88教案网

你的位置: 教案 > 高中教案 > 导航 > 高考物理第一轮复习学案:电磁场电磁波

高中物理电磁感应教案

发表时间:2021-01-25

高考物理第一轮复习学案:电磁场电磁波。

俗话说,磨刀不误砍柴工。高中教师要准备好教案为之后的教学做准备。教案可以保证学生们在上课时能够更好的听课,帮助高中教师掌握上课时的教学节奏。高中教案的内容要写些什么更好呢?下面是小编帮大家编辑的《高考物理第一轮复习学案:电磁场电磁波》,希望能为您提供更多的参考。

第十五章电磁场电磁波

1.本章内容较少,是以识记内容为主。在复习本章内容时要求学生能紧扣书本,熟读课本,掌握最基本知识与内容。
2.本章的内容主要包括麦克斯韦电磁场理论,电磁波的产生与传播,电磁波谱.
【教学要求】
1.了解麦克斯韦电磁场理论。
2.了解电视、雷达的工作原理等在现代科技中的一些应用。
3.电磁波谱的组成与产生。
【知识再现】
一、电磁波的发现
1.麦克斯韦电磁场理论
变化的磁场能够在周围空间产生,变化的电场能够在周围空间产生。
2.电磁场:变化的电场和变化的磁场相联系的统一体叫电磁场。
3.电磁波
①电磁场的由近及远的传播形成电磁波。
②电磁波是波.电磁波的传播介质。
③它在真空中传播速度等于光速c=
④波速v、波长λ与频率f的关系:
二、LC振荡电路
1.振荡电流:都做周期性迅速变化的电流。
2.振荡电路:产生振荡电流的电路叫振荡电路。
3.振荡周期:
三、电磁波的发射与接收
1.电磁波的发射
①要向外发射无线电波,振荡电路必须具有如下特点:第一,要有的频率;第二,采用电路.
②利用电磁波传递信号的特点,要求发射的电磁波随待传递信号而改变.使电磁波随各种信号而改变叫的技术叫.常用的调制方法有和两种.
2.电磁波的接收
①当接收电路的固有频率跟接收到的无线电波的频率时,激起的振荡电流,这就是现象.使接收电路产生电谐振的过程叫做.
②从经过调制的高频振荡中“检”出调制信号的过程,叫做.检波是的逆过程,也叫。
3.熟悉电视、雷达、移动电话、因特网等实际实例的工作原理。

四、电磁波谱
1.电磁波谱的组成:、、、
、、。
2.熟悉各组成的产生机理及用途。

知识点一麦克斯韦电磁场理论
1.变化的磁场能够在周围空间产生电场(这种电场叫感应电场或涡旋电场,与由电荷激发的静电场不同.它的电场线是闭合的,它的存在与空向有无导体或闭合电路无关)。均匀变化的磁场产生稳定的电场;不均匀变化的磁场产生变化的电场;振荡的(即周期性变化的)磁场产生同频率的振荡电场。
2.变化的电场能够在周围空间产生磁场。均匀变化的电场产生恒定的磁场;不均匀变化的电场产生变化的磁场;振荡的电场产生同频率的振荡磁场。
3.变化的电场和变化的磁场总是相互联系着,形成一个不可分离的统一体,这就是电磁场.
【应用1】按照麦克斯韦的电磁场理论,以下说法正确的是()
A.恒定的电场周围产生恒定的磁场,恒定的磁场周围产生恒定的电场
B.任何变化的电场周围空间一定产生变化的磁场
C.均匀变化的电场周围产生均匀变化的磁场,均匀变化的磁场周围产生均匀变化的电场
D.均匀变化的电场周围产生稳定的磁场,均匀变化的磁场周围产生稳定的电场
导示:由麦克斯韦电磁场理论可知,不变的电场周围不产生磁场,均匀变化的电场周围产生稳定的磁场,振荡电场周围产生振荡磁场。
故D选项正确。

知识点二对电磁波的理解
电磁波的特点:
1.电磁波是横波。在电磁波中,每处的电场强度和磁感应强度方向总是互相垂直的,并且都跟那里的电磁波的传播方向垂直。
2.电磁波的速度(在真空中等于光速)
v=3.00×108m/s。
3.电磁波传播不一定需要介质。
4.电磁波有波的一切特点:能发生反射、折射现
象;能产生干涉、衍射等现象.
5.电磁波向外传播的是电磁能。
思考:机械波与电磁波有哪些异同?

