88教案网

你的位置: 教案 > 高中教案 > 导航 > 力的合成与分解

高中力的分解教案

发表时间:2020-05-15

力的合成与分解。

一名爱岗敬业的教师要充分考虑学生的理解性,作为教师准备好教案是必不可少的一步。教案可以让上课时的教学氛围非常活跃,帮助教师在教学期间更好的掌握节奏。那么一篇好的教案要怎么才能写好呢?下面是小编帮大家编辑的《力的合成与分解》,仅供参考,希望能为您提供参考!

3.4力的合成与分解学案1(粤教版必修1)
1.运算法则
(1)__________定则
如果用表示两个共点力F1和F2的线段为邻边作一个平行四边形,则这两个邻边之间的对角线就表示________的大小和方向,如图1(a)所示.
图1
(2)三角形定则
求两个互成角度的共点力F1、F2的合力,可以把表示F1、F2的线段首尾相接地画出,把F1、F2的另外两端连接
起来,则此连线就表示________的大小和方向,如图(b)所示.显然,三角形定则是平行四边形定则的简化,本质相同.
2.力的合成
求几个力的合力叫做力的______.
3.力的分解:如果一个力的作用效果可以用几个力来______,这几个力称为这一个力的______.求一个力的分力叫做力的分解.力的分解是力的合成的________.同样遵守___,即以已知力作为________画平行四边形,与已知力共点的平行四边形的________表示两个分力的大小和方向.
一、合力的计算
[问题情境]
在探究求合力的方法的实验中运用了什么物理思想和方法?

[要点提炼]
1.定义:求几个力的合力的过程叫做力的______.
2.遵守的法则:______________定则.
3.平行四边形定则求合力的应用方法:
图2
(1)图解法
①两个共点力的合成:从力的作用点作两个共点力的图示,然后以F1、F2为边作平行四边形,______________即为合力的大小,______________即为合力的方向.
用直尺量出对角线的长度,依据力的标度折算出合力的大小,用量角器量出合力与其中一个力之间的夹角θ,如图2所示.
图中F1=50N,F2=40N,合力F=80N.
②两个以上力的合成:先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到所有的力都合成进去,最后得到的结果就是这些力的合力.
(2)计算法
图3
先依据平行四边形定则画出力的平行四边形,然后依据数学公式(如余弦定理)算出对角线所表示的合力的大小和方向.
当两个力互相垂直时,如图3所示有:
F=F21+F22
tanθ=F2/F1.
图4
4.合力大小的范围(如图4所示)
(1)合力F随θ的增大而______.
(2)当θ=0°时,F有最大值Fmax=__________;当θ=180°时,F有最小值Fmin=__________.
(3)合力F既可以大于,也可以等于或小于原来的任意一个分力.一般地___≤F≤_______
二、合力的计算
[问题情境]
如图5所示,把一个物体放在倾角为α的斜面上,
图5
物体并没有在重力作用下下滑.从力的作用效果看,应将重力怎样分解?两个力的大小与斜面倾角有何关系?
[要点提炼]
1.力的分解的几种常见情况:
(1)已知两个分力的方向,求两个分力的大小.如图6所示,已知F和α、β,显然该力的平行四边形是唯一的,即F1、F2的大小也唯一确定.
图6
(2)已知一个分力的大小和方向,求另一个分力的大小和方向.如图6所示,已知F、F1及α,显然此平行四边形也是唯一确定的,即另一个分力F2的大小和方向只有唯一答案.
(3)已知一个分力的大小和另一个分力的方向,即F、α及F2的大小已知.这时又可能有下列情形:
①F2Fsinα,有两个平行四边形,即有两解,如图7甲所示;但若F2≥F,则只有一个解,如图乙所示.
图7
②F2=Fsinα,有一个平行四边形,即唯一解,如图丙所示.
③F2Fsinα,此时构不成平行四边形,即无解,如图丁所示.
图8
(4)已知两个分力的大小,求两个分力的方向.如图8所示,当绕着力F的方向将图在空间中转过一定角度时,仍保持F1、F2大小不变,但方向变了,此时有无穷组解.
2.力的分解的原则:按力的作用效果分解.
[问题延伸]
1.公园的滑梯倾角为什么比较大呢?
2.为什么高大的立交桥要建有很长的引桥?

