小学数学教案五年级
发表时间:2021-10-26人教新课标五年级下册《体积单位间的进率》数学教案。
在上课时老师为了能够精准的讲出一道题的解决步骤。这时就需要自己去精心研究如何做一份学生爱听老师爱讲的教案。从而在课堂上与学生更好的交流,那么老师怎样写才会喜欢听课呢?以下是小编为大家精心整理的“人教新课标五年级下册《体积单位间的进率》数学教案”,仅供参考,希望能为您提供参考!
《体积单位间的进率》教学设计
[教学目标]
知识与技能:让学生知道体积单位之间的进率,能进行简单的体积单位之间的换算。
过程与方法:在学习过程中,学生通过比较、分析、概括等活动,提高学生对旧知识的迁移和运用能力。
情感、态度与价值观:使学生体验数学知识之间的紧密联系性,能够运用知识解决实际问题。
[教学重点]体积单位间的进率。wWW.JaB88.com
[教学难点]根据进率进行体积单位的互化。
[教学过程]
一、旧知回顾,提出问题
1、同学们今天我们要学习相邻体积单位间的进率。(板书课题)
2、看了课题,能回忆回忆我们都学习过哪些相邻单位间的进率呢?
3、学生交流:有长度单位间的进率、面积单位间的进率、质量单位间的进率、液体体积单位间的进率。
4、说说这些已经学过的相邻单位间的进率是多少?(教师板书)
5、猜想今天我们学习的相邻体积单位间的进率可能是多少?
6、提炼猜想,为研究作好必要的准备。
学生出现的猜想:1立方米=1000立方分米1立方分米=1000立方厘米
二、学生自学,小组交流
探究立方分米与立方厘米间的进率
1.指导学生分组进行探究,出示自学纲要:
①棱长1分米的正方体的体积是多少?
②棱长10厘米的正方体的体积是多少?
③1立方分米与1000立方厘米,哪个大?为什么?
2.学生活动,教师巡视
三、展示交流,点拨提升
1.交流学习结果,分组汇报:
因为1分米=10厘米,所以棱长是1分米的正方体也可以看作是棱长10厘米的正方体。1分米×1分米×1分米=1立方分米
10厘米×10厘米×10厘米=1000立方厘米
所以:1立方分米=1000立方厘米
2.让学生在回顾一下思维的过程,再说说自己的理解。
3.类比迁移
教师提问:请同学们猜想一下,立方米与立方分米之间的进率
(1)用什么方法可以验证自己的想法是正确的呢?
(2)学生自己尝试解决问题
(3)交流各自的思维过程:
棱长1米的正方体的体积是1立方米,而1米=10分米,所以10分米×10分米×10分米=1000立方分米。所以1立方米=1000立方分米(板书)
5、小结:相邻的两个体积单位之间的进率是1000。
6、比较长度单位、面积单位、体积单位之间的进率,它们有什么不同之处?
7.教学例3.
(1)引导学生认真审题:将3.8立方米,2400立方厘米改写成多少立方分米,分别是把什么单位变成什么单位?
(2)放手让学生自己完成,教师巡视,个别指导。
(3)交流解题思路。
(4)小结相邻体积单位名数相互改写的方法。高级体积单位的名数×1000=低级体积单位的名数?低级体积单位的名数÷1000=高级体积单位的名数?即大变小,乘1000,小变大,则相反。
8、教学例4
(1)课件出示例4,放手让学生尝试作业.(2)交流解题思路
四、当堂巩固,评价辅导
1.基础训练
(1)口算:
0.9立方米=()立方分米
540立方厘米=()立方分米
38立方分米=()立方米
(2)判断,说理由
0.5立方米=500立方厘米()
2.拓展训练
4立方分米50立方厘米=()立方分米
10.38立方米=()立方米()立方分米
3.应用训练
教材36——4
五、课堂总结
扩展阅读
苏教版六年级上册《相邻体积单位间的进率》数学教案
苏教版六年级上册《相邻体积单位间的进率》数学教案
第一单元 长方体和正方体
第9课时 相邻体积单位间的进率
教学内容:
课本第19页例12和“练一练”,练习四第9-14题。
教学目标:
1、让学生经历1立方分米=1000立方厘米,1立方米=1000立方分米的推导
过程,明白相邻的两个体积单位间的进率是1000的道理,会正确运用体积单位间的进率进行名数的变换。
2、让学生用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌
握它们相邻两个单位间的进率。
教学重点:
根据进率进行相邻体积单位的换算。
教学难点:
培养学生的合理推理能力,发展学生的空间观念。
课前准备:
棱长为1分米的正方体以及棱长为10厘米的正方体挂图。
教学过程:
一、复习导入
1、提问:
(1)常用的长度单位有哪些?相邻的两个长度单位间的进率是多少?
(2)常用的面积单位有哪些?相邻的两个面积单位间的进率是多少?
(3)常用的体积单位有哪些?相邻的两个体积单位间的进率是多少?
2、问:你能猜出相邻体积单位间的进率是多少吗?
二、自主探索,验证猜测
1、教学例12。
(1)挂图出示棱长为1分米的正方体以及棱长为10厘米的正方体
(2)这两个正方体的体积是否相等?你是怎样想的?
(3)用图中给出的数据分别计算它们的体积。
学生分别算一算,然后在班内交流。
(4)根据它们的体积相等,可以得出怎样的结论?
(5)谁来说一说:为什么1立方分米=1000立方厘米?
2、用同样的方法,你能推算出1立方米等于多少立方分米吗?
学生小组讨论,班内交流
3、小结:你能说每相邻两个体积单位间的进率是多少?
4、你能用体积单位间的进率解释为什么1升=1000毫升呢?
三、巩固深化
1、出示练一练的习题。
学生独立完成。
班内交流你是怎样想的?
2、出示练习四第9题。
学生独立完成表格,班内交流。
出示练习四第10-12题。
学生独立完成,班内交流你是怎样想的?
3、出示练习四第13题。
学生读题,思考:两个容器各能盛水多少毫升是求什么?也就是两个长方体的什么?独立完成,说是怎样想的。
四、课堂总结
通过今天的学习,你有什么收获呢?
五、布置作业
练习四第14题。
教学反思:
面积单位间的进率
教学目标
1.使学生掌握面积单位间的进率.
2.培养学生的观察能力和类推的能力.
3.培养探索、应用的意识.渗透变与不变的辨证唯物主义思想.
教学重点
理解并掌握面积单位间的进率.
教学难点
理解并掌握面积单位间的进率.
教学过程
一、复习.
1.常用的长度单位有哪些?这些单位间的进率是多少?
2.常用的面积单位有哪些?这些单位间的进率又是多少呢?
3.今天这节课我们就来研究面积单位间的进率(板书课题)
二、新授.
1.研究1平方分米与1平方厘米的关系.
(1)指导学生自学例1.出示自学提纲:
A.边长是1分米的正方形面积是多少?
B.边长是10厘米的正方形面积是多少?
C.1平方分米与100平方厘米哪个大?为什么?
(2)学生分组汇报.教师演示动画“面积单位间的进率1”.
因为1分米=10厘米,所以边长是1分米的正方形也可看作边长是10厘米的正方形.
1分米×1分米=1(平方分米)
10厘米×10厘米=100(平方厘米)
(3)1平方分米=100平方厘米(板书)
2.推导1平方米与1平方分米的关系.
(1)教师提问:请同学们猜想一下1平方米与1平方分米之间有什么关系?
用什么方法可以验证你的想法是否正确呢?
(学生分组讨论,汇报)
(2)(演示动画“面积单位间的进率2”)
边长是1米的正方形的面积是1平方米.而1米=10分米,所以边长是1米的正方形可以划分成100个边长是1分米的小正方形,即100个面积为1平方分米的正方形.所以1平方米=100平方分米(板书)
(3)思考:1平方米等于多少平方厘米呢?
3.小结:相邻的两个面积单位间的进率是100.
三、巩固练习.
1.填空.
1米=( )分米 1分米=( )厘米
1平方米=( )平方分米 1平方分米=( )平方厘米
2.判断.
(1)面积单位比长度单位大. ( )
(2)4平方米=40平方分米( )
(3)50平方米和50米一样大( )
四、课堂小结.
通过学习你有什么新的收获?相邻面积单位间的进率是多少?
五、课后作业.
1.3平方米=( )平方分米 5平方分米=( )平方厘米
15平方米=( )平方分米 26平方分米=( )平方厘米
2.一张写字台的台面长是13分米,宽是6分米。它的面积是多少?合多少平方厘米?
3.一条人行道长20米,宽4米。面积是多少?合多少平方分米?用面积是25平方分米的水泥方砖铺地,需要这样的水泥砖多少块?
板书设计
教案点评:
面积单位间的进率是在学生初步认识面积单位和学会长方形、正方形面积的计算的基础上进行教学的.教学这一内容的关键是让学生切实理解相邻两个面积单位间的进率为什么是100,并要求学生初步学会用进率解决简单的实际问题.课堂上要让学生自己动手、动脑,认真观察、参与获取新知识的全过程.这样学到的知识,记忆深刻,避免死记硬背.