【应用2】关于电磁场和电磁波,下列说法正确的是()
A.电磁波是横波
B.电磁波的传播需要介质
C.电磁波能产生干涉和衍射现象
D.电磁波中电场和磁场的方向处处相互垂直
导示:由电磁波的传播特点可知:电磁波是横波,电场方向与磁场方向垂直且与波的传播方向垂直,电磁波本身就是一种物质,传播时不需要其它介质,电磁波具有波的一切特性,能产生干涉、衍射。
故选ACD

知识点三电磁波谱
电磁波按波长由大到小的顺序为:无线电波、红外线、可见光、紫外线、X射线、丫射线,其产生机理、性质差别、用途等可概括为下表:
【应用3】在应用电磁波的特性时,下列符合实际的是()
A.医院常用x射线对病房和手术室进行消毒
B.医院常用紫外线对病房和手术室进行消毒
C.人造卫星对地球拍摄是因为紫外线照相有较好的分辨能力
D.人造卫星对地球拍摄是因为红外线照相有较好的穿透能力
导示:紫外线的杀菌消毒作用比较显著,医院常用紫外线来进行消毒;红外线有较强的穿透本领,能穿云雾,可用于高空拍摄。
故选BD

类型一麦克斯韦电磁理论的应用
【例1】如图所示,半径为r且水平放置的光滑绝缘的环形管道内,有一个电荷量为e,质量为m的电子。此装置放在匀强磁场中,其磁感应强度随时间变化的关系式为B=B0+kt(k0)。根据麦克斯韦电磁场理论,均匀变化的磁场将产生稳定的电场,该感应电场对电子将有沿圆环切线方向的作用力,使其得到加速。设t=0时刻电子的初速度大小为v0,方向顺时针,从此开始后运动一周后的磁感应强度为B1,则此时电子的速度大小为()
A.B.
C.D.
导示:感应电动势为E=kπr2,电场方向逆时针,电场力对电子做正功。在转动一圈过程中对电子用动能定理:kπr2e=mv2-mv02,得答案B。
感生电场的电场线是闭合的,运动电荷绕行一周,电场力做功不为零。

类型二电磁波的应用——雷达
【例2】某防空雷达发射的电磁波频率为f=3×103MHZ,屏幕上尖形波显示,从发射到接受经历时间Δt=0.4ms,那么被监视的目标到雷达的距离为______km。该雷达发出的电磁波的波长为______m。
导示:由s=cΔt=1.2×105m=120km。这是电磁波往返的路程,所以目标到雷达的距离为60km。
由c=fλ可得λ=0.1m
(l)雷达发出的微波直线性能好,反射能力强,在真空中的传播速度为光速;
(2)电磁波所走的路程是障碍物到雷达距离的两倍。

1.(07年1月海淀区期末练习)关于电磁场和电磁波,下列说法正确的是()
A.变化的电场和变化的磁场由近及远向外传播,形成电磁波
B.电磁场是一种物质,不能在真空中传播
C.电磁波由真空进入介质中,传播速度变小,频率不变
D.电磁波的传播过程就是能量传播的过程

2.下列关于紫外线的几种说法中,正确的是()
A.紫外线是一种紫色的可见光
B.紫外线的频率比红外线的频率低
C.紫外线可使钞票上的荧光物质发光
D.利用紫外线可以进行电视机等电器的遥控

3、关于电磁波传播速度表达式v=λf,下述结论中正确的是:
A、波长越大,传播速度就越快;
B、频率越高,传播速度就越快;
C、发射能量越大,传播速度就越快;
D、电磁波的传播速度与传播介质有关。
4.如图,正离子在垂直于匀强磁场的固定光滑轨道内做匀速圆周运动,当磁场均匀增大时,离子动能将________,周期将________.

5.关于电磁波的发射与接收,下列正确的有()
A.发射的LC电路是开放的
B.电信号频率低,不能直接用来发射
C.调谐是调制的逆过程
D.接收电路也是一个LC振荡电路

6.关于电视屏幕上的图像,下列正确的有()
A.是一整幅一整幅画面出现的
B.是由一条一条快速扫描的亮度彩色不同的线条组成的
C.每秒钟出现一个画面
D.每秒钟出现60个画面

7.(南京一中2008届高三第一次月考)雷达是利用电磁波来测定物体的位置和速度的设备,它可以向一定方向发射不连续的电磁波,当遇到障碍物时要发生反射.雷达在发射和接收电磁波时,在荧光屏上分别呈现出一个尖形波.现在雷达正在跟踪一个匀速移动的目标,某时刻在雷达监视屏上显示的雷达波形如图甲所示,30s后在同一方向上监视屏显示的雷达波形如图乙所示.已知雷达监视屏上相邻刻线间表示的时间间隔为10-4s,电磁波在空气中的传播速度为3×108m/s,则被监视目标的移动速度最接近()
A.1200m/sB.900m/sC.500m/sD.300m/s
答案:1.ACD2.C3.D4.减小、增大5.ABD
6.B7.C

相关推荐

高考物理知识点汇总:电磁场和电磁波


作为杰出的教学工作者,能够保证教课的顺利开展,作为教师就需要提前准备好适合自己的教案。教案可以让学生能够在课堂积极的参与互动,帮助教师有计划有步骤有质量的完成教学任务。教案的内容要写些什么更好呢?为满足您的需求,小编特地编辑了“高考物理知识点汇总:电磁场和电磁波”,欢迎阅读,希望您能阅读并收藏。

高考物理知识点汇总:电磁场和电磁波

xx高中频道为各位同学整理了高三物理知识点之电磁场和电磁波,供大家参考学习。更多内容请关注xx高中频道。

1.麦克斯韦的电磁场理论

(1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场。

(2)随时间均匀变化的磁场产生稳定电场。随时间不均匀变化的磁场产生变化的电场。随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。

(3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场。

2.电磁波

(1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波。

(2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3。00×108m/s。

以上就是小编为大家整理的高三物理知识点之电磁场和电磁波。

高考物理学习要点:电磁场和电磁波


作为优秀的教学工作者,在教学时能够胸有成竹,作为高中教师就要精心准备好合适的教案。教案可以让学生更容易听懂所讲的内容,帮助高中教师能够更轻松的上课教学。关于好的高中教案要怎么样去写呢?小编收集并整理了“高考物理学习要点:电磁场和电磁波”,欢迎大家阅读,希望对大家有所帮助。

高考物理学习要点:电磁场和电磁波

1.麦克斯韦的电磁场理论

(1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场。

(2)随时间均匀变化的磁场产生稳定电场。随时间不均匀变化的磁场产生变化的电场。随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。

(3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场。

2.电磁波

(1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波。(2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3。00×108m/s。

实验题的做题技巧

(1)实验题一般采用填空题或作图题的形式出现。

作为填空题:数值、单位、方向或正负号都应填全面;

作为作图题:

①对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。

②对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。

③对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。

切记:游标卡尺、螺旋测微器、多用电表的读数历来都是考察的重点。

切记:选择题有8-10分是送你的,但你可能拿不到(单位、有效数字、小数点后保留几位、坐标原点等)。

(2)常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常规实验题时,这种题目考得比较细,要在细、实、全上下足功夫。

