88教案网

你的位置: 教案 > 高中教案 > 导航 > 高一数学教案:《函数模型及其应用》教学设计(二)

高中函数的应用教案

发表时间:2021-08-15

高一数学教案:《函数模型及其应用》教学设计(二)。

教案课件是老师不可缺少的课件,大家应该开始写教案课件了。只有写好教案课件计划,才能够使以后的工作更有目标性!你们知道哪些教案课件的范文呢?下面是小编为大家整理的“高一数学教案:《函数模型及其应用》教学设计(二)”,希望对您的工作和生活有所帮助。

高一数学教案:《函数模型及其应用》教学设计(二)

教学目标:

1.能根据图形、表格等实际问题的情境建立数学模型,并求解;进一步了解函数模型在解决简单的实际问题中的应用,了解函数模型在社会生活中的广泛应用;

2.在解决实际问题的过程中,培养学生数学地分析问题、探索问题、解决问题的能力,培养学生的应用意识,提高学习数学的兴趣.

教学重点:

在解决以图、表等形式作为问题背景的实际问题中,读懂图表并求解.

教学难点:

对图、表的理解.

教学方法:jaB88.cOm

讲授法,尝试法.

教学过程:

一、情境创设

已知矩形的长为4,宽为3,如果长增加x,宽减少0.5x,所得新矩形的面积为S.

(1)将S表示成x的函数;

(2)求面积S的最大值,并求此时x的值.

二、学生活动

思考并完成上述问题.

三、例题解析

例1 有一块半径为R的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上,写出这个梯形周长y和腰长x间的函数关系式,并求出它的定义域.

例2 一家旅社有100间相同的客房,经过一段时间的经营实践,旅社经理发现每间客房每天的价格与住房率有如下关系:

每间客房定价

20

18

16

14

住房率

65%

75%

85%

95%

要使每天收入最高,每间客房定价为多少元?

例3 今年5月,荔枝上市.由历年的市场行情得知,从5月10日起的60天内,荔枝的市场售价与上市时间的关系大致可用如图所示的折线ABCD表示(市场售价的单位为元/500g).

请写出市场售价S(t)(元)与上市时间t(天)的函数关系式,并求出6月20日当天的荔枝市场售价.

练习:1.直角梯形OABC中,AB∥OC,AB=1,OC=BC=2,直线l:x=t截此梯形所得位于l左方图形的面积为S,则函数S=f(t)的大致图象为( )

2.一个圆柱形容器的底部直径是dcm,高是hcm,现在以vcm3/s的速度向容器内注入某种溶液,求容器内溶液的高度x(cm)与注入溶液的时间t(s)之间的函数关系式,并写出函数的定义域.

3.向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状可能是( )

4.某公司将进货单价为10元一个的商品按13元一个销售,每天可卖200个.若这种商品每涨价1元,销售量则减少26个.

(1)售价为15元时,销售利润为多少?

(2)若销售价必须为整数,要使利润最大,应如何定价?

5.根据市场调查,某商品在最近40天内的价格f(t)与时间t满足:

四、小结

利用图、表建模;分段建模.

五、作业

课本P110-10.

延伸阅读

高一数学教案:《函数模型及其应用》教学设计(三)


高一数学教案:《函数模型及其应用》教学设计(三)

教学目标:

1.学会通过数据拟合建立恰当的函数某型,并利用所得函数模型解释有关现象或对有关发展趋势进行预测;

2.通过实例了解数据拟合的方法,进一步体会函数模型的广泛应用;

3.进一步培养学生数学地分析问题、探索问题、解决问题的能力.

教学重点:

了解数据的拟合,感悟函数的应用.

教学难点:

通过数据拟合建立恰当函数模型.

教学方法:

讲授法,尝试法.

教学过程:

一、情境问题

某工厂第一季度某产品月产量分别为1万件、1.2万件、1.3万件.为了估测以后每个月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量y与月份x的关系.模拟函数可以选用二次函数或函数y=abx+c(其中a,b,c为常数).已知4月份的产量为1.36万件,问:用以上哪个函数作为模拟函数好?为什么?

二、学生活动

完成上述问题,并阅读课本第85页至第88页的内容,了解数据拟合的过程与方法.

三、数学建构

1.数据的拟合:数据拟合就是研究变量之间的关系,并给出近似的数学表达式的一种方式.

2.在处理数据拟合(预测或控制)问题时,通常需要以下几个步骤:

(1)根据原始数据,在屏幕直角坐标系中绘出散点图;

(2)通过观察散点图,画出“最贴近”的曲线,即拟合曲线;

(3)根据所学知识,设出拟合曲线的函数解析式——直线型选一次函数

y=kx+b;对称型选二次函数y=ax2+bx+c;单调型选指数型函数y=abx+c或反比例型函数y=x+a(k)+b.