苏教版三年级下册《面积单位间的进率》数学教案
苏教版三年级下册《面积单位间的进率》数学教案
教学内容:
书上第82-83页例4
教学目标:
1、使学生进一步熟悉面积单位的大小。
2、掌握面积单位间的进率。
3、培养学生观察比较分析问题的能力,逐步养成积极思考的学习习惯。
4、能准确地进行常用面积单位之间的改写。
5、引导学生探索知识间的内在联系,激发学生学习兴趣。
教学重点:
掌握面积单位间的进率,会进行常用面积单位之间的改写。
教学难点:
面积单位间进率的推导过程。
教学准备:
面积是1平方分米的正方形白纸一张,一面画出边长是1厘米的正方形小格,学生每两人准备一张边长1分米的正方形和边长1厘米的正方形100多个。
教学过程:
一、猜测引入
我们已经学习了面积单位,常用的面积单位有哪些?
(学生回答,同时依次在屏幕上出现表示1平方厘米、1平方分米、1平方米的正方形)。
每相邻两个面积单位间的进率是多少呢?请同学们猜测一下。(分四人小组,猜测,然后反馈)
师小结:看来各小组讨论,得出意见难以一致,下面我们就来动手动脑,探究一下“面积单位间的进率”,板书课题:面积单位间的进率。
二、探究新知
1、推导1平方分米=100平方厘米
请同学们拿出红色的正方形,它的边长是1分米,谁来说一说它的面积是多少? (边长是1分米的正方形面积是1×1=1(平方分米))
如果这个正方形的面积用平方厘米做单位,是多少平方厘米呢?请同学们开动脑筋,发挥四人小组合作的力量,动手做一做实验(学生动手操作,教师巡视)。
反馈、汇报实验的结果。
(学生可能会用摆、量、换再算的方法)
师小结:刚才大家想的方法都很好,有的用摆,有的用量,还有的直接将分米换算成厘米来计算。同学们真聪明。但不管用什么方法,这个边长是1分米的正方形面积如果用平方厘米做单位都是100平方厘米。
同一个正方形,我们用平方分米作单位是1平方分米,用平方厘米作单位是100平方厘米,那么1平方分米等于多少平方厘米呢。(1平方分米=100平方厘米)
板书:1平方分米=100平方厘米。
2、知识迁移
(1)1平方米=100平方分米
从上面的实验过程中,我们知道了1平方分米=100平方厘米,那么同学再想一想:边长1米的正方形,它的面积是多少平方米?如果以分米作单位,它的面积又是多少平方分米?教师出示边长1米的正方形,并按照例题的要求提问两个问题
(1)边长1米的正方形纸,它的面积是多少平方米?
(2)如果把它划分成边长是1分米的小正方形,可以划分多少个?它的面积是多少平方分米?你们知道了什么?引导学生讨论,自行解决,进行汇报。
通过讨论使学生知道了1平方米=100平方分米。(板书:1平方米=100平方分米)
那么每相邻的两个面积单位间的进率是多少呢?
1平方分米=100平方厘米; 1平方米=100平方分米。
每相邻的两个面积单位间的进率是100。
(3)区分面积单位与长度单位间的进率,进一步强化面积单位间的进率。
长度单位:两个相邻长度单位间进率是10。
面积单位:两个相邻面积单位间进率是100。
(4)反馈练习
①练习填空:(出示投影片)
1米=( )分米 1分米=( )厘米
1平方米=( )平方分米 1平方分米=( )平方厘米
②83页做一做题目。
8平方分米=( )平方厘米 5平方米=( )平方分米
300平方厘米=( )平方分米
订正时请学生说出想法。
③改错:7平方分米=70平方厘米 1800平方米=18平方分米
三、全课小结
今天我们学习了什么?你有什么收获?
四、布置作业
《课堂作业本》第40页
板书设计:
面积单位间的进率
1平方分米=100平方厘米
1平方米=100平方分米
两个相邻面积单位间进率是100
苏教版数学六年级上册教案 相邻体积单位间的进率
教材分析:
这部分内容教学相邻体积单位间的进率,让学生根据进率进行相邻体积单位的换算。例11让学生通过计算,探索发现相邻两个体积单位间的进率。教材首先出示了两个同样大小的正方体,一个棱长标注为1分米,另一个棱长标注为10厘米。先让学生依据图中给出的数据判断它们的体积是否相等,再让学生分别算一算它们的体积。由此发现:1立方分米=1000立方厘米。对于另一组相邻体积单位立方米和立方分米的进率,教材则放手让学生根据前面探索中得到的经验自主进行推算。“练一练”让学生初步尝试应用相邻体积单位间的进率进行不同体积单位的换算。
教学目标:
1.使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理.
2.会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率.
3.会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题.
教学准备:
棱长为1分米的正方体以及棱长为10厘米的正方体挂图。
教学过程:
一、 复习导入
1、教师提问:
(1)常用的长度单位有哪些?相邻的两个长度单位间的进率是多少? 板书:米 分米 厘米
(2)常用的面积单位有哪些?相邻的两个面积单位间的进率是多少?板书:平方米 平方分米 平方厘米
(3)我们认识的体积单位有哪些?
板书:立方米 立方分米 立方厘米
提问:你能猜出相邻两个体积单位间的进率是多少呢?引出课题:相邻体积单位间的进率
【评析:从学生已有的知识经验出发展开教学,朴实、自然,有利于学生认知结构的形成。】
二、自主探索 验证猜测
1、教学例11。
(1) 挂图出示一个棱长1分米的正方体和一个棱长10厘米的正方体。
(2) 提问:这两个正方体的体积是否相等?你是怎样想的?
(引导学生根据两个正方体棱长的关系作出判断,即:1分米=10厘米,两个正方体的棱长相等,体积就相等。)
(3) 用图中给出的数据分别计算它们的体积。
学生分别算一算,然后在班内交流:
棱长是1分米的正方体体积是1立方分米;(板书:1立方分米)
棱长是10厘米的正方体体积是1000立方厘米。(板书:1000立方厘米)
(4) 根据它们的体积相等,可以得出怎样的结论?
1立方分米=1000立方厘米(板书:=)
(5) 谁来说一说,为什么1立方分米=1000立方厘米?
2、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?
学生在小组里讨论。(板书:立方米=1000立方分米)
班内交流。如果有学生直接说出1立方米=1000立方分米,要让学生说说是怎样得这个结论的?
引导学生把棱长1米的正方体和棱长10分米的正方体进行比较,并通过计算得出:1立方米=1000立方分米。
3、小结:从1立方分米=1000立方厘米,1立方米=1000立方分米来看,每相邻两个体积单位间的进率是多少?
【评析:学生通过计算,自主探索得出1立方分米=1000立方厘米;同时,及时引导学生回顾得出这一结论的方法与过程,用类比、迁移的方法,放手让学生根据探索中得到的经验自主进行推算立方米与立方分米的进率,不仅掌握了数学知识,而且潜移默化地受到了数学思想方法的熏陶。】
三、巩固深化
1、 出示书第30页的“练一练”。
学生先独立完成。
交流你是怎样想的。
小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。
【评析:突出学生的独立思考和概括能力的培养.体积单位名数的改写虽然是新知,但是学生已有面积单位名数的改写作基础,独立解答这类新知并不困难,因此这一层的教学放手让学生独立思考,在尝试了几题的基础上概括出解题的一般方法。】
2、 出示练习七第1题。
学生独立完成表格。
班内交流:说说长度、面积和体积单位有什么联系?
而它们的进率是不同的,你能说说它们每相邻两个单位间的进率分别说多少呢?
3、 出示练习七的第2题。
学生先独立完成。
交流:你是怎样想的。
指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。
4、 出示练习七的第3题。
学生独立完成。
交流:结合前两题说说怎样把高级单位的数量换算成低级单位的数量,再结合后两题说说怎样把低级单位的数量换算成高级单位的数量。
5、 出示练习七的第4题。
学生独立完成后集体交流。
【评析:巩固练习是课堂教学的重要环节,是新知识的补充和延伸,是形成知识结构和发展能力的重要过程。教师通过列表、单位换算、对比练习等,使学生进一步掌握体积单位间的进率,进一步掌握体积单位的换算方法,同时沟通长度单位、面积单位和体积单位的联系和区别,加深对这些单位意义的理解。】
四、课堂总结。
通过这节课的学习,你有什么收获?
