88教案网

你的位置: 教案 > 初中教案 > 导航 > 中考数学三角形二复习

小学三角形教案

发表时间:2021-01-25

中考数学三角形二复习。

初三第一轮复习第26课时:三角形(二)
【知识梳理】
1.全等三角形:、的三角形叫全等三角形.
2.三角形全等的判定方法有:、、、.直角三角形全等的判定除以上的方法还有.
3.全等三角形的性质:全等三角形,.
4.全等三角形的面积、周长、对应高、、相等.
【课前预习】
1、如图,四边形ABCD是平行四边形,E是CD延长线上的任意一点,连接BE交AD于点O,如果△ABO≌△DEO,则需要添加的条件是(图中不能添加任何点或线)
2、如图,已知∠1=∠2=90°,AD=AE,那么图中有对全等三角形.
3、如图,AC是正方形ABCD的对角线,AE平分∠BAC,EF⊥AC交AC于点F.图中与线段BE相等的多有线段是.
4、如图所示.△ABC中,BD为∠ABC的平分线,DE⊥AB于E,且DE=2㎝,
AB=9㎝,BC=6㎝,则△ABC的面积为.
5、如图所示.P是∠AOB的平分线上的一点,PC⊥AO于C,PD⊥OB于D,
写出图中一组相等的线段.
【解题指导】
例1如图11-113所示,BD,CE分别是△ABC的边AC和AB上的高,
点P在BD的延线上,BP=AC,点Q在CE上,CQ=AB.
(1)求证AP=AQ;
(2)求证AP⊥AQ.
例2如图所示,已知四边形纸片ABCD中,AD∥BC,将∠ABC,∠DAB分别对折,如果两条折痕恰好相交于DC上一点E,点C,D都落在AB边上的F处,你能获得哪些结论?
例3如图所示,在△ABD和△ACE中,有下列四个论断:①AB=AC;②AD=AE;③∠B=∠C;④BD=CE.请以其中三个论断作为条件.余下一个作为结论,写出一个正确的数学命题(用序号的形式写出):.
例4两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B、C、E在同一条直线上,连结DC.
(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);
(2)证明:.

【巩固练习】
1、如图,在边长为4的等边三角形ABC中,AD是BC边上的高,点E、F是AD上的两点,则图中阴影部分的面积是.
2、如图,点B、F、C、E在同一条直线上,点A、D在直线BE的两侧,AB∥DE,BF=CE,请添加一个适当的条件,使得AC=DF.
3、已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出个.
4、如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=.

5、已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.
求证:(1)△BFC≌△DFC;(2)AD=DE

【课后作业】班级姓名
一、必做题:
1.如图1所示,在△ABC中,CD是∠ACB的平分线,∠A=80°∠ACB=60°,那么∠BDC等于°
图1图2图3图4
2.如图2所示,∠E=∠F=90°,∠B=∠C,AE=AF,则下列结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△CAN≌△BAM.其中正确的有.
3.已知如图3所示的两个三角形全等,则∠a的度数是°
4.如图4所示,在等腰梯形ABCD中,AB=DC,AC,BD交于点O,则图中全等三角形共有对.
5.如图5所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AD=3,则
点D到BC的距离是.
图5图6图7图8
6.如图6所示,尺规作图作∠AOB的平分线的方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP.连接CP,DP,由作法得△OCP≌△ODP的根据是.
7.如图7所示,已知CD=AB,若运用“SAS”判定△ADC≌△CBA,从图中可以得到的条件是,需要补充的直接条件是.
8.如图8所示,已知BF⊥AC,DE⊥AC,垂足分别为F,E,且BF=DE,又AE=CF,则AB与CD的位置关系是.
9.如图所示,已知点B,E,C,F在同一条直线上,AB=DE,∠A=∠D,AC∥DF.
(1)求证△ABC≌△DEF;(2)求证BE=CF.

10.如图所示,在△ABC中,∠ACB=90°,AC=BC.CE⊥BE,CE与AB相交于点F,AD⊥CF于点D,且AD平分∠FAC.请写出图中的两对全等三角形,并选择其中一对加以证明.

