2.平面的画法:
3.平面的表示方法:
4.用数学符号来表示点、线、面之间的位置关系:
点与直线的位置关系:
点与平面的位置关系:
直线与平面的位置关系:
5.平面的基本性质:
公理:文字语言描述为:
符号语言表示为:
公理:文字语言描述为:
符号语言表示为:
公理:文字语言描述为:
符号语言表示为:
例题剖析
例1辨析:
个平面重叠起来,要比个平面重叠起来厚.()
有一个平面的长是米,宽是米.()
黑板面是平面.()
平面是绝对的平,没有大小,没有厚度,可以无限延展的抽象的数学概念.()
例2把下列图形中的点、线、面关系用集合符号表示出来.
例3把下列语句用集合符号表示,并画出直观图.
(1)点在平面内,点不在平面内,点,都在直线上;
(2)平面与平面相交于直线,直线在平面内且平行于直线.
例4如图,中,若在平面内,判断是否在平面内.
巩固练习
1.用符号表示“点在直线上,在平面外”,正确的是()
A.B.C.D.
2.下列叙述中,正确的是()
A.C.
B.D.
3.为什么许多自行车后轮旁只安装一只撑脚?
4.四条线段顺次首尾相接,所得的图形一定是平面图形吗?
课堂小结
正确使用集合符号表示点、线、面的位置关系,平面的基本性质.
课后训练
班级:高一()班姓名:____________
一基础题
1.完成表格
位置关系符号表示
点在直线上
直线与直线交于点
平面
平面
直线不在平面内
2.直线和平面的公共点的个数可能为.
3.根据下列条件画图:
(1);(2)且;
(3);
(4)且.
二提高题
4.如图,在长方体中,下列命题
是否正确?并说明理由.
①.在平面内;
②.若分别为面的中心,
则平面与平面的交线为;
③.由点可以确定平面;
④.设直线平面,直线平面,
若与相交,则交点一定在直线上;
⑤.由点确定的平面与由点确定的平面是同一个平面.
5.平面平面,直线,且与不平行,在内作直线,使相交.
三能力题
6.在正方体中,画出平面与平面的交线,并说明理由.
3.4(3)函数的基本性质
3.4(3)函数的基本性质
一、教学目标设计
1、理解函数最大、最小值的概念,掌握几种类型的函数最值的求法
2、学会“转化”的思维方法
3、让学生懂得数学既是从现实原型中抽象出来的,又随着数学本身的发展而逐步得到完善的,并树立严格定义的思维。
二、教学重点及难点
1.教学重点
理解函数最大、最小值的概念,求基本函数的最值;
2、教学难点
通过转化思想,把复杂函数转化成熟悉的基本函数,再求最值。
三、教学流程设计
四、教学过程设计
一、情景引入
1.问题引入
动物园要建造一面靠墙的2间面积相同的长方形熊猫居室,如果可供建造围墙的材料长是30米,那么宽为多少米时才能使所建造的熊猫居室面积最大?熊猫居室的最大面积是多少平方米?
设每间熊猫居室的宽为米,熊猫居室的总面积为平方米,则2间熊猫居室的总长为米.
由题意得
下面,我们研究取什么值时面积才能达到最大值。用配方法把上式化为
因为,所以,即当取内任何实数时,面积的值不大于75平方米.又因为,而当时,取得75,所以当熊猫居室的宽为5米时,它的面积最大,最大值为75平方米.
二、学习新课
1.概念讲解
函数的最大、最小值概念:(引导学生,让学生给出定义)
一般地,设函数在处的函数值是,如果对于定义域内任意,不等式都成立,那么叫做函数的最小值,记作;如果对于定义域内任意,不等式都成立,那么叫做函数的最大值,记作。
2、图像上分析(提问的形式,让学生回答)
从函数图像来看,如果函数有最大值,那么函数图像中一定有位置最高的点,有的函数只有最大值没有最小值;有的函数只有最小值而没有最大值;有的函数既有最大值又有最小值;而有的函数既无最大值也无最小值。我们以后可以看到:如果一个函数的图像是条连续的曲线,那么这个函数在它的定义域里的某个闭区间上一定既有最大值又有最小值。
3、例题讲解
一、求下列二次函数的最大值或者最小值:
解:
因此,当时,
因此,当时,
当时,当时,
当时,,所以
说明:通过配方可得,函数图像是抛物线的一段,其中含有抛物线的顶点,由于抛物线的开口向下,顶点位于图像的最高处,因此顶点所对应的函数值就是函数的最大值,由于顶点左边的图像是上升的,因此在所对应的区间上,函数是单调递增的,而顶点右边的图像是下降的,在所对应的区间上,函数是单调递减的,所以,函数在上的最小值应由区间的端点所对应的函数值来定.
利用不等式性质,得
当时,即时,取得最小值是.
二、在的条件下,求函数的最大值和最小值.
解:由,解得,可知函数的定义域是.又已知,因此需在的条件下,求函数的最大值和最小值.
因为,所以当时,函数为增函数,从而当,函数.
又时,;时,.
所以
利用不等式的性质,得
即
因此,当时,;当时,.
4、求函数的最大、最小值与值域的几种基本方法:
(1)研究函数的单调性等性质;(数形结合)
定义在区间上的函数,如果函数在上是增(减)函数,那么这个函数的最大(小)值是,最小(大)值是。
(2)利用基本不等式;
(3)通过变量代换的数学思想方法,将函数转化为基本函数,但必须注意新变量的取值范围。
三、巩固练习
课本P71练习3.4(3)1,2
四、课堂小结
叫学生来总结这节课所学内容,老师在学生基础上再补充。
五、作业布置
课本P71练习3.4(3)3,4
习题3.4