【总评:“自主探索,合作交流是学生学习数学的重要方式”。这堂课,教师正确处理了“扶”与“放”的尺度,设计了让学生主动参与的学习过程,让学生通过计算、自主探索、合作交流等活动,掌握了数学知识,提高了数学能力。】
人教新课标五年级下册《认识体积和容积》数学教案
老师要承担起对每一位同学的教学责任,在开展教学工作之前。这时就需要自己去精心研究如何做一份学生爱听老师爱讲的教案。让同学听的快乐,老师自己也讲的轻松。如何才能编写一份比较全面的教案呢?下面是小编精心收集整理,为您带来的《人教新课标五年级下册《认识体积和容积》数学教案》,仅供参考,希望可以帮助到您。
认识体积和容积
教材分析
体积与容积的学习是在学生认识了长方体和正方体的特点以及长方体和正方体的表面积的基础上进行的。本节内容是进一步学习体积单位和体积的计算方法等知识的基础,也是发展学生空间观念的重要载体。教材先让学生通过小实验的活动,用两个相同的量杯倒入相同的水,再放入石头和马铃薯,让学生观察水面的变化情况,感受“物体占有一些空间,物体有大有小”。通过观察,发现两个物体放入水中后水面上升了,说明它们都占了一定的空间;还能发现水面上升的高度不一样,说明两个物体所占空间的大小不一样。当学生有了比较充分感性体验的基础上,再揭示体积的概念。接着,在解决问题的过程中,使学生感受容器容纳物体的体积的大小,再揭示容器的概念和容积的概念。
学情分析
学生已经认识了长方体和正方体的特点,学习了长方体和正方体的表面积的计算。体积和容积的学习是进一步学习体积的计算方法等知识的基础,也是发展学生空间观念的重要载体,而且体积和容积又是学生比较容易混淆的两个概念。本节课的知识难点在初步理解和区分体积和容积的概念。在教学中,应积极引导学生通过观察、操作、说一说,小组讨论等多种形式,切实掌握所学的知识。
教学目标:
知识目标:通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。
能力目标:在操作、交流中,感受物体体积的大小、发展空间观念。
情感目标:增强合作精神和喜爱数学的情感。
教学重点:通过具体的实验活动,初步理解体积和容积的概念。
教学难点:理解体积和容积的联系和区别。
教学设想
充分利用学生已有生活经验,通过实验和观察,让学生感受数学与生活的密切联系,培养学生的空间观念。让学生成为学习的主人,教师是学习的参与者、引导者和合作者。
教学准备:课件、两个相同的量杯、石头、水、土豆、粉笔盒等。
教法学法:动手实践、合作交流、自主探究
教学过程:
一、创设情境,激趣导入。
师:从前在一个镇上,有一家面条店,老板非常奸诈,对伙计也很苛刻。月底,要开工资了,老板总想为难伙计,一天,老板煮了一碗满满的面条,叫伙计端给客人,但前提是不许洒出一滴面汤,否则,这个月的工钱一分不给。伙计皱眉想了想,胸有成竹去端,结果一滴也没洒出来。同学们,你知道他是怎样做到的吗?
生1;分成两碗。
生2:用另一个碗盖着。……
师揭晓答案:其实伙计的办法是一只手用筷子把面条夹起来,面汤下降以后,另一只手去端面条碗。其实这个故事蕴藏着我们今天要学习的数学知识----认识体积和容积。(板书课题)
二、探究新知,感受体积。
(一)请一位同学上讲台协助老师完成小实验。
桌面上摆了两个同样的杯子,装了一样多的水,并作好记号。
1.实验一:把小石头放入水杯中,杯子里的水有什么变化。为什么?
生:水面上升了,因为石头占了一些地方。
师小结:石头占去了一部分水的体积,所以水升起来了。(板书:石头占有一些体积)
2.实验二:老师有一个比石头大的马铃薯,把马铃薯放入水杯中,杯子里的水有什么变化,和第一个杯子相比,哪个的水面上升得更多?为什么?
生:第二个杯子的水上升得更多,因为马铃薯比石头要大。
师小结:物体有大有小,所占的空间也有大有小。(板书:物体所占的空间有大有小)我们把物体所占空间的大小叫做物体的体积。(板书:物体所占空间的大小叫做物体的体积)
【设计意图:让学生利用已有的生活经验,初步感知物体的大小,为下面的探索活动打下基础】
(二)进一步理解体积的意义。
师:粉笔盒放在这里,占了一定的空间,粉笔盒所占空间的大小叫做粉笔盒的体积;老师站在这里,也占去了一定的空间,老师所占空间的大小叫做老师的体积。同学们,你知道老师的体积和粉笔盒的体积,哪个更大吗?为什么?
生:老师的体积大,因为老师所占的空间多。
师:老师的体积比粉笔盒的体积大。你能像老师这样,举例比一比两个物体体积的大小吗?
生1:讲台的体积比黑板的体积大。
生2:课桌的体积比盆栽的体积大。
(三)课堂练习,巩固新知。
1.出示题目:把大、小石子分别放入装满水的两个同样大的杯里,哪杯溢出的水多?(生:第二杯)为什么?
生:因为第二个石头比第一个石头要大
师追问:两个杯子原来都装满水,把石头放进去,水就会溢出来。那么溢出来的水的体积与石头的体积有什么关系?(生:溢出来的水的体积等于石头的体积)
2.出示题目:商店把同样的盒装饼干摆成三堆(如下图)。这三堆饼干的体积相等吗?为什么?
生1:相等。
生2:不相等
师:请同学们用一分钟的时间安静地思考一下,再来回答。
生:因为每堆饼干都有8盒,每盒饼干的体积相等,8盒饼干的总体积也相等。
师:看来饼干的总体积与所摆的形状无关。
三、讲授什么是容积。
(一)教师出示两套书,问:同学们喜欢看课外书吗?(生:喜欢)老师今天给大家带来了两套好看的课外书,分别是《四大名著》和《成语故事》,老师把它们装进了书盒里,你能说说哪个书盒里的书的体积大一些吗?
生:《四大名著》
师:我们把两套书拿出来验证一下,同学们都猜对了,四大名著的体积大一些。这个书盒可以装这本书,粉笔盒可以装粉笔,水杯可以装水,像这些可以装东西的物体,我们把它叫做容器。(板书:容器)容器所能容纳物体的体积叫做这个容器的容积。(板书:容器所能容纳物体的体积叫做这个容器的容积),齐读一遍这句话。书盒所能容纳书的体积就是书盒的容积。粉笔盒所能容纳粉笔的体积就是粉笔盒的容积。(师举起一个杯子)这个杯子也是一个容器,你能说说什么是这个杯子的容积吗?同桌互相说一说。
生1:水的体积。
生2:杯子所能容纳水的体积就是杯子的容积。
师:什么是油桶的容积?
生:油桶所能容纳油的体积就是油桶的容积。
(二)巩固练习,加深学生对容积的理解。
1.练习1:下面哪个玻璃杯的容积大一些?
生1:一号杯。
生2:二号杯。
生3:相等。
师:这两个杯子的容积比较接近,不能直接看出来,你能想办法比一比吗?请在小组里交流一下。
生1:先把两个杯子都装满水,再分别把水倒入第三个杯子,以第三个杯子里水的多少来判断谁装的水多。
师:这个方法可以,但是如果只有这两个杯子,没有第三个容器了,你有办法比较出来吗?
生2:先把一个杯子装满水,再倒入另一个杯子,如果第二个杯子中的水不满,说明第二个杯子大;如果第二个杯子中的水不仅满了,还有溢出来,说明第一个杯子大;如果第二个杯子中的水正好也满了,而且没有剩余,说明两个杯子一样大。
【设计意图:提出问题,让学生寻找解决问题的办法,把学习的主动权交还给学生,不仅增强了学生探索的兴趣,而且还培养了学生解决问题的策略意识和能力。】
2.练习2:下面两个盒子,哪个盒子的容积大?为什么?
生:第二个盒子的容积大。因为第二个盒子能容纳6个杯子,第一个盒子只能容纳4个杯子。
四、理解体积与容积的区别和联系。
(一)出示题目:从外面看两个盒子同样大,那它们的体积相等吗?
生:相等。因为从外面看两个盒子同样大,它们所占的空间一样大。
师:容积呢?
生1:相等。
生2:不相等。
生3:不一定。
师:容积指的是盒子里面的空间,所以我们要打开盒子来看。(出示打开图)
容积相等吗?为什么?请在小组里说一说。
生:容积不相等,因为第二个盒子比较厚,所以它里面所能容纳的物体体积就变小了,也就是容积变小了。
师:通过这道题,你能得出什么结论?
小结:体积相等的两个容器,容积不一定相等。
(二)(举起一个保温杯)同一个容器,它的体积和容积相等吗?为什么?
生1:相等。
生2:不相等。
师:为什么不相等?
生2:因为保温杯的材料有厚度,占了一定的空间。
师:体积是从外面看的,而容积是从里面看的,容积要扣除材料本身的厚度。也是说同一个容器的体积比容积大。
(三)选一选。指名回答
(1)求一个油桶能装多少油,是求油桶的()。①容积②体积
(2)求一个木箱占的空间有多大,是求木箱的()。①容积②体积
(3)求一个木箱能容纳多少东西,是求木箱的()。①容积②体积
(4)盛满一杯牛奶,()的体积就是()的容积。①杯子②牛奶
【设计意图:通过比较让学生感知“容积”和“体积”的联系和区别,理解知识间内在联系,形成比较完整的认知结构。】
五、全课总结:你今天有什么收获?
六、板书设计
认识体积和容积
石头占有一些空间
物体所占的空间有大有小物体所占空间的大小叫做物体的体积
容器所能容纳物体的体积叫做容器的容积
人教新课标五年级下册《分数的意义》数学教案
老师在上课时经常会遇到难解决的问题而耗费半节课的时间吧,为了不消耗上课时间,就需要有一份完整的教学计划。这样可以有效的提高课堂的教学效率,那么优秀的教案是怎么样的呢?下面是小编为大家整理的“人教新课标五年级下册《分数的意义》数学教案”,希望对您的工作和生活有所帮助。
《分数的意义》教学设计
一、教学内容
人教版五年级下册第四单元第一课时《分数的意义》。
二、学情分析
在学习这部分内容之前学生在三年级上学期的学习中,已经借助操作、直观,初步认识了分数,知道了分数的各部分的名称,会读、写简单的分数,会比较分数大小还会简单的同分母分数加、减法。
教学设想:本节课的教学,单位“1”和分数单位这两个概念非常重要,应从直观到抽象,由个别到一般,用利操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,自己构建这些概念的意义。
三、学习目标
1、在学生原有分数知识基础上,使学生知道分数的产生,理解单位“1”的含义。
2、通过动手操作,让学生经历认识分数意义的过程,培养学生的抽象、概括能力,促进思维的发展。通过合作促进学生之间的倾听,质疑等良好学习习惯的养成。
3、结合学生认知规律,激发学生的求知欲望,在具体的探究过程中培养学生的数学素养和创新精神。
四、教学重难点
重点:理解分数的含义。
难点:单位“1”的理解。
五、教学准备
教具准备:课件
学具准备:长方形白纸、软尺,学生用的笔。
六、教学过程
(一)引入
1、回顾分数,了解学生的起点
师:同学们请看:课件出示涂色的1/4圆。你们能用一个数表示涂色部分吗?