二、选做题
11.如图9所示,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E,F分别是CD,AD上的点,且CE=AF如果∠AED=62°,那么∠DBF等于()
12.如图10,Rt△ABC中,∠C=90°,∠BAC=60°,AC=2.按以下步骤作图:
①以A为圆心,以小于AC长为半径画弧,分别交AC,AB于点E,D;②分别以D,E为圆心,以大于DE长为半径画弧,两弧相交于点P;③连接AP交BC于点F.那么:
(1)AB的长等于;(2)∠CAF=.
13.如图11所示,DA⊥AB,EA⊥AC,AB=AD,AC=AE,BE和CD相交于O,AB和CD相交于P,则∠DOE的度数是.
图9图10图11
14.如图所示.在正方形ABCD中,AC为对角线,E为AC上一点,连接EB,ED.
(1)求证△BEC≌△DEC;
(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.

15.(1)如图所示,在正方形ABCD中,M是BC边(不含端点B,C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连接ME.在正方形ABCD中,∠B=∠BCD=90°∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB.下面请你完成余下的证明过程.(在同一三角形中,等边对等角)

(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图所示),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.

(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X”,请你作出猜想:当∠AMN=时,结论AM=MN仍然成立.(直接写出答案,不需要证明)jab88.CoM

相关知识

中考数学特殊三角形(2)复习教案


作为老师的任务写教案课件是少不了的,大家在用心的考虑自己的教案课件。只有规划好了教案课件新的工作计划,才能促进我们的工作进一步发展!你们会写多少教案课件范文呢?为了让您在使用时更加简单方便,下面是小编整理的“中考数学特殊三角形(2)复习教案”,欢迎您参考,希望对您有所助益!

教学说明:本单元的热点是等腰三角形的有关概念、性质和判定;等边三角形的有关概念、性质和判定;勾股定理及其逆定理及相关的新颖题。

教学过程:

一.典型例题:

例1.已知:如图,△ABC为等边三角形,延长BC到D,延长BA到E,使AE=BD,连结CE、DE,求证:EC=ED

例2.如图,已知△ABC中,∠ACB=90°,以△ABC的各边为边在△ABC外作三个正方形,S1、S2、S3分别表示这三个正方形的面积,S1=81,S3=225,则S2=

例3.如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c,图(2)是以c为直角边的等腰直角三角形。请你开动脑筋,将它们拼成一个能证明勾股定理的图形。

(1)画出拼成的这个图形的示意图,写出它是什么图形;

(2)用这个图形证明色股定理;

(3)假设图(1)中的直角三角形有若干个,你能运用图(1)中的所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图,并能简单说明理由。

例4.在劳技课上,老师请同学们在一张长为17cm、宽为16cm的长方形纸板上,剪下一个腰长为10cm的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边上)。请你帮助同学们计算剪下的等腰三角形的面积。

例5.四年一度的国际数学家大会于2002年8月在北京召开,我校的孙海洋、陈晓莹两同学有幸参加了此次盛会。大会的会徽如图(1),它是由四个相同的直角三角形与中间一个小正方形拼成的一个大正方形。

(1)若大正方形的面积是13,每个直角三角形两直角边的和为5,求中间小正方形的面积。

(2)现有一张长为6.5cm,宽为2cm的纸片,如图(2),请你将它分割成6块,再拼合成一个正方形。(要求:先在图(2)中画出分割线,再画出拼成的正方形并表明相应的数据)

例6.设△ABC的三边分别为a、b、c,a和b是方程x2-(c+2)x+2(c+1)=0的两个实数根。

(1)试判断△ABC是否为直角三角形,并说明理由;

(2)若△ABC为等腰三角形,求a、b、c的值。

三、同步练习:

1.如图,在正方形ABCD外作一正三角形ABE。BD、EC相交于点F,则∠AFD的大小是()

A.60°B50°C45°D75°

2.已知点A为直线MN外一点,点B、C分别为直线MN上两点,且AC=5,AB=13,BC=12。若点E也在直线MN上,且AE=7,则BE=

A.B.C.D.