例1两个大小相等的共点力F1、F2,当它们之间的夹角为90°时合力的大小为20N,则当它们之间夹角为120°时,合力的大小为()
A.40NB.102N
C.202ND.103N
听课记录
变式训练1两个共点力的合力为F,如果它们之间的夹角θ固定不变,只使其中一个力增大,则()
A.合力F一定增大
B.合力F的大小可能不变
C.合力F可能增大,也可能减小
D.当0°θ90°时,合力F一定减小
例2(1)如图9所示一光滑小球放在倾角为θ的光滑斜面和竖直的挡板之间,其重力产生什么样的效果?
(2)①如图10甲所示,小球挂在墙上,绳与墙的夹角为θ.绳对球的拉力F产生什么样的作用效果,可以分解为哪两个方向的分力来代替F?
②如图乙所示,如果这个小球处于静止状态,重力G产生什么样的作用效果,可以分解为哪两个方向的分力来代替G?
图9图10

例3已知力F,其一个分力F1与F成30°角,另一个分力F2的大小为33F,方向未知,则F1的大小为()
A.33FB.32F
C.233FD.3F
听课记录

变式训练2将一个60N的力进行分解,其中一分力的方向与这个力成30°角,求另一分力的大小不会小于多少?
【即学即练】
图11
1.5个共点力的情况如图11所示.已知F1=F2=F3=F4=F,且这四个力恰好为一个正方形,F5是其对角线.下列说法正确的是()
A.F1和F5的合力,与F3大小相等,方向相反
B.能合成大小为2F、相互垂直的两个力
C.除F5以外的4个力的合力的大小为2F
D.这5个力的合力恰好为2F,方向与F1和F3的合力方向相同
2.将某个力F分解为两个不为零的力,下列情况具有唯一解的是()
A.已知两个分力的方向,并且不在同一直线上
B.已知一个分力大小和方向
C.已知一个分力的大小和另一个分力的方向
D.已知两个分力的大小
3.将图12甲、乙两种情况中各力按作用效果分解.
(1)地面上的物体受斜向上的拉力F.
(2)电线OC对O点的拉力F.
图12