根据学生的回答出示课件并板书1/4
师:对于1/4这个分数,同学们还了解一些什么?
根据学生的回答(板书:分子、分母、分数线)
2、揭示课题
师:是呀!我们已经初步认识分数,今天这节课我们就来学习分数的意义。板书:分数的意义
(二)展开分数意义的研究
1.研究1/4,理解单位“1”。
(1)探究,用多种材料表示1/4。
师:刚才同学们说1/4可以表示把一个圆平均分成4份,取其中的一份。1/4还可以表示什么?下面利用我们准备的学具进行探究活动,先看看活动的要求:
课件出示要求:
(a)任意选用一些材料,通过分一分画一画表示出1/4。
(b)互相说一说你是怎么来表示1/4的。
(2)小组活动
(3)反馈
师:谁愿意来说说你是怎样来表示1/4?
让学生汇报,在汇报同时可以利用学具进行演示。
(4)归纳
师:请同学们回忆一下,刚才在表示1/4的过程中,有什么相同的地方?学生回答。
师:是的,我们都是把这些物体平均分。(板书:平均分)
有不同的地方吗?学生回答。
师:是的,平均分的物体不一样。有的是在分一个物体或者几个物体。像这样一个物体或一些物体我们都可以看做一个整体,我们通常叫做单位“1”。板书:单位“1”还有那些物体可以看做单位“1”?把你的想法给你的同桌说说。
根据学生的回答出示课件。
(5)再次研究1/4
.拿出学具进行演示。,老师说出部分,让学生说整体
2、研究几分之几
让学生任意写一个分数,和同桌说说你写的这个分数可以表示什么?
3、总结分数的意义
板书:把单位“1”平均分成若干份,表示这样一份或者几份的数,叫做分数。
(三)练习(课件出示)
填空:
(1)5/9是把单位“1”平均分成()份,表示这样的()份的数。
(2)把6只熊猫玩具看作一个整体,平均分成3份,2只熊猫是这个整体的()分之()4只熊猫是这个整体的()分之()。
(3)用分数表示图中的阴影部分,对不对?
(四)介绍是分数的产生
师:学习了分数的意义,你们知道分数是怎样产生的吗?
课件逐屏出现,让学生阅读有关内容。
(五)延伸练习
课件出示
仔细观察下图,你能用分数来说一句话吗?
(六)总结
师:这节课我们研究什么内容?你学会了那些知识?
西师大版五年级下册《体积与体积单位》数学教案
一个优质课堂,就是老师在讲学生在答,讲的知识都能被学生吸收。因此,老师会想尽一切方法编写一份学生易接受的教案。上课才能够为同学讲更多的,更全面的知识。那么优秀的教案是怎么样的呢?以下是小编为大家收集的“西师大版五年级下册《体积与体积单位》数学教案”,供大家参考,希望能帮助到有需要的朋友。
西师大版五年级下册《体积与体积单位》数学教案
教学内容分析:
《体积和体积单位》是人教版新课标小学五年级下册的内容,是在学生认识长方体和正方体,空间观念有了进一步发展的基础上教学的。本节课主要采取了小组活动的形式来教学体积的意义和体积单位,先通过实验的方法帮助学生建立起体积的概念,再通过观察与感知,建立常用的体积单位观念,让学生亲身经历和体验体积的意义和体积单位,最后说明要计量一个物体的体积,就是看它含有多少个体积单位。培养学生动手操作的能力,使学生感受到“生活处处有数学”,提高应用数学的意识。
教学目标阐明:
1、知识与技能
(1)让学生知道体积的含义,进一步建立空间观念;
(2)使学生认识常用的体积单位[立方米、立方分米、立方厘米],建立单位体积大小的概念;
(3)知道计量一个物体的体积,就是看它含有多少个体积单位。
2.过程与方法
(1)通过观察、操作、联想、表达,强化对体积的意义和体积单位的感知,初步形成对体积单位大小比较明确的表象;
(2)能够进行比较,体验合作学习的过程,培养学生的观察、动手能力,扩展学生的思维,进一步发展学生的空间观念。
3.情感态度与价值观
(1)通过设置丰富的问题情境,鼓励学生从多角度思考、探索、交流,激发学生的好奇心和主动学习的欲望。
(2)感知数学与日常生活的紧密联系。
教学重点:
使学生感知物体的体积,初步建立1立方米,1立方分米,1立方厘米的体积观念。
教学难点:
帮助学生建立1 m3,1dm3,1cm3的表象,能正确应用体积单位估算常见物体的体积。
教学对象分析:
(1)学生已经认识长方体和正方体,空间观念有了进一步发展;
(2)学生对生活中隐含数学问题兴趣浓厚;
(3)学生小组协作的能力和数学语言概括的能力不强;
(4)学生对体积概念比较生疏。
教学策略:
(1)故事激趣策略:采用故事导入法激发学生的学习兴趣,创设宽松活泼的课堂教学气氛,,维持学生学习的动机;
(2)自主学习策略:采用实验法发挥学生的实践能力,采用学生动手操作实验的方法,培养学生的创新能力;
(3)合作学习策略:采用小组学习的方法,培养学生的协作能力。
教学资源与设计:
教具学具:玻璃杯,水,鹅卵石,三根1米长的木条,生活用品实物模型,4个1 cm3小正方体模型 , 1cm3的正方体模型,1dm3的正方体模型。多媒体课件.
教学过程:
一、创设情境,揭示体积概念
1、激趣引入。
师:同学们,你们听过乌鸦喝水的故事吗?
生:听过。
师:谁愿意来看着图给大家讲一讲。(播放“乌鸦喝水”的课件)
指名学生看图讲故事。
师:乌鸦是怎么喝到水的?
生1:乌鸦把石头放进瓶子,瓶子里的水就升上来了,这样乌鸦就喝到水了。
师:为什么把石头放进瓶子,瓶子里的水就升上来了?
引导学生说出石头占了水的空间,所以把水挤上来了。
【设计理念:通过故事引入,激发学生学习兴趣,初步建立体积概念表象。】
2、实验证明。
师:石头真的占了水的空间吗?下面我们做个实验验证一下好吗?
生:好!
教师演示:拿两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒入第二个杯子,让学生看会出现什么情况,为什么?
生1:第二个杯子装不下第一个杯子的水,因为第二个杯子里放了一块石头,石头占了水的空间,所以装不下了。
【设计理念:通过实验,让学生明白石头占据水的空间的道理。】
3、揭示体积。
师:对,第二个杯子装不下第一个杯子的水,是由于石头占了水的空间。
师出示两个大小不一样的石头,问:这两个石头谁占的空间一样吗?
生:不一样。
师:哪个占的空间大些?
生:大石头占的空间大。
师:怎样用实验证明呢?
生:把两个石头放入装有同样多的杯子中,水面上升多的占的空间大,上升少的占的空间小。
师:那你做个实验给大家看好吗?
生做实验,其他学生观察。
师:通过实验,我们知道了大小两个石头占的空间有大有小。
【设计理念:让学生通过实验,明白物体所占空间有大有小,培养了学生的动手、动脑能力】
师出示下面的课件图,问:你们知道这些物体哪个占的空间大?
生:电视机占的空间最大,手机占的空间最小。
师:物体都占有一定的空间,而且所占的空间有大有小。我们把物体所占空间的大小叫做物体的体积。(板书)
师:谁能说说什么是电视机的体积?什么是影碟机的体积?什么是手机的体积?学生回答…
师:谁的体积大、谁的体积小呢?
生:电视机的体积最大,影碟机的体积第二大,手机的体积最小。
师再出示一些物体让学生比较这些物体哪个体积大,哪个体积小?
生:(一一判断)
师:你们是怎么知道的?
生:我是看出来的。
【设计理念:让学生通过观察、思考,比较,建立体积的概念。】
二、创设矛盾情境,引出体积单位
师:有的物体可以通过观察来比较它们的体积大小,那下面两个长方体,你们能比较出大小吗? (出示课件:两个体积相近的长方体)
学生出现争论。(有的说能,有的说不好比较)
【设计理念:教师通过两个长方体体积大小的比较,学生发现不好比较,从而指出计量物体的体积要用统一的体积单位。从而引入“体积单位”的教学]】
师:到底谁大谁小?教师用多媒体将它们分成大小相同的小正方体(出示课件),
问:现在你们能比较出它们的大小吗?
生:能,左边的长方体比右边的体积大。
师:为什么?
生:因为左边的长方体有16个小正方体,而右边的有15个,而且小正方体的大小相同,所以左边的比右边的大。
师:左边的长方体和右边的长方体中的小正方体不一样大,行不行?为什么?