(4)利用此函数解析式,根据条件对所给的问题进行预测和控制.

四、数学应用

例1 物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度为T0,经过一定时间t后的温度是T ,则T-Ta=(T0-Ta),(0.5)t/h其中Ta表示环境温度,h称为半衰期.

现有一杯用880C热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降到40℃需要20min,那么降到35℃时,需要多长时间(结果精确到0.1).

例2 在经济学中,函数f(x)的边际函数Mf(x)的定义为Mf(x)=f(x+1)-f(x),某公司每月最多生长100台报警系统装置,生产x台(xN*)的收入函数为R(x)=3000x-20x2(单位:元),其成本函数为C(x)=500x+4000(单位:元),利润是收入与成本之差.

(1)求利润函数P(x)及边际利润函数MP(x);

(2)利润函数P(x)与边际利润函数MP(x)是否有相同的最大值?

例3 (见情境问题)

五、巩固练习

1.一流的职业高尔夫选手约70杆即可打完十八洞,而初学者约160杆.初学者打高尔夫球,通常是开始时进步较快,但进步到某个程度后就不易再出现大幅进步.某球员从入门学起,他练习打高尔夫球的成绩记录如图所示:

根据图中各点,请你从下列函数中:(1)y=ax2+bx+c;(2)y=k·ax+b;(3)

(1)根据上表数据,从下列函数中选取一个描述西红柿的种植成本y与上市时间t的变化关系;

y=at+b,y=at2+bt+c,y=abt,y=alogbt

(2)利用你选取的函数,求西红柿种植成本最低时的上市时间及最低种植成本.

简答:

(1)由提供的数据描述西红柿的种植成本y与上市时间t之间的变化关系不可能是常函数,因此用y=at+b,y=abt,y=alogbt中的任一个描述时都应有a不等于0,此时这三个函数均为单调函数,这与表中所给数据不符合,所以,选取二次函数y=at2+bt+c进行描述.

(2)略.

六、要点归纳与方法小结

处理数据拟合(预测或控制)问题时的解题步骤.

七、作业

课本P104习题3.4(2)-4.

高一数学教案:《函数模型的应用举例》教学设计


高一数学教案:《函数模型的应用举例》教学设计

项目

内容

课题

函数模型的应用举例

(共2课时)

修改与创新

教学

目标

1.培养学生由实际问题转化为数学问题的建模能力,即根据实际问题进行信息综合列出函数解析式.

2.会利用函数图象性质对函数解析式进行处理得出数学结论,并根据数学结论解决实际问题.

3.通过学习函数基本模型的应用,体会实践与理论的关系,初步向学生渗透理论与实践的辩证关系.

教学重、

难点

根据实际问题分析建立数学模型和根据实际问题拟合判断数学模型,并根据数学模型解决实际问题.

教学

准备

教学过程

第1课时

函数模型的应用实例

导入新课

上一节我们学习了不同的函数模型的增长差异,这一节我们进一步讨论不同函数模型的应用.

提出问题

①我市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.

设在甲家租一张球台开展活动x小时的收费为f(x)元(15≤x≤40),在乙家租一张球台开展活动x小时的收费为g(x)元(15≤x≤40),试求f(x)和g(x).

②A、B两城相距100km,在两地之间距A城xkm处D地建一核电站给A、B两城供电,为保证城市安全.核电站距城市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A城供电量为20亿度/月,B城为10亿度/月.

把月供电总费用y表示成x的函数,并求定义域.

③分析以上实例属于那种函数模型.

讨论结果:①f(x)=5x(15≤x≤40).

g(x)=

②y=5x2+(100—x)2(10≤x≤90);

③分别属于一次函数模型、二次函数模型、分段函数模型.

例1一辆汽车在某段路程中的行驶速率与时间的关系如图所示.

(1)求图3-2-2-1中阴影部分的面积,并说明所求面积的实际含义;

(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数skm与时间th的函数解析式,并作出相应的图象.

图3-2-2-1

活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:

图中横轴表示时间,纵轴表示速度,面积为路程;由于每个时间段速度不断变化,汽车里程表读数skm与时间th的函数为分段函数.

解:(1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360.

阴影部分的面积表示汽车在这5小时内行驶的路程为360km.

(2)根据图,有

这个函数的图象如图3-2-2-2所示.

图3-2-2-2

变式训练

2007深圳高三模拟,理19电信局为了满足客户不同需要,设有A、B两种优惠方案,这两种方案应付话费(元)与通话时间(分钟)之间关系如下图(图3-2-2-3)所示(其中MN∥CD).

(1)分别求出方案A、B应付话费(元)与通话时间x(分钟)的函数表达式f(x)和g(x);

(2)假如你是一位电信局推销人员,你是如何帮助客户选择A、B两种优惠方案?并说明理由.

图3-2-2-3

解:(1)先列出两种优惠方案所对应的函数解析式:

(2)当f(x)=g(x)时,x-10=50,

∴x=200.∴当客户通话时间为200分钟时,两种方案均可;

当客户通话时间为0≤x<200分钟,g(x)>f(x),故选择方案A;

当客户通话时间为x>200分钟时,g(x)点评:在解决实际问题过程中,函数图象能够发挥很好的作用,因此,我们应当注意提高读图的能力.另外,本例题用到了分段函数,分段函数是刻画现实问题的重要模型.

例2人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766~1834)就提出了自然状态下的人口增长模型:

y=y0ert,

其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.

下表是1950~1959年我国的人口数据资料:

年份

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

人数/万人

55196

56300

57482

58796

60266

61456

62828

64563

65994

67207

(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;

(2)如果按表的增长趋势,大约在哪一年我国的人口达到13亿?

解:(1)设1951~1959年的人口增长率分别为r1,r2,r3,…,r9.

由55196(1+r1)=56300,

可得1951年的人口增长率为r1≈0.0200.

同理,可得r2≈0.0210,r3≈0.0229,r4≈0.0250,r5≈0.0197,r6≈0.0223,r7≈0.0276,

r8≈0.0222,r9≈0.0184.

于是,1950~1959年期间,我国人口的年平均增长率为

r=(r1+r2+…+r9)÷9≈0.0221.

令y0=55196,则我国在1951~1959年期间的人口增长模型为

y=55196e0.0221t,t∈N.

根据表中的数据作出散点图,并作出函数y=55196e0.0221t(t∈N)的图象(图3-2-2-4).

图3-2-2-4

由图可以看出,所得模型与1950~1959年的实际人口数据基本吻合.

(2)将y=130000代入y=55196e0.0221t,

由计算器可得t≈38.76.

所以,如果按表的增长趋势,那么大约在1950年后的第39年(即1989年)我国的人口就已达到13亿.由此可以看到,如果不实行计划生育,而是让人口自然增长,今天我国将面临难以承受的人口压力.

变式训练

一种放射性元素,最初的质量为500g,按每年10%衰减.

(1)求t年后,这种放射性元素质量ω的表达式;

(2)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需的时间叫做半衰期).(精确到0.1.已知lg2=0.3010,lg3=0.4771)

解:(1)最初的质量为500g.

经过1年后,ω=500(1-10%)=500×0.91;

经过2年后,ω=500×0.9(1-10%)=500×0.92;

由此推知,t年后,ω=500×0.9t.

(2)解方程500×0.9t=250,则0.9t=0.5,

所以

即这种放射性元素的半衰期约为6.6年.

知能训练

某电器公司生产A型电脑.1993年这种电脑每台平均生产成本为5000元,并以纯利润20%确定出厂价.从1994年开始,公司通过更新设备和加强管理,使生产成本逐年降低.到1997年,尽管A型电脑出厂价仅是1993年出厂价的80%,但却实现了50%纯利润的高效益.

(1)求1997年每台A型电脑的生产成本;

(2)以1993年的生产成本为基数,求1993年至1997年生产成本平均每年降低的百分数.(精确到0.01,以下数据可供参考:=2.236,=2.449)

活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导.

出厂价=单位商品的成本+单位商品的利润.

解:(1)设1997年每台电脑的生产成本为x元,依题意,得

x(1+50%)=5000×(1+20%)×80%,解得x=3200(元).

(2)设1993年至1997年间每年平均生产成本降低的百分率为y,则依题意,得5000(1-y)4=3200,

即1997年每台电脑的生产成本为3200元,1993年至1997年生产成本平均每年降低11%.

课堂小结

本节重点学习了函数模型的实例应用,包括一次函数模型、二次函数模型、分段函数模型等;另外还应关注函数方程不等式之间的相互关系.

活动:学生先思考或讨论,再回答.教师提示、点拨,及时评价.

引导方法:从基本知识和基本技能两方面来总结.

作业

课本P107习题3.2A组5、6.

板书设计

教学反思

函数模型及其应用


一名爱岗敬业的教师要充分考虑学生的理解性,作为高中教师就要好好准备好一份教案课件。教案可以让学生能够在课堂积极的参与互动,帮助高中教师掌握上课时的教学节奏。高中教案的内容具体要怎样写呢?为满足您的需求,小编特地编辑了“函数模型及其应用”,希望对您的工作和生活有所帮助。

函数模型及其应用(1)
【本课重点】:能根据实际问题建立适当的数学模型,重点掌握一次、二次、反比例以及分段函数模型;体会数学建模的基本思想
【预习导引】:
1、某地高山上温度从山脚起每升高100米降低0.7℃。已知山顶的温度是14.1℃,山脚的温度是26℃。则此山高米。
2、某计算机集团公司生产某种型号计算机的固定成本为200万元,生产每台计算机的可变成本为3000元,每台计算机的售价为5000元,则生产台计算机的总成本C=
____________(万元),单位成本P=(万元),销售收入R=(万元),利润L=(万元),若要创利不低于100万元,则至少应生产这种计算机______(台)。
3、某汽车运输公司购买了豪华型大客车投入客运,据市场分析,每辆客车的总利润y万元与营运年数x(x)的函数关系式为y=-x2+12x-25,则每辆客车营运年使其营运年平均利润最大。
【典例练讲】:
例1、某车站有快、慢两种车,始发站距终点站7.2km,慢车到终点需要16min,快车比
慢车晚发3min,且行使10min后到达终点站。试分别写出两车所行路程关于慢车行使时间的函数关系式。两车在何时相遇?相遇时距始发站多远?

例2、某地上年度电价为元,年用电量为1亿度,本年度计划将电价调至0.55—0.75元之间,经测算,若电价调至元,则本年度新增用电量亿度与(x-0.4)成反比例,又当x=0.65元时,y=0.8。
(1)求y与x之间的函数关系式。
(2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)]

例3、在经济学中,函数的边际函数定义为,某公司
每月最多生产100台报警系统装置,生产台的收入函数为
(单位:元),其成本函数为(单位:元),利润是收入与成本之差。
(1)求利润函数及边际利润函数;
(2)利润函数与边际利润函数是否具有相同的最大值?

例4、经市场调查,某商品在过去100天内的销售和价格均为时间t(天)的函数,且销售量近似地满足g(t)=。前40天价格为,后60天价格为。试写出该种商品的日销售额S与时间t的函数关系,并求最大销售额。

【课后检测】:
1、李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了一段时间,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校,在课堂上,李老师请学生画出自行车行进路程S(km)与行驶时间t(h)的函数图象的示意图,你认为正确的是()
(A)(B)(C)(D)
2、将进货单价为80元的商品400个,按90元每个售出能全部售出(未售出商品可以原价退货)。已知这种商品每个涨价一元,其销售量就减少20个,为了获得最大利润,售价应定为()
A、每个110元B、每个105元C、每个100元D、每个95元
3、某城市出租汽车统一价格,凡上车起步价为6元,行程不超过2km者均按此价收费,行程超过2km,按1.8元/km收费。另外,遇到塞车或等候时,汽车虽没有行驶,仍按6分钟折算1km计算,陈先生坐了一趟这种出租车,车费17元,车上仪表显示等候时间为11分30秒,那么陈先生此趟行程介于()
A、5~7kmB、9~11kmC、7~9kmD、3~5km
4、假设某做广告的商品的销售收入R与广告费A之间的关系满足(为正常数),那么广告效应为,则当广告费A=______时,取得最大广告效应。
5、某列火车从北京西站开往石家庄,全程277km,火车10分钟行驶13km后,以120km/h匀速行驶,试写出火车行驶路程S(km)与匀速行驶的时间t(h)之间的函数关系式,并求出火车离开北京2h内行驶的路程。
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
6、某商场在促销期间规定:商场内所有商品按标价的80%出售,当顾客在商场内消费一定金额后,按以下方案获得相应金额的奖券:
消费金额(元)的范围[200,400)[400,500)[500,700)[700,900)...
获得奖券的金额(元)3060100130...
根据上述促销方法,顾客在该商场购物可以获得双重优惠,例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×0.2+30=110元设购买商品得到的优惠率=。试问
(1)购买一件标价为1000元的商品,优惠率是多少?
(2)对于标价在[500,800]内的商品,顾客购买标价为多少元的商品,可得到不小于的优惠率?
_____________________________________________________________________________
_____________________________________________________________________________
_____________________________________________________________________________
7、电信局为了方便客户不同需要,设有两种优惠方案,这两种方案应付电话费(元)与通话时间(分钟)之间的关系如图所示实线部分(注:图中)试问:
(1)若通话时间为2小时,按方案各付话费多少元?
(2)方案从500分钟后,每分钟收费多少元?
(3)通话时间在什么范围内,方案才会比方案优惠?
_____________________________________________________________________________

高一数学函数模型的应用实例44


3.2.2函数模型的应用实例(Ⅱ)
一、三维目标
1.知识与技能能够利用给定的函数模型或建立确定性函数模型解决实际问题.
2.过程与方法进一步感受运用函数概念建立函数模型的过程和方法,对给定的函数模型进行简单的分析评价.
二、教学重点
重点利用给定的函数模型或建立确定性质函数模型解决实际问题.
难点将实际问题转化为数学模型,并对给定的函数模型进行简单的分析评价.
三、学法与教学用具
1.学法:自主学习和尝试,互动式讨论.
2.教学用具:多媒体
四、教学设想
(一)创设情景,揭示课题.
现实生活中有些实际问题所涉及的数学模型是确定的,但需我们利用问题中的数据及其蕴含的关系来建立.对于已给定数学模型的问题,我们要对所确定的数学模型进行分析评价,验证数学模型的与所提供的数据的吻合程度.
(二)实例尝试,探求新知
例1.一辆汽车在某段路程中的行驶速度与时间的关系如图所示.
1)写出速度关于时间的函数解析式;
2)写出汽车行驶路程关于时间的函数关系式,并作图象;
3)求图中阴影部分的面积,并说明所求面积的实际含义;
4)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立汽车行驶这段路程时汽车里程表读数与时间的函数解析式,并作出相应的图象.
本例所涉及的数学模型是确定的,需要利用问题中的数据及其蕴含的关系建立数学模型,此例分段函数模型刻画实际问题.
教师要引导学生从条块图象的独立性思考问题,把握函数模型的特征.
注意培养学生的读图能力,让学生懂得图象是函数对应关系的一种重要表现形式.
例2.人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798,英国经济家马尔萨斯就提出了自然状态下的人口增长模型:
其中表示经过的时间,表示时的人口数,表示人口的年均增长率.
下表是1950~1959年我国的人口数据资料:(单位:万人)
年份19501951195219531954
人数5519656300574825879660266
年份19551956195719581959
人数
1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;
2)如果按表中的增长趋势,大约在哪一年我国的人口将达到13亿?
探索以下问题:
1)本例中所涉及的数量有哪些?
2)描述所涉及数量之间关系的函数模型是否是确定的,确定这种模型需要几个因素?
3)根据表中数据如何确定函数模型?
4)对于所确定的函数模型怎样进行检验,根据检验结果对函数模型又应做出如何评价?
如何根据确定的函数模型具体预测我国某个时间的人口数,用的是何种计算方法?
本例的题型是利用给定的指数函数模型解决实际问题的一类问题,引导学生认识到确定具体函数模型的关键是确定两个参数与.
完成数学模型的确定之后,因为计算较繁,可以借助计算器.
在验证问题中的数据与所确定的数学模型是否吻合时,可引导学生利用计算器或计算机作出所确定函数的图象,并由表中数据作出散点图,通过比较来确定函数模型与人口数据的吻合程度,并使学生认识到表格也是描述函数关系的一种形式.
引导学生明确利用指数函数模型对人口增长情况的预测,实质上是通过求一个对数值来确定的近似值.
课堂练习:某工厂今年1月、2月、3月生产某种产品的数量分别为1万件,1.2万件,1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据用一个函数模拟该产品的月产量与月份的关系,模拟函数可以选用二次函数或函数.已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.
探索以下问题:
1)本例给出两种函数模型,如何根据已知数据确定它们?
2)如何对所确定的函数模型进行评价?
本例是不同函数的比较问题,要引导学生利用待定系数法确定具体的函数模型.
引导学生认识到比较函数模型优劣的标准是4月份产量的吻合程度,这也是对函数模评价的依据.
本例渗透了数学思想方法,要培养学生有意识地运用.
三.归纳小结,发展思维.
利用给定函数模型或建立确定的函数模型解决实际问题的方法;
1)根据题意选用恰当的函数模型来描述所涉及的数量之间的关系;
2)利用待定系数法,确定具体函数模型;
3)对所确定的函数模型进行适当的评价;
4)根据实际问题对模型进行适当的修正.
从以上各例体会到:根据收集到的数据,作出散点图,然后通过观察图象,判断问题适用的函数模型,借助计算器或计算机数据处理功能,利用待定系数法得出具体的函数解析式,再利用得到的函数模型解决相应的问题,这是函数应用的一个基本过程.
图象、表格和解析式都可能是函数对应关系的表现形式.在实际应用时,经常需要将函数对应关系的一种形式向另一种转化.