参考答案
课前自主学习
1.(1)平行四边形合力F(2)合力F
2.合成
3.替代分力逆运算平行四边形定则对角线两条边
核心知识探究
一、
[问题情境]
等效替代.
[要点提炼]
1.合成
2.平行四边形3.(1)①对角线的长度对角线的方向
4.(1)减小(2)F1+F2|F1-F2|(3)|F1-F2|F1+F2
二、
[问题情境]
斜面上物体的重力G有两个效果,一是使物体沿斜面下滑(有时也称下滑力)的力F1,二是使物体压紧斜面的力F2,如右图所示.由几何关系,得F1=Gsinα,F2=Gcosα.
[问题延伸]
1.θ越大重力沿斜面的分力就越大,滑梯上的人就较容易下滑.
2.长长的引桥可以减小上坡的倾角,因为θ越大重力沿斜面的分力就越大,车辆上坡艰难而下坡又不安全.
解题方法探究
例1B[设F1=F2=F,当它们之间的夹角α=90°时,如图甲所示,由画出的平行四边形(为矩形)得合力为F合=F21+F22=F2+F2=2F.
甲乙
所以F=12F合=12×20N=102N.
当两分力F1和F2间夹角变为β=120°时,同理画出平行四边形(如图乙所示).由于平行四边形的一半为一等边三角形,因此其合力F′=F1=F2=102N.]
变式训练1
BC
[设两共点力Fa、Fb之间的夹角θ为钝角,由右图所示的平行四边形可知,当Fa逐渐增大为Fa1、Fa2、Fa3时,其合力由原来的F1变为F2、F3、F4,它们可能小于F1、可能等于F1,也可能大于F1,所以A项错,B、C两项正确.同理知,当0°θ90°时,则随着其中的一个力增大,合力一定也增大,D项错.]
例2见解析.
解析(1)两分力方向确定了,分解是唯一的.
如右图所示,可以分解为两个力:G1=Gtanθ,G2=G/cosθ.
小球因为有重力,沿垂直于斜面产生紧压斜面的效果;在沿水平方向上产生压紧挡板的效果.
(2)①小球靠在墙上处于静止状态.拉力产生向上提拉小球的效果和向左紧压墙面的效果.分力的方向确定了,分解就是唯一的.
F的分力,在竖直方向的分力F1来平衡重力,在水平方向的分力F2来平衡墙对球的支持力.如右图所示分解为F1=Fcosθ,F2=Fsinθ.
②重力G产生两个效果,一个沿F1的直线上的分力G1来平衡F1,一个沿F2的直线方向上的分力G2来平衡F2.G1=G/cosθ,G2=Gtanθ.
例3AC
[如右图所示,先画一条有向的线段AB表示力F.过F的始端A画一与AB成30°角的射线(即F1的作用线),过F的末端B作F1所在射线的垂线交于C.则由直角△ABC可知,CB的大小为F2.在CB两边对称地作两条线DB和EB,使其大小均为3F3(因为3F3F2,所以这两条线可以画出来).在直角△EBC中,因CB=F2,EB=3F3,故∠EBC=30°.∠DBC=∠ABE=30°,△ABD为直角三角形(∠ABD=90°).利用直角三角形知识可知E为直角△ADB的斜边AD的中点且AE=3F3,AD=23F3,即F1的大小可能是3F3,也可能是23F3,本题选项A、C正确.]
变式训练230N
解析合力和分力构成三角形,如右图所示.从F的末端作OA的垂线,垂线段的长度最小,即另一个分力F2的最小值,由几何关系知F2=Fsin30°=60×12N=30N.
即学即练
1.AD2.AB
3.(1)地面上的物体受斜向上的拉力F,拉力F一方面使物体沿水平地面前进,另一方面向上提物体,因此拉力F可分解为水平向前的力F1和竖直向上的力F2,如图所示.
(2)如图所示,电线OC对O点的拉力等于灯的重力,电线AO、BO都被拉紧,可见,OC上向下的拉力可分解为斜向下拉紧AO的力F1和水平向左拉紧BO的力F2.

扩展阅读

高考物理知识点:力(常见的力、力的合成与分解)


俗话说,凡事预则立,不预则废。作为高中教师就要精心准备好合适的教案。教案可以让学生们能够更好的找到学习的乐趣,减轻高中教师们在教学时的教学压力。高中教案的内容要写些什么更好呢?小编收集并整理了“高考物理知识点:力(常见的力、力的合成与分解)”,欢迎大家与身边的朋友分享吧!

高考物理知识点:力(常见的力、力的合成与分解)

1)常见的力
1.重力G=mg(方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2(k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

高一物理力的合成与分解2


俗话说,磨刀不误砍柴工。教师在教学前就要准备好教案,做好充分的准备。教案可以让学生能够在课堂积极的参与互动,帮助教师能够井然有序的进行教学。您知道教案应该要怎么下笔吗?下面是小编精心收集整理,为您带来的《高一物理力的合成与分解2》,大家不妨来参考。希望您能喜欢!