生:不行。因为小正方体大小不同,就不好比较。
师:为什么分成小正方体前不能直接比大小,分成小正方体后就能比较呢?
引导学生说出:因为分成的每个小正方体的大小相同,这样就好比较了。
师:像计量长度需要长度单位,计量面积需要面积单位,我们计量体积也需要有“体积单位”。为了更准确地计量出物体体积的大小,我们可以像图中这样用同样大小的正方体作为体积单位。请大家阅读书本,说一说常用的体积单位有哪些?
生汇报:体积单位有立方厘米、立方分米、立方米。(板书)可以分别写成cm3、dm3、m3。
三、体验感知,认识体积单位
师:请你们猜一猜1 cm3、1 dm3,是多大的正方体?
学生讨论后回答:我们想棱长是1 cm的正方体,体积是1 cm3;棱长是1 dm的正方体,体积是1 dm3。
师:请大家闭上眼睛,感受一下1 cm3 到底有多大呢?
师:请同学们在自己的学具中找出1 cm3的正方体。
学生找到后,说一说自己是怎样找到的。
生:我是用尺量的,量出棱长是1 cm的正方体,它的体积就是1 cm3。
师:请你们找找,周围有哪些物体的体积接近1 cm3。
生1:一个手指尖的体积近似于1 cm3。
生2:计算机键盘的按钮的体积近似于1 cm3。
师:请找出1 dm3的正方体,与1 cm3的正方体比较一下,看它的体积大多少你能说出身边哪些物体的体积大约是1 dm3吗?
生4:一个拳头的体积大约是1 dm3。
生5:一个粉笔盒的体积大约是1 dm3。
师:1 m3有多大?
生:是棱长1 m的正方体。
师:你能想象出1 m3有多大吗?这里有3根1米长的木条做成的一个互成直角的架子,我们把它放在墙角,看看1 m3有多大,它和你想象的大小一样吗?
师:大家估计一下,它大约能容纳几个同学?
生猜:
几个同学用身体演示大小1 m3的物体。
【设计理念:通过学生操作实验和想象,联系生活中的物体,亲身体验体积单位的大小,培养了学生的想象能力和合作精神,使学生真正感受到数学与现实生活的密切联系】
师:立方厘米、立方分米、立方米是常用的体积单位,要计量一个物体的体积,就要看这个物体中含有多少个体积单位。请同学们用4个1 cm3的小正方体摆成一个长方体,你知道这个长方体的体积是多少吗?
学生摆小正方体,摆后汇报。
生:4 cm3。
师:为什么?
生1:因为它是由4个体积是1 cm3的小正方体摆成的。
师:(从粉笔盒的纸盒中拿出2盒粉笔)你能估计这个纸盒的体积是多少立方分米吗?
生:大约是2 dm3。
师:为什么?
生:因为刚才你从这个纸盒里拿出了两盒粉笔,而每盒粉笔大约是1 dm3,2盒粉笔就是2 dm3。
四、巩固练习
1、(课件展示)书本第40第1题,学生说说有什么不同?
[设计理念: 通过比较,有利于学生强化对长度、面积、和体积计量单位的认识,更好地构建认知结构]
2、选择合适的单位( 课件展示)
牙膏盒的体积约120( ) 一部手机的体积约48( )
一堆煤的体积约2500( ) 一本《新华字典》的体积约1( )
3、完成课文第40页“做一做”的第2题。
让学生说一说解题的根据是什么?进而使学生深化对计量个物体的体积,要看这个物体含有多少个体积单位的意思的理解。
4、练习:完成课文第44页练习七的第1~3题。
学生独立完成,教师讲评。
五、课堂总结,体验成功
师:这节课你有什么收获?说说你最成功的是什么?
生1:我知道测量物体的体积时,要确定一种测量标准。
生2:我知道了什么是体积。
生3:我知道了常用的体积单位有立方厘米、立方分米、立方米
师:今天大家的学习很投入,也学了不少有关物体体积的知识,我也很高兴。其实学习不单是在课堂上学习,也可以在课外学习。今天学习后,大家就可以去观察一下生活中的一些物品所占空间,想一想怎样用今天所学的体积单位来描述它。
教学评价设计:
在课堂中教师对学生的学习、探究、讨论等给予及时的评价、引导和总结;本课结束时,教师引导学生进行本次课综合性总结;课后,通过测试题和作业来评价反馈。
在教学过程中,学生的动口、动脑、动手能力得到了很好的发挥,学生的思维活跃,能积极主动发言,在小组活动中,体现了一种团结合作的精神,有些后进生在本节课的教学中表现得比较突出,参与性比较强。通过测试,学生对本节知识掌握得很好。
教学反思:
“体积和体积单位”是人教新课标小学五年级下册第三单元的一个重要概念教学。它是学生空间观念的一次巨大发展和飞跃。这个内容比较抽象、难懂。基于学生已有知识基础和认知思维特点,我在设计本课时,注重了教学内容与生活实践相结合,动手操作与实验观察相结合,努力培养学生用数学知识解决实际问题的能力和创新精神。主要体现在以下几个方面。
一、故事引入,在活跃气氛中引发兴趣。
良好的开端是成功的一半,在教学一开始,我抓住学生喜欢听故事的年龄特征,从《乌鸦喝水》这一学生耳熟能详的故事导入,吸引了学生的注意,很自然地引入新课。让学生明确乌鸦从刚开始喝不到水到最后喝到水是什么原因造成的,引导学生说出自己的想法。
接着通过实验演示,让学生观察发现到石头占据了水的空间而导致杯子不能把水全部倒完的道理。并通过观察物体(电视机、影碟机、手机),让学生比较它们所占空间大小,很自然地引出了体积的概念。
二、注重知识迁移,探究问题。
在引出体积单位的教学过程中,我没有直接告诉学生,而是创设矛盾情境(让学生比较相近的两个长方体),较难观察出它们体积的大小,接着通过多媒体课件把长方体分割成大小相等的正方体,得出要想准确地表示出物体体积的大小,需要有一个统一的标准。从而引出了体积单位,突破难点。不过发现学生在数小正方体个数的时候有点困难,空间观念不够好,课件可做得更直观些,易于学生观察。
三、联系实际,解决问题
解决问题是对学生综合能力的考验,但体积单位比较抽象,因此,我引导学生列举中实例,激发学生欲望,让学生在活动中理解应用数学知识解决实际问题。如:找出1立方厘米,1立方分米的正方体。摸一摸、量一量、说一说等实践活动,学生真正是在亲身经历和体验下认识体积单位,从而在头脑中形成表象,有助于以后计算和估算物体的体积。这一环节中学生说到了很多身边哪些物体的体积约是1立方厘米,1立方分米,在1立方米的正方体中让学生依次进入,结果能容纳几个学生,学习气氛更是达到了**,教学效果良好,同时使学生真真切切地感受到数学与现实生活的密切联系,数学就在身边。这一教学培养了学生自学能力,小组合作交流能力及语言表达能力。同时也提高了学生参与尝试的兴趣。
沪教版五年级下册《体积》数学教案
作为杰出的教学工作者,为了教学顺利的展开。所以大多数老师都会选择制定一份教学计划。从而在课堂上与学生更好的交流,你们见过哪些优秀教师的小学教案吗?以下是小编为大家收集的“沪教版五年级下册《体积》数学教案”,仅供参考,欢迎大家阅读。
沪教版五年级下册《体积》数学教案
教学内容:P38-40
教学目标:
1、通过具体的实验活动,了解体积的实际含义,初步理解体积的概念。
2、结合生活实际经验,能直接比较物体的体积大小。
3、通过实验活动、讨论交流等形式,获得体积的守恒性的经验。
4、感受数学与生活的密切联系,提高学习数学的兴趣。
教学重点:理解体积的概念。
教学难点:在不计损耗的情况下,获得体积的守恒性的经验。
教学过程:
一、揭示“体积”概念
1、理解“空间”
(1)出示:一个空杯子
师问:这是什么?里面有什么呢?看不见的东西有吗?
师:像这样杯子里被空气占领的地方就是杯子的空间。板书:空间
(2)问:那假如我们教室没有桌子也没有学生,都被什么占领了?被空气占领的地方叫做教室的“空间”。
(3)问:你们知道我们外面最大的空间是什么?
(4)师:刚才我们说这里面就是杯子的空间,(师倒水),现在这一部分的空间被谁占领了?(水),说明水也占有一定的“空间”。
2、理解“空间有大有小”
(1)师:现在如果我将这个小石块放入杯中,请大家先想象一下,可能会怎样呢?(水面会上升)你们都同意吗?
(2)师操作,学生观察,问:水面为什么会上升呢?(因为石块占有一定空间。)
(3)师:如果老师把这一块石块放入杯中,现在又会怎样呢?(水会溢出来)都同意吗?
(4)师操作,学生观察,师:水真的溢出来了,那为什么后面这一次水会溢出来呢?(因为第二块石头占的空间大。)
师:也就是石头所占的空间是有大有小的,是吗?
3、揭示体积概念:从刚才的实验中,我们知道两块石头都占有一定的空间,并且它们所占的空间有大有小。其实,生活中任何一个物体都占有一定的空间,物体所占空间有大有小,我们把物体所占空间的大小叫物体的体积。板书:概念、齐读、出示课题、问:什么是体积?