3.底角为15°,腰长为a的等腰三角形的面积是。

4.如图,△ABC是等边三角形,AD是中线,△ADE是等边三角形,求证:BD=BE

5.如图,∠ACB=3∠B,∠1=∠2,CD⊥AD于D,求证:AB-AC=2CD

6.将正方形ABCD绕点A按逆时针方向旋转n(0n90°),得正方形AB2C3D4,B1C1交CD于点E。

(1)求证:B1E=DE

(2)简要说明四边形AB1ED存在一个内切圆;

(3)若n=30°,AB=,求四边形AB1ED内切圆的半径r。

教后:

中考数学解直角三角形复习


每个老师需要在上课前弄好自己的教案课件,大家在用心的考虑自己的教案课件。教案课件工作计划写好了之后,这样接下来工作才会更上一层楼!有没有好的范文是适合教案课件?小编特地为大家精心收集和整理了“中考数学解直角三角形复习”,仅供您在工作和学习中参考。

初三第一轮复习第34课时:解直角三角形

【知识梳理】

1.解直角三角形的依据(1)角的关系:两个锐角互余;(2)边的关系:勾股定理;(3)边角关系:锐角三角函数

2.解直角三角形的基本类型及解法:(1)已知斜边和一个锐角解直角三角形;(2)已知一条直角边和一个锐角解直角三角形;(3)已知两边解直角三角形.

3.解直角三角形的应用:关键是把实际问题转化为数学问题来解决

【课前预习】

1、在Rt△ABC中,∠C=90°,根据已知量,填出下列表中的未知量:

abc∠A∠B

630°

1045°

2、如图所示,在△ABC中,∠A=30°,,AC=,则AB=.

变式:若已知AB,如何求AC?

3、在离大楼15m的地面上看大楼顶部仰角65°,则大楼高约m.

(精确到1m,)

4、如图,铁路路基横断面为一个等腰梯形,若腰的坡度为1:,顶宽为3米,路基高为4米,

则坡角=°,腰AD=,路基的下底CD=.

5、如图所示,王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地m.

【解题指导】

例1如图所示,在Rt△ABC中,∠C=90°,AD=2AC=2BD,且DE⊥AB.

(1)求tanB;(2)若DE=1,求CE的长.

例2如图34-4所示,某居民小区有一朝向为正南方向的居民楼,该居民楼的一楼是高6m的小区超市,超市以上是居民住房,在该楼的前面15m处要盖一栋高20m的新楼.当冬季正午的阳光与水平线的夹角为32°时.

(1)问超市以上的居民住房采光是否有影响,为什么?

(2)若新楼的影子刚好部落在居民楼上,则两楼应相距多少米?

(结果保留整数,参考数据:)

例3某校初三课外活动小组,在测量树高的一次活动中,如图34-6所示,测得树底部中心A到斜坡底C的水平距离为8.8m.在阳光下某一时刻测得1m的标杆影长为0.8m,树影落在斜坡上的部分CD=3.2m.已知斜坡CD的坡比,求树高AB.(结果保留整数,参考数据)

例4一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.

【巩固练习】

1、某坡面的坡度为1:,则坡角是_______度.

2、已知一斜坡的坡度为1:4,水平距离为20m,则该斜坡的垂直高度为.

3、河堤的横断面如图1所示,堤高BC是5m,迎水斜坡AB长13m,那么斜坡AB的坡度等于.

4、菱形在平面直角坐标系中的位置如图2所示,,则点的坐标为.

5、如图3,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为.

6、如图,一巡逻艇航行至海面处时,得知其正北方向上处一渔船发生故障.已知港口处在处的北偏西方向上,距处20海里;处在A处的北偏东方向上,求之间的距离(结果精确到0.1海里)

【课后作业】班级姓名

一、必做题:

1、如图4,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为cm.

2、某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为米,则这个坡面的坡度为__________.

3、已知如图5,在△ABC中,∠A=30°,tanB=,BC=,则AB的长为_____.

4、如图6,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△,使点与C重合,连结,则的值为.