3.4力的合成和分解
教学目标:
1.理解合力、分力的概念,掌握矢量合成的平行四边形定则。
2.能够运用平行四边形定则或力三角形定则解决力的合成与分解问题。
3.进一步熟悉受力分析的基本方法,培养学生处理力学问题的基本技能。
教学重点:力的平行四边形定则
教学难点:受力分析
教学方法:讲练结合,计算机辅助教学
教学过程:
一、标量和矢量
1.将物理量区分为矢量和标量体现了用分类方法研究物理问题的思想。
2.矢量和标量的根本区别在于它们遵从不同的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则。
矢量的合成与分解都遵从平行四边形定则(可简化成三角形定则)。平行四边形定则实质上是一种等效替换的方法。一个矢量(合矢量)的作用效果和另外几个矢量(分矢量)共同作用的效果相同,就可以用这一个矢量代替那几个矢量,也可以用那几个矢量代替这一个矢量,而不改变原来的作用效果。
3.同一直线上矢量的合成可转为代数法,即规定某一方向为正方向。与正方向相同的物理量用正号代入.相反的用负号代入,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样.但不能认为是矢量,最后结果的正负也不表示方向如:功、重力势能、电势能、电势等。
二、力的合成与分解
力的合成与分解体现了用等效的方法研究物理问题。
合成与分解是为了研究问题的方便而引人的一种方法。用合力来代替几个力时必须把合力与各分力脱钩,即考虑合力则不能考虑分力,同理在力的分解时只考虑分力而不能同时考虑合力。
1.力的合成
(1)力的合成的本质就在于保证作用效果相同的前提下,用一个力的作用代替几个力的作用,这个力就是那几个力的“等效力”(合力)。力的平行四边形定则是运用“等效”观点,通过实验总结出来的共点力的合成法则,它给出了寻求这种“等效代换”所遵循的规律。
(2)平行四边形定则可简化成三角形定则。由三角形定则还可以得到一个有用的推论:如果n个力首尾相接组成一个封闭多边形,则这n个力的合力为零。
(3)共点的两个力合力的大小范围是
|F1-F2|≤F合≤F1+F2
(4)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零。
【例1】物体受到互相垂直的两个力F1、F2的作用,若两力大小分别为5N、5N,求这两个力的合力.
解析:根据平行四边形定则作出平行四边形,如图所示,由于F1、F2相互垂直,所以作出的平行四边形为矩形,对角线分成的两个三角形为直角三角形,由勾股定理得:
N=10N
合力的方向与F1的夹角θ为:
θ=30°
2.力的分解
(1)力的分解遵循平行四边形法则,力的分解相当于已知对角线求邻边。
(2)两个力的合力惟一确定,一个力的两个分力在无附加条件时,从理论上讲可分解为无数组分力,但在具体问题中,应根据力实际产生的效果来分解。
【例2】将一个力分解为两个互相垂直的力,有几种分法?
解析:有无数种分法,只要在表示这个力的有向线段的一段任意画一条直线,在有向线段的另一端向这条直线做垂线,就是一种方法。如图所示。
(3)几种有条件的力的分解?
①已知两个分力的方向,求两个分力的大小时,有唯一解。
②已知一个分力的大小和方向,求另一个分力的大小和方向时,有唯一解。
③已知两个分力的大小,求两个分力的方向时,其分解不惟一。
④已知一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一。
(4)用力的矢量三角形定则分析力最小值的规律:
①当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2取最小值的条件是两分力垂直。如图所示,F2的最小值为:F2min=Fsinα
②当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2取最小值的条件是:所求分力F2与合力F垂直,如图所示,F2的最小值为:F2min=F1sinα?
③当已知合力F的大小及一个分力F1的大小时,另一个分力F2取最小值的条件是:已知大小的分力F1与合力F同方向,F2的最小值为|F-F1|
(5)正交分解法:?
把一个力分解成两个互相垂直的分力,这种分解方法称为正交分解法。
用正交分解法求合力的步骤:
①首先建立平面直角坐标系,并确定正方向
②把各个力向x轴、y轴上投影,但应注意的是:与确定的正方向相同的力为正,与确定的正方向相反的为负,这样,就用正、负号表示了被正交分解的力的分力的方向
③求在x轴上的各分力的代数和Fx合和在y轴上的各分力的代数和Fy合
④求合力的大小
合力的方向:tanα=(α为合力F与x轴的夹角)
【例3】质量为m的木块在推力F作用下,在水平地面上做匀速运动.已知木块与地面间的动摩擦因数为,那么木块受到的滑动摩擦力为下列各值的哪个?A.mgB.(mg+Fsinθ)
C.(mg+Fsinθ)D.Fcosθ
解析:木块匀速运动时受到四个力的作用:重力mg、推力F、支持力FN、摩擦力F.沿水平方向建立x轴,将F进行正交分解如图(这样建立坐标系只需分解F),由于木块做匀速直线运动,所以,在x轴上,向左的力等于向右的力(水平方向二力平衡);在y轴上向上的力等于向下的力(竖直方向二力平衡).即
Fcosθ=F①
FN=mg+Fsinθ②
又由于F=FN③
∴F=(mg+Fsinθ)故B、D答案是正确的.
三、综合应用举例
【例4】水平横粱的一端A插在墙壁内,另一端装有一小滑轮B,一轻绳的一端C固定于墙上,另一端跨过滑轮后悬挂一质量m=10kg的重物,∠CBA=30°,如图甲所示,则滑轮受到绳子的作用力为(g=10m/s2)
A.50NB.50NC.100ND.100N
解析:取小滑轮作为研究对象,悬挂重物的绳中的弹力是T=mg=10×10N=100N,故小滑轮受绳的作用力沿BC、BD方向的大小都是100N,分析受力如图(乙)所示.∠CBD=120°,∠CBF=∠DBF,∴∠CBF=60°,⊿CBF是等边三角形.故F=100N。故选C。
【例5】已知质量为m、电荷为q的小球,在匀强电场中由静止释放后沿直线OP向斜下方运动(OP和竖直方向成θ角),那么所加匀强电场的场强E的最小值是多少?
解析:根据题意,释放后小球所受合力的方向必为OP方向。用三角形定则从右图中不难看出:重力矢量OG的大小方向确定后,合力F的方向确定(为OP方向),而电场力Eq的矢量起点必须在G点,终点必须在OP射线上。在图中画出一组可能的电场力,不难看出,只有当电场力方向与OP方向垂直时Eq才会最小,所以E也最小,有E=
【例6】A的质量是m,A、B始终相对静止,共同沿水平面向右运动。当a1=0时和a2=0.75g时,B对A的作用力FB各多大?
解析:一定要审清题:B对A的作用力FB是B对A的支持力和摩擦力的合力。而A所受重力G=mg和FB的合力是F=ma。
当a1=0时,G与FB二力平衡,所以FB大小为mg,方向竖直向上。
当a2=0.75g时,用平行四边形定则作图:先画出重力(包括大小和方向),再画出A所受合力F的大小和方向,再根据平行四边形定则画出FB。由已知可得FB的大小FB=1.25mg,方向与竖直方向成37o角斜向右上方。