二、“体积”的直接比较
1、出示:小老鼠和大象
师:现在你看到了什么?谁占的空间大?谁占的空间小?
那么我们还可以用刚刚学过的哪个词来描述一下这副图?
(大象的体积大,老鼠的体积小。)
师:大象占的空间大,体积也就大;老鼠占的空间小,体积也就小。
2、下面两幅图中,你能直接说说,谁的体积大?谁的体积小?
师:西瓜和橘子,谁的体积大?谁的体积小?为什么?
3、师:那么你能举例说说我们身边的物体,谁的体积较大,谁体积较小?
4、比较两根木棍的体积大小
师:刚才我们举的这些物体非常明显地可以判断出体积的大小,所以我们用眼睛直接来判断了,下面老师提供这样一种情况:
1)甲乙两根木料一样长,他们的体积( )
(1)甲>乙 (2)甲=乙 (3)甲
(用手势表示)师:大家意见不统一,谁来说说自己的想法?
2) (出示图片)师:我们来看图,现在你们觉得选择几呢?说说为什么?
3)小结:虽然两根木棍一样长,但是红色的木棍比较粗,它所占得空间大,所以它的体积比较大。在一样长的情况下,还要看粗细。
5、比较两本书的体积大小。
师:下面老师再提供一种情况:
1)丙丁两本书的封面面积一样大,它们体积( )。
(1)丙>丁 (2)丙=丁 (3)丙
(用手势表示)师:大家意见又不统一,谁来说说自己的想法?
2)(出示图片)师:我们来看图,现在你选几呢?为什么?
3)小结:虽然两本书的封面面积一样大,但乙书比较厚,所占空间比较大,所以它的体积比较大。在封面面积一样的情况下,还要看厚度。
5、师小结:从刚才的比较活动中,我们知道在比较物体体积大小的时候,要全面考虑,也就是要看他所占的空间大小,它占的空间大,那么它的体积就大。
三、“体积”的守恒性
师:接下去,老师要请你来思考这样3个问题:
1、 思考1:将一杯水倒入长方形盒中,水的高度变了吗?水的体积变了吗?
(同桌交流意见,全班交流)还有不同意见吗?
实验操作,问:水的高度发生变化了吗? 水的体积发生变化了吗?
你是怎么想的?你怎么来证明?
(总量没有变,还是同样这些水,体积没有变;把水倒回去,还是达到杯中原来的地方,这些水占的空间还是原来这些空间;把杯中水、盒中水分别倒入第三个容器中,到同样一个高度)
师操作:水在倒的时候,可能有少许水会沾在杯壁上,但是在不计这种损耗的情况下,可以说水的体积是不变的。
2、思考2:同一块橡皮泥,捏成各种样子,形状变了吗?体积变了吗?
(同桌交流意见,全班交流)不同意见有吗?
实验操作:将一块橡皮泥搓成一个球、搓成一长条
问:橡皮泥的形状发生变化了吗?橡皮泥的体积发生变化了吗? 怎么证明体积没有发生变化?
(将球和长条分别放入水杯中,水上升的高度一样,水上升的高度就是橡皮泥的体积)
师操作:在搓的过程中间,既没有又添加橡皮泥,也没有拿掉橡皮泥,所以在不计损耗的条件下,橡皮泥的体积没有发生变化)
3、思考3:把一个西瓜切成几块, 它的体积发生变化了吗?
(同桌交流意见,全班交流)都同意吗?
图片出示:把一个西瓜切成4份
问:怎么证明体积没有发生变化?
(把切开西瓜再合起来,发现在不计损耗的条件下,体积没有发生变化)
4、问:请你们想一想,刚才我们的3个实验,从数学角度出发,你发现了什么?
生:物体的形状发生了变化,但只要总量不变,体积就不变。(板书)
四、巩固“体积”知识
1、师:分散的3块体积和叠起来的3块体积变化吗?形状发生变化了吗?体积没有变?为什么?
2、下列各种情况体积会发生变化吗?为什么?
一个足球被踢进球门。
一个人从婴儿到成年。
一块砖被敲碎了。
3、哪个杯子里的水的体积大?为什么?
(用手势表示)
师:如果让你证明,你怎么证明?
(把两个苹果全部拿出来,你说哪一杯水的高度高?)
4、比较体积大小 (同桌互讲)
5、比较出这两个长方体的体积大小
1、 甲>乙 2、 甲
师:老师这里有2个长方体,哪一个长方体的体积大?(同意1的举手,2的......)
为什么会出现这么多分歧?(这两个长方体体积很难看出)
凭眼睛看,很难看出,那么你们有什么好办法?(生自由回答)
现在老师把这2个长方体分割成几个大小相同的小正方体,现在你们能判断他们的体积大小了吗?
五、总结:今天你有什么收获?
(什么是体积、体积有大有小、物体形状变了,总量没变,体积不变)
苏教版六年级上册数学《体积单位的进率 》教案(二)
相邻体积单位间的进率(1)
教学内容:苏教版义务教育教科书第19页例12、"练一练"、练习四第9~14题。
教学目标:
1.使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理。
2.会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率。
3.会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题。
教学重点与难点:
根据进率进行相邻体积单位的换算。
教具:课件棱长是1分米的正方体纸盒
教学过程:
一、复习导入
提问:"1平方分米等于多少平方厘米?想想是怎么推导出来的?请画在边长是1分米的正方形纸上."
学生6人一组,回忆并再次经历1平方分米=100平方厘米的推导过程.
(2)展示学生的推导过程,可请1~2名学生代表他们的小组上台述说,并将1平方分米=100平方厘米的示意图──将边长1分米的正方体纸盒画上100个边长是1厘米的小正方形展示出来.
二、探究新知
1、推导1立方分米=1000立方厘米
(1)猜猜看,1立方分米等于多少立方厘米呢?
你们能应用类似的方法推导出来吗?
要求每个小组将推出来的结果用1立方分米的正方体纸盒表示出来.
学生6人一组,进行探索、推导.教师巡视各组情况并进行指导:让每个学生在1平方分米的纸上画出100个小格,然后贴在棱长1分米的正方体盒块的6个面上.这样,就得到一个1立方分米=1000立方厘米的数学模型。
(2)展示推导过程绿色圃中小学教育网//WwW.Lspjy.Com
请1~2名学生上台述说他们的推导过程:正方体棱长1分米,也就是10厘米,体积就是(10×10×10)立方厘米.并将他们做好的模型进行展示。
(2)展示推导过程
请1~2名学生上台述说他们的推导过程:正方体棱长1分米,也就是10厘米,体积就是(10×10×10)立方厘米.并将他们做好的模型进行展示.
(3)全班归纳总结:教师用课件动态展示将一个棱长1分米的正方体分割成1000个棱长1立方厘米的过程,并在示意图下醒目地写上:1立方分米=1000立方厘米。(或写在黑板上)
3.推导1立方米=1000立方分米
(1)提问:"不用操作,你能想出1立方米等于多少立方分米吗?"
(2)学生独立思考.可提示:在脑子里想一个棱长是1米的正方体。再将这个正方体分割成棱长是1分米的小正方体,想想可分割多少个?
(3)学生先在小组交流自己的想法,然后在全班交流,师生共同归纳出:1立方米=1000立方分米
教师用课件显示出来(或写在黑板上)。
4.总结相邻两个体积单位间的进率。
(1)提问:你学过哪些体积单位?请按从高到低的顺序把它排列出来,然后说出每个体积单位的相邻单位。
(2)引导学生观察:1立方分米=1000立方厘米
1立方米=1000立方分米
并想一想:相邻两个体积单位之间的进率是多少?想好后在书上填空。
5.构建长度、面积和体积单位的计量系统.
(1)让学生说一说,到目前为止,所学的长度、面积和体积单位各有哪些,它们分别是计量物体的什么的?
(长度单位是用来计量物体长度的;面积单位是用来计量物体表面大小的;体积单位是用来计量物体所占空间大小的.)
(2)提问:"长度、面积和体积单位,它们相邻两个单位间的进率相同吗?"学生回答后将书上第31页上的表格填完整,集体订正。
三、练习应用绿色圃中小学教育网//WwW.Lspjy.Com
1、完成练一练
引导学生认真审题,独立解答。
集体交流,指名说说换算思路。
2、完成练习四第9题。
学生独立完成表格。
长度单位、面积单位、体积单位有什么联系和区别?这三类单位的进率各有什么特点?
3、完成练习四第10题
学生独立完成,集体订正
引导学生说说面积单位换算与体积单位换算的区别。交流
引导学生归纳将高级单位的名数改写成相邻的低级单位的名数的一般方法(师板书):
高级单位的名数×1000=相邻的低级单位的名数
4、完成练习四第11、12题。
四、全课总结
引导学生回忆本节课所学主要内容。回忆时可按本节课所学知识的顺序来叙述。
本节课学习了体积单位之间的进率,知道1立方米=1000立方分米,1立方分米=1000立方厘米;会应用体积之间的进率进行体积单位名数的改写。
五、作业
练习四第13、14题
板书设计:
教后记:
北师大版五年级下册《体积单位》数学教案
老师讲课学生爱听,还愿意自学的情况下,往往少不了一份教案。有的老师会在很久之前就精心制作一份教学计划。从而在课堂上与学生更好的交流,你知道有哪些教案是比较简单易懂的呢?以下是小编为大家精心整理的“北师大版五年级下册《体积单位》数学教案”,供大家参考,希望能帮助到有需要的朋友。
北师大版五年级下册《体积单位》数学教案
教学目标:
1、了解体积单 位有立方厘米、立方分米、立方米。
2、能够根据生活中的常识和已有的经验,建立体积单位的实际的能力,具有解决物体体积和容积问题的正确方法和思路。
3、学生想探究问题,愿意和同伴进行合作交流;乐物用学过的知识 解决生活中的相关的实际问题。
教学重点难点:
进一步能够有效的建立体积的空间观念;初步感知体积单位的大小。
教学准备:
1立方 米、1立方分米、1立方厘米的正方体实物教具。
教学过程:
一、创设情境,导入新课
比比谁的体积大:
1、师:现在请你比一比,我和XX,谁的体积大?(老师的体积比XX的体积大)
2、现在请大家找一找我们身边的物体,比比谁 的体积大?谁的体积小?