5、如图7所示,在一次夏令营活动中,小亮从位于A点的营地出发,沿北偏东60°方向走了5km到达B地,然后再沿北偏西30°方向走了若干千米到达C地,测得A地在C地南偏西30°方向,则A、C两地的距离为()

(A)(B)(C)(D)

6、如图8,小明要测量河内岛B到河边公路l的距离,在A测得,在C测得,米,则岛B到公路l的距离为()米.

(A)25(B)(C)(D)

7、如图9所示,一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西10°的方向行驶40海里到达C地,则A、C两地相距().

(A)30海里(B)40海里(C)50海里(D)60海里

8、如图10,是一水库大坝横断面的一部分,坝高h=6m,迎水斜坡AB=10m,斜坡的坡角为α,则tanα的值为()

(A)(B)(C)(D)

9、如图11,A,B是公路l(l为东西走向)两旁的两个村庄,A村到公路l的距离AC=1km,B村到公路l的距离BD=2km,B村在A村的南偏东45°方向上.

(1)求出A,B两村之间的距离;

(2)为方便村民出行,计划在公路边新建一个公共汽车站P,要求该站到两村的距离相等,请用尺规在图中作出点P的位置(保留清晰的作图痕迹,并简要写明作法).

10、如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD=24m,OE⊥CD于点E.已测得sin∠DOE=.(1)求半径OD;(2)根据需要,水面要以每小时0.5m的速度下降,则经过多长时间才能将水排干?

11、如图所示,A、B两城市相距100km.现计划在这两座城市间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内.请问:计划修筑的这条高速公路会不会穿越保护区?为什么?(参考数据:,)

12、如图,斜坡AC的坡度(坡比)为1:,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.

二、选做题:

13、如图,某货船以每小时20海里的速度将一批重要物资由A处运往正西方向的B处,经过16小时的航行到达.此时,接到气象部门的通知,一台风中心正以40海里每小时的速度由A向北偏西60o方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.⑴B处是否会受到台风的影响?请说明理由.⑵为避免受到台风的影响,该船应在到达后多少小时内卸完货物?

14、如图所示,在Rt△ABC中,∠ACB=90°,半径为1的圆A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与线段BC的延长线交于点P.

(1)当∠B=30°时,连接AP,若△AEP与△BDP相似,求CE的长;

(2)若CE=2,BD=BC,求∠BPD的正切值;

(3)若tan∠BPD=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.

相似三角形(2)中考复习教案


作为老师的任务写教案课件是少不了的,大家正在计划自己的教案课件了。各行各业都在开始准备新的教案课件工作计划了,才能更好的在接下来的工作轻装上阵!你们清楚教案课件的范文有哪些呢?以下是小编为大家收集的“相似三角形(2)中考复习教案”仅供参考,希望能为您提供参考!

教学重点:注意数形结合、分类讨论以及转化的思考方法。

教学过程:例题分析

例1.如图,将两块完全相同的等腰直角三角形摆放成如图所示的样子,假设图形中的所有点、线都在同一平面内,回答下列问题:

(1)图中共有多少个三角形?把它们一一写出来;

(2)图中有相似(不包括全等)三角形吗?如果有,把它们一一写出来。

例2.如图,等腰梯形ABCD中,AD∥BC,AD=3cm,BC=7cm,∠B=60°,P为下底BC上一点(不与B、C重合),连结AP,过P点作PE交DC于E,使得∠APE=∠B(1)求证:△ABP∽△PCE;(2)求等腰梯形的腰AB的长;

(3)在底边BC上是否存在一点P,使得DE:EC=5:3?如果存在,求BP的长;如果不存在,请说明理由.

例3.已知:如图,BC为半圆O的直径,AD⊥BC,垂足为D,过点B作弦BF交AD于点E,交半圆O于点F,弦AC与BF交于点H,且AE=BE.

求证:(1)︵AB=︵AF;

(2)AHBC=2ABBE.