高三物理知识点:力的合成与分解


高三物理知识点:力的合成与分解

力的合成与分解

1.合力与分力如果一个力作用在物体上,它产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,而那几个力叫做这个力的分力。

2.共点力的合成
⑴共点力几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力。
⑵力的合成方法求几个已知力的合力叫做力的合成。
a.若和在同一条直线上
①、同向:合力方向与、的方向一致
②、反向:合力,方向与、这两个力中较大的那个力同向。
b.、互成θ角——用力的平行四边形定则平行四边形定则:两个互成角度的力的合力,可以用表示这两个力的有向线段为邻边,作平行四边形,它的对角线就表示合力的大小及方向,这是矢量合成的普遍法则。求F、的合力公式:(为F1、F2的夹角)

注意:
(1)力的合成和分解都均遵从平行四边行法则。
(2)两个力的合力范围:F1-F2FF1+F2
(3)合力可以大于分力、也可以小于分力、也可以等于分力
(4)两个分力成直角时,用勾股定理或三角函数。

【总结】以上就是物理力的合成与分解的全部内容,小编希望同学们都能扎实的掌握学过的知识,取得好的成绩!

运动的合成与分解


第2节运动的合成与分解
【学习目标】
1.了解合运动与分运动的特点。会分析合运动与分运动。
2.用矢量合成原理,解决有关位移、速度合成与分解的问题。体会合运动是分运动的矢量和的分析过程。
3.领会把复杂问题分解为简单问题的思想。

【阅读指导】
1.小船渡河时,同时参与了两个运动,一是___________________________________,二是_______________________________________,这两个运动通常叫做分运动。小船相对于地面(河岸)的运动通常叫做合运动,它是由两个分运动共同决定的。
2.如课本图1-2-1小船运动的分析,以河岸为参考系,船做____________________运动,水做___________________运动;以水为参考系,船做___________________运动
3.跟合力和分力的关系一样,合运动的位移、速度、加速度等于分运动的位移、速度、加速度的_________,即把各分位移、速度、加速度按照___________________求和。
4.已知分运动求合运动,叫做___________;已知合运动求分运动,叫做___________。运动的合成与分解在生产、生活和科技中有着广泛的应用。
5.课本第7页例题,若河水流速改为4m/s,渡河过程经历的时间_________(填“变化”或“不变”)。

【课堂练习】
★夯实基础
1.关于运动的合成与分解的下列说法正确的是()
A.两个直线运动的合位移一定比分位移大
B.运动的合成与分解都遵循平行四边形定则
C.两个分运动总是同时进行着的
D.某个分运动的规律不会因另一个分运动而改变
2.某人骑自行车以4m/s的速度向正东方向行驶,天气预报报告当时是正北风,风速也是4m/s,则以骑车人为参考系风速的方向和大小分别为()
A.西北风,风速4m/sB.西北风,风速m/s
C.东北风,风速4m/sD.东北风,风速m/s
3.一游泳运动员以恒定的速率垂直河岸过河,当水流的速度突然变大时,对运动员渡河时间和经历的路程的影响是()
A.路程变大,时间增长B.路程变大,时间缩短
C.路程变大,时间不变D.路程和时间都不变
★提升能力
4.如图所示,某人在行驶的车厢中观察到雨滴下落时与竖直方向的夹角为θ,已知窗外无风。若火车行驶的速度为v,则雨滴对地的速度是多大?

5.如图所示,高为h的车厢在平直轨道上匀减速向右行驶,加速度大小为a,车厢顶部A点处有油滴滴落到车厢地板上,车厢地板上的O点位于A点正下方,则油滴落在地板上的点必在O点_______(填“左”或“右”)方,离O点距离为______________。
6.在抗洪抢险中,战士驾驶冲锋舟救人,假设江面是平直的,洪水沿江而下,水流速度为5m/s,舟在静水中的速度为10m/s,战士救人地点A离岸边最近点O的距离为50m,问:
(1)战士要想通过最短的时间将人送上岸,最短时间是多少?
(2)战士要想通过最短航程将人送上岸,战士应使船头与岸成多少度角?
(3)战士要想将人送达下游离O点距离为50m的B点处,且航线沿AB直线,战士控制船头与岸成多少度角时才能使船在静水中航速变为最小?在此情况下,船在静水中航速最小为多少?
(4)如果水流速度是10m/s,而舟在静水中的航速是5m/s,战士想通过最短的距离将人送上岸,这个最短距离是多少?

第2节运动的合成与分解
【阅读指导】
1.
垂直于河流方向的运动随河流平行于河岸方向的运动
2.
沿速度v方向的匀速直线运动沿速度v2方向的匀速直线运动
沿速度v1方向的匀速直线运动
3.矢量和平行四边形法则
4.运动的合成运动的分解
5.不变
【课堂练习】
1.BCD2.D3.C4.V=VT/tanθ
5.V≈1.89m/s

6.
船头正对对岸时时间最短t=50s位移s≈223.6m
船头与河岸成600角,渡河所用时间t≈57.7s