(预设:我的体积比数学书的体积大,空调的体积比电脑的体积大……)
3、下面的电视机、影碟机和 手机,它们哪个体积大些?
师:刚才这些都很特殊,一眼就可以比较出来谁的体积大。现在来个难一点的。
二、例题讲解
(一)引出体积单位
1、师:(课件出示两个长方体)怎样比较这两个长方体的体积大小呢?(教师同时拿着两个长方 体让学生看看)
(学生猜想:哪个长方体体积大。)
2、师:如果老师给大家数据,你能猜出哪个长方体的体积大吗?(在左边的长方体出现:45,在右边的长方体出现:40)
(预设:左的体积大些。还是不能知道它们哪个大些?)
3、师:为什么还不知道?(因为45和40都没有单位,无法比较。)
4、师:对了,你思考得真全面。所以,当要准确比较物体的大小时,要用统一的体积单位来测量。
5、回顾常用的长度单位及面 积单位
6、师:今天我们要测量一个物体的体积,我们应该用什么单位呢?(体积单位)
7、师:常用的体积单位有哪些?(生回答:立方厘米、立方分米、立方米)
师板书:立方米、立方分米、立方厘米(介绍字母表示法)
(二)认识常用的体积单位
1、师:那1 立方厘米、1立方分米、1立方米的正方体究竟有多大呢?
下面,同学们小组内学习课本38页内容,完成学习报告表(出示报告表)。
2、小组内学习并完成报告表。
3、学生汇报,并感受1cm3、1dm3、1m3的大小。
学生通过看,摸感觉1cm3、1dm3、1m3的大小,
师小结:棱长是1厘米的正方体,它的体积是1立方厘米。记作:cm3
棱长是1分米的正方体,体积是1立方分米,记作:dm3
棱长是1米的正方 体,体积是1立方米,记作:m3
三、联系生活,学以致用
1、立方厘米,立方分米,立方米这三种体积单位的大小相差很大,所以在生活中我们测量物体的体积时,要懂得选择正确的体积单位。
师:测量录音机应该用哪个 体积单位较合适?(游泳池、大货车、钢笔……)
师小结:一般情况下,表示体积小的物体时,使用立方厘米作单位,表示体积大的物体时,用立方米作单位。
2、课本39页“练一练”第1、2题,第40页第6题。
点击查看更多:小学数学教案
提醒:
最新小升初政策、最新奥数试题、最全小学语文知识点
尽在“”微信公众号
北师大版五年级下册《体积单位的换算》数学教案
为了使每堂课能够顺利的进展,老师需要做好课前准备,编写一份教案。从而在之后的上课教学中井然有序的进行,那吗编写一份教案应该注意那些问题呢?以下是小编为大家精心整理的“北师大版五年级下册《体积单位的换算》数学教案”,仅供参考,大家一起来看看吧。
北师大版五年级下册《体积单位的换算》数学教案
教学目标:
1、知识目标:结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。
2、能力目标:在观察、操作中,发展空间观念。
3、情感目标:学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。
教学重点:观察、操作中会进行体积、容积单位之间的换算。
教学难点:观察、操作中会进行体积、容积单位之间的换算。
教学准备:多媒体课件,教学模具
教学过程:
一、复习导入:
1、同学们,上节课我们学习了几个体积单位,常见的体积单位有哪些?
2、很好,那我们以前还学过关于长度和面积的单位,谁来说下常用的长度单位有那些?常用的面积单位有那些?
3、那谁能说一下长度单位、面积单位它们之间的进率是多少?(指名回答)体积单位间的进率又是多少呢,这节课我们就一起研究探讨这个问题。
4、出示学习目标:
二、研究新知:
1、猜一猜:1立方分米=?立方厘米,你认为可能是多少?(可能有认为是100,也有可能认为是1000。)
2、你有办法证明你的猜想或推论吗?
(学生独立或小组讨论推导,自主探究相邻体积单位之间的进率,教师巡视,加以指导)
3、全班交流:谁再来说说,1立方分米=?立方厘米(估计三种说法)
①棱长1分米的正方体体积是1立方分米;棱长10厘米的正方体体积是1000立方厘米,而棱长1分米的正方体和棱长10厘米的正方体体积相等,所以1立方分米=1000立方厘米。
②在棱长1分米的正方体中摆棱长1厘米的正方体,一排能摆10个,能摆10排,摆10层,一共能摆10×10×10=1000个,所以1立方分米=1000立方厘米。
(电脑展示这种思考,然后请每个学生都把推导过程相互说一说。)
③1立方分米=1升,1立方厘米=1毫升,而1升=1000毫升,所以1立方分米=1000立方厘米。
③口头回答:3立方分米=?立方厘米,5000立方厘米=?立方分米
4、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?
①学生独立思考,并组织语言准备交流,然后请1-2名学生说说推导过程。
(板书:1立方米=1000立方分米)
②口头回答:
8立方米=( )立方分米 96立方厘米=( )立方分米
85毫升=( )升 5.36升=( )毫升
5、补全表格,继续填写:
单位相邻两个单位之间的进率长度米、()、厘米10面积平方米、()、平方厘米100体积立方米、()、立方厘米1000(通过汇报,使学生了解长度、面积、体积单位之间的联系和区别。)
三、巩固练习
1、学生独立完成书上45页练一练第3题。(选取其中的几道题让学生说说思考的方法与过程。)
2、a、课本45页练一练第2题(引导学生通过计算,体会第三种包装比较合算。如果学生有其他的比较方式,只要合理,教师应给予肯定和鼓励。)
b、课本45页练一练第3题及第4题
对于第5题启发学生根据生活经验,对电视机包装箱上“60×50×40”这个数据信息进行科学地理解,然后再让学生完成此题。
四、总结
1、这节课我们学到了什么?
2、单位换算的时候要注意什么?
点击查看更多:小学数学教案
提醒:
最新小升初政策、最新奥数试题、最全小学语文知识点
尽在“”微信公众号
人教新课标五年级下册《分数的产生和分数的意义》数学教案
相信很多老师都希望自己的课堂上同学们能够积极的与自己互动。为此老师就需要在上课前准备好教案,以此来提高课堂的教学质量。上课才能够为同学讲更多的,更全面的知识。那么一份优秀的教案应该怎样写呢?下面是小编为大家整理的“人教新课标五年级下册《分数的产生和分数的意义》数学教案”,仅供参考,希望可以帮助到您。
小学数学五年级下册《分数的产生和分数的意义》教学设计
教学目标:
1、知道分数的产生过程,理解分数的意义及分数单位,能对具体情境中分数的意义做出解释,能有条理地运用分数的知识对生活中的问题进行分析和思考。
2、感受数学知识是在人类的生产和生活实践中产生的,培养学生学习数学的兴趣,树立学习数学的能力。
教学重点:理解分数的意义。
教学难点:对把多个物体组成的一个整体看作单位“1”的理解。
教学过程:
一、情境导入:
同学们,在正式进入课程内容学习之前,老师先请同学们看一组图片,这是(一个橙子),我们可以用自然数“1”来表示;这是(六个橙子),那怎么用自然数“1”来表示呢?(可以说是一盘橙子);那有很多橙子,数也数不清,怎么用自然数“1”来表示呢?(可以说是一堆橙子)。
小小的“1”可真是了不起,今天我们学习的知识就与“1”有着密切的联系。那现在我想把一个橙子平均分给4个同学,每人分得多少呢?(1/4)你是怎么得出来的呢?(学生回答)那现在每人分得的数量还能用整数来表示吗?(不能)在实际生活中,人们计算的时候结果往往得不到整数,这个时候就产生了分数。今天,老师就和大家一起来进一步学习分数。
二、出示学习目标:
1、了解分数的产生。
2、掌握单位“1”的含义,明确分数的意义。
3、认识分数单位,初步了解分数单位的特点。
三、引导自学,探究成果:
1、师:同学们。书中自有颜如玉,书中自有黄金屋,接下来,老师就把课堂还给大家,希望通过你们自己的努力,来发现宝贵的知识财富。请大家根据自学提纲,完成以下三个题目。
(小荷才露尖尖角,早有蜻蜓立上头!)
2、师:同学们都已经完成了自学提纲的习题,现在请同学们进行小组讨论,之后再将你们小组讨论的结果向大家汇报。
(小组合作,现在开始!)