例4.如图矩形ABCD的边长AB=2,AD=3,点D在直线上,AB在x轴上。

(1)求矩形ABCD四个顶点的坐标;

(2)设直线与y轴的交点为E,M(x,0)为x轴上的一点(x>0),若ΔEOM∽ΔCBM,求点M的坐标;

(3)设点P沿y轴在原点O(0,0),与H(0,-6)点之间移动,问过P、A、B三点的抛物线的顶点是否在此矩形的内部,请说名理由。

例5.已知如图,ΔABC的内接矩形EFGH的一边在BC上,高AD=16,BC=48。

(1)若EF:FH=5:9,求矩形EFGH的面积;

(2)设EH=x,矩形EFGH的面积为y,写出y与x的函数关系式;

(3)按题设要求得到的无数多个矩形中,是否能够找到两个不同的矩形,使它们的面积之和等于ΔABC的面积?若能找到,请你求出它们的边长EH,若找不到,请你说明理由。

例6.如图(1),AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC相交于E,EF⊥BD,垂足为F,我们可以证明成立(不要求证明),若将图中的垂直改为斜交,如图(2),AB∥CD,AD,BC,相交于点E,过E作EF∥AB,交BD于F,则:

(1)还成立吗?如果成立,请给出证明;如果不成立,请说明理由;

(2)若AB、CD是方程的两根,设EF为y,求y与m之间的关系式及m的取值范围。

(3)请给出,,间的关系式,并给出证明。

例7.如图1,已知AB是⊙O的直径,AB垂直于弦CD,垂足为M,弦AE与CD交于F,则有结论AD2=AEAF成立(不要求证明).

(1)若将弦CD向下平移至与⊙O相切于B点时,如图2,则AE.AF是否等于AG2?如果不相等,请探求AEAF等于哪两条线段的积?并给出证明.

(2)当CD继续向下平移至与⊙O相离时,如图3,在(1)中探求的结论是否还成立,并说明理由

二.同步检测

1.在梯形ABCD中AD∥BC,AC与BD交于点O,如果AD:BC=1:3,下列结论正确()

A.B.C.D.

2.已知一个梯形被一条对角线分成两个相似三角形,如果两腰的比为1:4,那么两底的比为()

A.1:2B.1:4C.1:8D:1:16

3.一油桶高0.8m,桶内未盛满油,一根木棒长1m,从桶该小口斜插入桶内,一端到桶底,另一端到小口,抽出木棒,量得棒上浸油部分长0.8m,则桶内油面的高度为__________m。

4.如图,PA为圆的切线,A为切点,PBC为割线,∠APC的平分线交AB于点D,交AC于点E,求证:(1)AD=AE;(2)ABAE=ACDB.

5.已知如图,矩形ABCD中,CH⊥BD于点H,P为AD上的一个动点(点P与点A、D不重合),CP与BD交于点E,若CH=60/13,DH:CD=5:13,设AP=x,四边形ABEP的面积为y。

(1)求BD的长;

(2)求y与x的函数关系式,并写出自变量x的取值范围;

(3)当四边形ABEP的面积是ΔPED面积的5倍时,连接PB,判断ΔPAB与ΔPDC是否相似?如果相似,求出相似比;如果不相似,请说明理由。

6.如图,在矩形ABCD中,E为AD的中点,FE⊥EC交AB于F,连接FC(AB>AE)。

(1)ΔAEF与ΔEFC是否相似?若相似,证明你的结论;若不相似,请说明理由。

(2)设,是否存在这样的k值,使得ΔAEF∽ΔBCF?若存在,证明你的结论并求出k值;若不存在,请说明理由。

7.如图,已知点P是边长为4的正方形ABCD内一点,且PB=3,BF⊥BP,垂足是B。请在射线BF上找一点M,使以点B、M、C为顶点的三角形与ABP相似(请注意:全等三角形是相似图形的特例)。

8.如图,在ABC中,点E、F在BC边上,点D、G分别在AB、AC上,四边形DEFG是矩形,若矩形DEFG的面积与ADG的面积相等,设ABC的BC边上的高AH与DG相交于点K。求的值。

9.如图,正ABC的边长为a,D为AC边上的一个动点,延长AB至E,使BE=CD,连接DE,交BC于点P。

(1)求证:DP=PE;

(2)若D为AC的中点,求BP的长。

10.如图,直角梯形ABCD中,AB∥CD,AB⊥BC,对角线AC⊥BD,垂足为E,

AD=BD,过点E作EF∥AB交AD于F。

求证:(1)AF=BE;

(2)