(3)设计型实验重在考查实验的原理。要求同学们能审清题意,明确实验目的,应用迁移能力,联想相关实验原理。在设计电学实验时,要把安全性【所谓的安全不是对人来说,而是对仪器来说的】放在第一位,同时还要尽可能减小实验的误差【误差从偶然和系统两个方面考虑,系统免不了,偶然可减小】,避免出现大量程测量小数值的情况。

高考物理电磁场在实际中的应用第一轮复习学案


第五课时电磁场在实际中的应用

【教学要求】
1.了解回旋加速器、磁流体发电机、速度选择器、电磁流量计、霍耳效应磁哟计、质谱仪等。
2.学会分析实际应用问题的解决方案。
知识点一带电粒子速度选择器
如图是一种质谱仪的示意图,其中MN板的左方是带电粒子速度选择器.选择器内有正交的匀强电场E和匀强磁场B,一束有不同速率的正离子水平地由小孔S进入场区,路径不发生偏转的离子的条件是_____________,即能通过速度选择器的带电粒子必是速度为v=_______的粒子,与它带多少电和电性,质量为多少都无关。
【应用1】如图所示不同元素的二价离子经加速后竖直向下射入由正交的匀强电场和匀强磁场组成的粒子速度选择器,恰好都能沿直线穿过,然后垂直于磁感线进入速度选择器下方另一个匀强磁场,偏转半周后分别打在荧屏上的M、N两点.下列说法中不正确的有()
A.这两种二价离子一定都是负离子
B.速度选择器中的匀强磁场方向垂直于纸面向里
C.打在M、N两点的离子的质量之比为OM:ON
D.打在M、N两点的离子在下面的磁场中经历的时间相等
导示:由左手定则知,这两种二价离子都是负离子,速度选择器中的匀强磁场方向垂直于纸面向里AB对。二价离子垂直于磁感线进入下方匀强磁场后由于速度、电量、磁感应强度都相等,打在M、N两点的离子的质量之比为OM:ON,C对。但打在M、N两点的离子在下面的磁场中经历的路程不等,所以经过的时间也不等,D错。故选D。
知识点二回旋加速器
回旋加速器是利用电场对电荷的加速作用和磁场对运动电荷的偏转作用来获得高能粒子的装置,由于带电粒子在匀强磁场中做匀速圆周运动的周期T=与速率和半径无关,所以只要交变电场的变化周期等于粒子运动的周期,就可以使粒子每次通过电场时都能得到加速;粒子通过D形金属扁盒时,由于金属盒的静电屏蔽作用,盒内空间的电场极弱.所以粒子只受洛伦兹力作用而做匀速圆周运动,设D盒的半径为r,则粒子获得的最大动能为:。
【应用2】如图所示为一回旋加速器的示意图,已知D形盒的半径为R,中心O处放有质量为m、带电量为q的正离子源,若磁感应强度大小为B,求:
(1)加在D形盒间的高频电源的频率。(2)离子加速后的最大能量;(3)离子在第n次通过窄缝前后的速度和半径之比。
导示:(1)加在D形盒间的高频电源的频率与正离子做圆周运动的频率相等。
(2)离子加速后的最大能量由D形盒半径决定,

(3)第n次通过窄缝后的速度
,同理,
所以
知识点三质谱仪
如图所示的是一种质谱仪的示意图,其中MN板的左方是带电粒子速度选择器,选择器内有正交的匀强磁场和匀强电场,一束有不同速率的正离子水平地由小孔进入场区.经过速度选择器后的相同速率的不同离子在右侧的偏转磁场中做匀速圆周运动,不同比荷的离子不同.P位置为照相底片记录。
【应用2】质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图所示.离子源S产生的带电量为q的某种正离子,离子产生出来时速度很小,可以看做是静止的.离子产生出来后经过电压U加速后形成离子束流,然后垂直于磁场方向、进人磁感应强度为B的匀强磁场,沿着半圆周运动而达到记录它的照相底片P上.实验测得:它在P上的位置到入口处a的距离为l,离子束流的电流强度为I.求(1)t秒内射到照相底片P上的离子的数目。(2)单位时间穿过入口处S1离子束流的能量。(3)试证明这种离子的质量为m=qB2a2/8U
导示:(1)根据电流求电量:,
根据电量求离子数目:
(2)单位时间内离子能量为:
(3)加速过程:
由牛顿第二定律得:,
可求得:m=qB2a2/8U
知识点三磁流体发电机
如图是磁流体发电机,其原理是:等离子气体喷入磁场,正、负离子在洛仑兹力作用下发生上、下偏转而聚集到A、B板上,产生电势差.设A、B平行金属板的面积为S,相距l,等离子气体的电阻率为ρ,喷入气体速度为v,板间磁场的磁感强度为B,板外电阻为R,当等离子气体匀速通过AB板间时,A、B板上聚集的电荷最多,板间电势差最大,即为电源电动势.电动势E=。R中电流I=。
【应用2】如图所示为磁流体发电机示意图.其中两极板间距d=20cm,磁场的磁感应强度B=5T,若接入额定功率P=100W的灯泡,灯泡正好正常发光,灯泡正常发光时的电阻R=400Ω.不计发电机内阻,求:
(1)等离子体的流速多大?
(2)若等离子体均为一价离子,则每秒钟有多少个什么性质的离子打在下极板.
导示:(1)设板间电压为U,对最终射出的等离子:,灯泡功率:
代入数据,求得v=200m/s。
(2)打在下极板上是正离子。
离子数目为:。
知识点四电磁流量计
电磁流量计原理可解释为:如图所示,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体向左流动.导电液体中的自由电荷(正、负离子)在洛仑兹力作用下横向偏转,a、b间出现电势差.当自由电荷所受电场力和洛仑兹力平衡时,a、b间的电势差就保持稳定.流量Q=。
【应用2】一种测量血管中血流速度仪器的原理如图所示,在动脉血管左右两侧加有匀强磁场,上下两侧安装电极并连接电压表,设血管直径是2.0mm,磁场的磁感应强度为0.080T,电压表测出的电压为0.10mV,则血流速度大小为______m/s.(取两位有效数字)
导示:对血液中的离子,在磁场的作用下发生偏转,使血管上下产生电势差,平衡时,
所以,
知识点五霍耳效应、磁强计
如图所示,厚度为h,宽度为d的导体板放在垂直于它的磁感强度为B的均匀磁场中,当电流通过导体板时,在导体板的上侧面A和下侧面A’之间会产生电势差,这种现象称为霍尔效应,实验表明,当磁场不太强时,电势差U、电流I和B的关系为U=kIB/d.式中的比例系数k称为霍尔系数.
【应用2】(08淮阴中学月考)如图所示,一厚为d、宽为b、长为L的载流导体薄板放在磁感应强度为B的磁场中,电流强度为I,薄板中单位体积内自由电荷的数目为n,自由电荷的电量为-e,如果磁场与薄板前后表面垂直,则板的上下两表面AA间会出现电势差,这一现象叫霍尔效应,AA′间的电势差叫霍尔电势差UH(或霍尔电压),
(1)试判断上下两表面的电势高低情况;
(2)试说明霍尔电势差UH与题述中的哪些物理量有关,并推证出关系式。
导示:(1)A面电势高。
(2)UH与I、B、n、e、d有关。
证明:载流子在磁场中定向运动,受洛伦兹力向上,形成从下向上的电场,稳定时,Bev=eE,E=Bv;
由导体中电流的表达式I=nevs,
可得:I=nevbd;
AA两面电势差:UH=Eb=Bvb,。
1.(08淮阴中学月考)一回旋加速器,可把α粒子加速到最大速率v,其加速电场的变化频率为f,在保持磁感强度不变的条件下,若用这一回旋加速器对质子进行加速,则加速电场的变化频率应为,质子能加速到的最大速率为。
2.(07佛山教学质量检测)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电两极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的匀强电场(其频率为f),使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底面的匀强磁场中,如图6所示,设匀强磁场的磁感应强度为B,D形金属盒的半径为R,狭缝间的距离为d,匀强电场间的加速电压为U。则下列说法中正确的是()
A.增大匀强电场间的加速电压,被加速粒子最终获得的动能将增大;
B.增大磁场的磁感应强度,被加速粒子最终获得的动能将增大;
C.被加速粒子最终速度大小不超2πfR;
D.增大匀强电场间的加速电压,被加速粒子在加速器中运动的圈数将减少。
3.(07广东卷)带电粒子的荷质比q/m是一个重要的物理量。某中学物理兴趣小组设计了一个实验,探究电场和磁场对电子运动轨迹的影响,以求得电子的荷质比,实验装置如图所示。
①他们的主要实验步骤如下:
A.首先在两极板M1M2之间不加任何电场、磁场,开启阴极射线管电源,发射的电子从两极板中央通过,在荧幕的正中心处观察到一个亮点;
B.在M1M2两极板间加合适的电场:加极性如图所示的电压,并逐步调节增大,使荧幕上的亮点逐渐向荧幕下方偏移,直到荧幕上恰好看不见亮点为止,记下此时外加电压为U。请问本步骤目的是什么?
C.保持步骤B中的电压U不变,对M1M2区域加一个大小、方向合适的磁场B,使荧幕正中心重现亮点,试问外加磁场的方向如何?
②根据上述实验步骤,同学们正确推算出电子的荷质比与外加电场、磁场及其他相关量的关系为。一位同学说,这表明电子的荷质比将由外加电压决定,外加电压越大则电子的荷质比越大,你认为他的说法正确吗?为什么?

参考答案
1.2f,2v
2.BCD
3.①B.使电子刚好落在正极板的近荧光屏端边缘,利用已知量表达q/m.
C.垂直电场方向向外(垂直纸面向外)
②说法不正确,电子的荷质比是电子的固有参数.

第十九章 电磁场和电磁波


第十九章电磁场和电磁波

一、电磁振荡

教学目标:

一、知识目标

1、理解LC回路中产生振荡电流的过程.

2、会分析电磁振荡过程中,电容器上对应的电荷,线圈中对应的电流,以及与之联系的电场,磁场和能量变化的规律.

3、知道阻尼振荡和无阻尼振荡的区别.

二、能力目标

通过观察演示实验,概括出电磁振荡等概念,培养学生观察能力,类比推理能力,以及理解和概括能力.

三、情感目标

通过对振荡电流波形观察,发现图像的对称、曲线美,并让学生领会物理规律的美.

课时安排:1课时

教学用具:LC振荡电路演示仪,大屏幕示波器,自制模拟振荡过程动画软件.

师生互动活动设计:教师先演示给学生观察并讲解电磁振荡的基本概念.再利用投影幻灯片并类比单摆振动、讲解电磁振荡前半周期经历的过程,然后启发指导学生自己分析后半周期的振荡过程.

教学过程

1、演示电磁振荡的实验,学习有关概念.

以图示连接电路.

像这样产生的大小和方向交替变化的电流,叫做振荡电流,能产生振荡电流的

电路,叫振荡电路,上面的LC回路叫LC振荡电路.

再将振荡电流信号取出接在示波器上观察波形,就会发现,LC回路里产生的振荡电流跟正弦式电流一样,也是按正弦规律变化的.指出振荡电流实质上就是前边学过的交流电,它也是按正弦规律变化的.

2、电磁振荡的产生过程,(可结合投影幻灯法,启发思考进行分析讲解).

(1)、图(1)→图(2)过程的分析讲解:

由于C上带电量最多,两极间电压也应为最大,对应的电场能最大,当C上带电量减少时,即电容器放电时,两极间电压也应减小,同时电场能减少,因为电感线图L对电流的变化有“阻碍”作用,即对放电过程有“阻碍”作用,所以放电过程不是“瞬间”完成,而是“逐渐”完成的,也就是振荡电流是“逐渐”增大的,当C上带电量为零时,放电完毕,此时,电流达到最大值,同时磁场能达到最大值,要注意的是,电流取得最大值时,电压为零.

(2)、图(2)→图(3)过程的分析讲解:

图(2)是放电完毕的时刻,也是反向充电的开始的时刻,当电流达最大后要减小,同样因为线圈L产生自感电动势,将“阻碍”电流减小,所以电流“逐渐”减小,电容器两极带电量“逐渐”增加,磁场能“逐渐”转化为电场能,到图(3)状态时,电流为零,磁场能为零,带电量、自感电动势、电场能达到最大值,应注意,自感电动势跟电容器两极电压是相等的.

小结:

放电过程:

充电过程:

关于图(3)→图(4)和图(4)→图(5)的分析,可以让学

生自己结会阅读课本完成,并让学生明确电流的方向和哪一极带正电.

【例】如图(甲)、(乙)所示

(1)(甲)图正处充电过程还是放电过程?自感电动势如何变化?

(2)(乙)图是处充电过程,则电容器上极带正电还是负电?

分析:从电路角度来认识:当电容器为电源时,就是放电过程,当电感线圈为电源时,就为充电过程,再根据电流应从电源正极流出、负极流进的特征,较容易判定.

(1)假设(甲)图中L为电源,应有以下等效电路(图甲)电容器上极应带正电,但注意到电容器上极带负电.

不符题设,则应是电容器为电源,所以(甲)图应是放电过程.

(2)因为是充电过程,其等效电路应为图乙,电容器为用电器,电感应为电源,接电源正极的上板带正电.

总结指出:电磁振荡是一种周期性变化的现象,一周期内、充放电各两次.

3、无阻尼振荡和阻尼振荡.

(1)振荡电路中,若没有能量损耗,则振荡电流的振幅()将不变,如图所示,叫做无阻尼振荡(或等幅振荡).

(2)阻尼振荡,任何振荡电路中,总存在能量损耗,使振荡电流i的振幅逐渐减小,如图所示,这叫做阻尼振荡(或叫减幅振

荡),请同学位想一下,电路损耗的能量哪里去了?

如果用振荡器周期性地给振荡电路补充能量,就可以保持等幅振荡,这类似于受迫振动.

4、总结、扩展

(1)电磁振荡抽象,过程复杂,难以理解,要抓住问题的本质、关键,即电场能和磁场能交替转化,为便于接受,可借助于以前学过的简谐振动和电磁感应的相关知识,类比分析加深对新知识的准确理解.它们的对应关系见下面表格:

LC回路中

简谐振动

①给电容器充电

②电容C

③电感L(相当于惯性)

④电荷Q

⑤电流i

⑥电场能

⑦磁场能

①外力把m拉离平衡位置做功

②劲度系数k(或单摇的l)

③振动质量m(惯性)

④位移x

⑤速度v

⑥势能

⑦动能

(2)同学容易产生误解的地方是:电容(两极板带等量异种电荷,当它放电时正、负电行正好中和,就没有电荷在电路里往复运动了,哪里还有振荡电流!对于这类问题除强调能量的转化和C、L的作用外,还应从电磁感应的知识,根据图像进行分析.

当电容C中储存电场能最大时(带电量、场强值最大、电压最高),电路中电流为零.磁场能为零.随着电容C逐渐放电,电场能(带电量Q,电压U)逐渐减小,而磁场能(电流i)将逐渐增大.

5、布置作业

6、板书设计

一、电磁振荡

1、实验

2、产生过程

3、概念

二、无阻尼振荡和阻尼振荡

三、电磁振荡和单摆类比对应关系