3、师:从同学们激烈的讨论情况来看,大家一定讨论出了结果,现在就请小组同学来进行汇报。
组1成员:我们小组是这样讨论的:1、分数的产生(教材第45页):
想一想:观察这两幅图,可以发现:在实际生活中,进行测量、分物或计算时,往往不能正好得到整数的结果,这时,常用(分数)来表述的。
试一试:把一块月饼平均分给2个人,每人分得(1/2)块;把一个西红柿平均分给2个人,每人分得(1/2)个。
同学们,他填的对吗?(预设:对)你了解了分数是如何产生的了吗?你会用分数来表示一个不是整数的数的结果了吗?(预设:会)那老师要考考大家,把一个西瓜平均分给5个人,每人分得(1/5块),把一个蛋糕平均分给8个人,每人分得(1/8块)。看来同学们自学能力很强,希望同学们再接再厉。
组2成员:我们小组是这样讨论的:2、单位“1”和分数的意义(教材第46页):想一想:先感知一个物体和一些物体的1/4是多少,如下图:
试一试:一个物体、一个计量单位或是一些物体等都可以看作一个(整体),这个(整体)可以用自然数(1)来表示,通常把它叫做(单位“1”)。把这个(整体)平均分成若干份,这样的一份或几份都可以用(分数)来表示。
同学们,我们一起来回顾一下,我们刚把什么看成一个整体了?(一个圆、一个正方形和一条线段);我们刚把哪些物体看成是一个整体了?(六个橙子和八个面包)。一个物体、一些物体都可以看作是一个整体,这样的一个整体我们可以用自然数“1”来表示,我们通常把它叫做单位“1”。我们一起来读一遍单位“1”的概念:
一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。
在生活中,你还能把哪些看成是单位“1”?(学生回答)
任何一个单位“1”的量,只要平均分了,就可以得到分数,那谁能总结一下,什么叫分数?
(把单位“1”平均分成若干份,表示1份或几份的数就叫做分数。)
同学们,刚才我们已经掌握了单位“1”和分数的概念,那你知道分数有什么意义吗?它代表什么?例如,把一条线段平均分成4份,其中的一份就是1/4。老师这里有几个分数,你能说出它的意义吗?
组3成员:我们小组是这样讨论的:3、分数单位的意义(教材第46页):
想一想:把单位“1”平均分成若干份,表示其中一份的数就叫做(分数单位)。
试一试:把10厘米平均分成10份,1厘米处就是(1/10),2厘米处就是(2/10),8厘米处就是(8/10)。它们的分数单位是(1/10)。
同学们,我们前面学过,计算长度时,我们用(长度单位),计算面积时,可以用(面积单位),那么其实分数也有单位。例如一把10厘米的尺子,每一个数字对应的就是一个分数,那根据“分数单位”的定义你能找出它们的分数单位是几吗?(学生回答)
老师这里还有几个分数,你能说出这些分数的分数单位吗?
四、课堂小结:
通过前面学习的知识,你学会了什么?
五、巩固练习:
第一关:填一填
1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用()来表示。
2、一个物体、一些物体等都可以看作一个(),把这个整体()分成若干份,这样的一份或几份都可以用分数来表示。
3、3/4表示单位“1”()分成()份,表示其中()份的数。
4、一堆糖,平均分成2份,每份是这堆糖的();平均分成4份,3份是这堆糖的();平均分成7份,5份是这堆糖的()。
5、5/7表示把()平均分成()份,取其中的()份。
第二关:说一说
读出下面分数,并说说它们的具体含义。
第三关:做一做
用分数表示下面各图中的彩色部分。
第四关:想一想
他们吃的水果一样多吗?
沪教版五年级下册《组合体的体积》数学教案
身为一位人名教师,我们要给学生一个优质的课堂。为了不消耗上课时间,就需要有一份完整的教学计划。这样我们可以在上课时根据不同的情况做出一定的调整,你们知道那些比较有创意的教学方案吗?小编特地为您收集整理“沪教版五年级下册《组合体的体积》数学教案”,仅供您在工作和学习中参考。
沪教版五年级下册《组合体的体积》数学教案
教学目标:
1、会将组合体切割成几个长方体与正方体。
2、会计算简单组合体的体积。
教学重点和难点:
重点:将组合体切割成几个长方体与正方体并计算简单组合体的体积。
难点:合理切割,找准尺寸。
教学媒体:教学平台
课前学生准备:课堂练习本
教学过程:
课前准备:计算下列正方体、长方体的体积。
一、导入阶段:
1、介绍组合体的计量方法
(1)这个形体你能直接用公式来计算吗?
(2)介绍组合体,有几个规则形体组合在一起,我们称组合体,怎样来计算组合体的体积呢?
今天我们要继续讨论求组合体的体积。
出示课题:组合体的体积
一、中心阶段:
1. 出示例题。
下面是一个铸铁零件,算一算它的体积是多少立方厘米。(单位:厘米)
(1.先把这个组合体切割成几个基本形体,分别计算体积后再相加。
2.我们只会计算长方体、正方体的体积,因此在切割时要切割成几个长方体或正方体。)
请你用这个方法试着算一算它的体积是多少立方厘米?
方法:(1)
我把这个组合体分割成了a、b、c三块,其中a与b是相同的。长方体a的长是9厘米,宽是40厘米,高是8厘米;长方体c的长是72厘米,宽是(40-30)厘米,高是8厘米。分别计算出各长方体的体积后再相加,就是这个组合体的体积了。
解:Va=abh
=9×40×8
=360×8
=2880(立方厘米)
Vc=abh
=72×(40-30)×8
=72×10×8
=720×8
=5760(立方厘米)
Va=Vb
V组=Va+Vb+Vc
=2880+2880+5760
=5760+5760
=11520(立方厘米)
答:这个组合体的体积是11520立方厘米。
方法:(2)
我把这个组合体分割成了a、b、c三块,其中a与b是相同的。长方体a的长是9厘米,宽是30厘米,高是8厘米;长方体c的长是(72+9+9)厘米,宽是(40-30)厘米,高是8厘米。分别计算出各长方体的体积后再相加,就是这个组合体的体积了。
解:Va=abh
=9×3×8
=270×8
=2160(立方厘米)
Vc=abh
=(72+9+9)×(40-30)×8
=90×10×8
=900×8
=7200(立方厘米)
Va=Vb
V组=Va+Vb+Vc
=2160+2160+7200
=4320+7200
=11520(立方厘米)
答:这个组合体的体积是11520立方厘米。
小结:
求组合体的体积可以怎么求?
在求组合体的体积时要先把组合体切割成几个基本形体,分别计算体积后再相加。因为我们只会计算长方体、正方体的体积,因此在切割时要切割成几个长方体或正方体。注意找到正确的尺寸。
要注意什么?
合理切割,找准尺寸。
二、练习阶段:
求下面各组合体的体积:(单位:厘米)
(1)
方法:(1)
我把这个组合体分割成了(1)、(2)两块。长方体(1)的长是5厘米,宽是7厘米,高是6厘米;长方体(2)的长是(8-5)厘米,宽是7厘米,高是(6-4)厘米。分别计算出各长方体的体积后再相加,就是这个组合体的体积了。
解:V(1)=abh
=5×7×6
=35×6
=210(立方厘米)
V(2)=abh
=(8-5)×7×(6-4)
=3×7×2
=21×2
=42(立方厘米)
V组=V(1)+V(2)
=210+42
=252(立方厘米)
答:这个组合体的体积是252立方厘米。
方法:(2)
我把这个组合体分割成了(1)、(2)两块。长方体(1)的长是8厘米,宽是7厘米,高是(6-4)厘米;长方体(2)的长是5厘米,宽是7厘米,高4是厘米。分别计算出各长方体的体积后再相加,就是这个组合体的体积了。
解:V(1)=abh
=8×7×(6-4)
=56×2
=112(立方厘米)
V(2)=abh
=5×7×4
=35×4
=21×2
=140(立方厘米)
V组=V(1)+V(2)
=112+140
=252(立方厘米)
答:这个组合体的体积是252立方厘米。
(2)
方法
我把这个组合体分割成了(1)、(2)两块。长方体(1)的长是3厘米,宽是8厘米,高是3厘米;长方体(2)的长是9厘米,宽是8厘米,高3是厘米。分别计算出各长方体的体积后再相加,就是这个组合体的体积了。
解:V(1)=abh
=3×8×3
=24×3
=72(立方厘米)
V(2)=abh
=9×8×3
=72×3
=216(立方厘米)
V组=V(1)+V(2)
=72+216
=288(立方厘米)
答:这个组合体的体积是288立方厘米。
总结:
在求组合体的体积时要先把组合体切割成几个基本形体,分别计算体积后再相加。因为我们只会计算长方体、正方体的体积,因此在切割时要切割成几个长方体或正方体。注意找到正确的尺寸。
板书设计
方法一 解:Va=abh
=9×40×8
=360×8
=2880(立方厘米)
Vc=abh
=72×(40-30)×8
=72×10×8
=720×8
=5760(立方厘米)
Va=Vb
V组=Va+Vb+Vc
=2880+2880+5760
=5760+5760
=11520(立方厘米)
答:这个组合体的体积是11520立方厘米。
方法二
解:Va=abh
=9×3×8
=270×8
=2160(立方厘米)
Vc=abh
=(72+9+9)×(40-30)×8
=90×10×8
=900×8
=7200(立方厘米)
Va=Vb
V组=Va+Vb+Vc
=2160+2160+7200
=4320+7200
=11520(立方厘米)
答:这个组合体的体积是11520立方厘米。
教学反思:

