88教案网

你的位置: 教案 > 小学教案 > 导航 > 加法交换律教案

小学加法教案

发表时间:2020-12-24

加法交换律教案。

课题P28/例1(加法交换律)
课时1班级
一、教材内容分析
1.人教版第三单元第一课时。
2.学生在前面的学习中,已经接触到了大量的加法交换律的例子,这些具体经验是学生学习本节内容的认知基础。通过本节课的学习,可以使学生加深对加法运算的理解,同时本节知识也是学生今后进一步学习不可或缺的基础。教材不再仅仅给出一个数值计算的实例,让学生通过计算发现规律。
3.本节课是从李叔叔骑自行车旅行的情景引出例题,帮助学生体会运算定律的现实背景,让学生借助解决实际问题,进一步体会和认识加法交换律。学生经历由个别到一般、由具体到抽象的认知过程,引导学生由感性认识上升到一定的理性认识。
二、教学目标(知识与技能、过程与方法、情感态度与价值观)
1.探索和理解加法交换律,并能够用字母来表示加法交换律。在学习用符号、字母表示自己发现的运算定律的过程中,培养符号感和推理能力,逐步提高抽象思维能力。
2.经历探索加法交换律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出加法交换律。
3.在数学活动中获得成功的体验,进一步增强学习数学的信心,培养独立思考和探究问题的意识和习惯。
三、学习者特征分析
新课程理念告诉我们,数学教学是数学活动的教学,小学生学习数学是自我探索、体验、建构的过程。所以我们要从丰富学生的数学学习体验、促进学生主动建构的目的出发,结合学生的心理规律和认识背景,将简单、静态、结果性的教材内容,设计成丰富、生动、过程化的教学内容。让学生明白数学知识发生、发展、形成的全过程。
四、教学策略选择与设计
观察发现,举例论证,归纳概括
五、教学环境及资源准备
ppt多媒体课件
六、教学过程
教学过程教师活动预设学生行为设计意图及资源准备
一、情境导入观察主题图,根据条件提出问题
(1)李叔叔今天一共骑了多少千米?
(2)李叔叔三天一共骑了多少千米?
等等。
教师根据学生提出的问题板书。

教师巡视,找出课堂上需要的答案,找学生板演。
学生观察主题图

练习本上用自己的方法列出综合算式,解答黑板上问题。
创设生活情景,让学生在熟悉的旅行情境中,观察获取信息,提出问题,激活学生的思维,为学生体会运算定律提供现实背景。
二、探索新知根据学生的举例,进行板书。
通过这几组算式,你们发现了什么?

试着再举出几个这样的例子。

观察列举出的等式,说一说你们发现了什么

教师根据学生的小结板书
你能用自己喜欢的方式表示出加法交换律吗?
板书:a+b=b+a

学生观察第一组算式,发现特点。
引导学生观察第一组算式,总结出:
40+56=56+40
学生举例

学生之间交流总结。

学生用多种形式表示。
符号表示:△+☆=☆+△
让学生通过解决实际问题,亲自感受到两个加数交换位置,表示的意义相同,计算结果也相同。
三、巩固练习1、课本第28页“做一做”
2、课本练习五第1题让学生独立完成,给学生充分思考的空间。
四、全课小结学生小结本节课学习的加法的运算定律。
今天这节课你们都有什么收获?
板书设计:
加法交换律
40+56=96(千米)56+40=96(千米)
40+56=56+40
七、教学反思

扩展阅读

乘法交换律和结合律


每一位任课老师,为了能够给学生给一个最简单易懂的教学思路。就必须编写一份较为完整的教案,这样有利于我们准确的把握教材中的重难点。从而在课堂上与学生更好的交流,你们有没有写过一份完整的教学计划?小编特地为您收集整理“乘法交换律和结合律”,仅供您在工作和学习中参考。

教学内容:

人教版义务教育教科书数学四年级下册第三单元第一节内容。

课程标准:

《数学课程标准(2011版)》学段目标:掌握必要的运算技能;在观察、实验、猜想、验证等活动中,发展合情推理能力。《义务教育数学课程标准(2011年版)》在课程内容的第二学段中提出:探索并了解运算律,会应用运算律进行一些简便运算经历与他人交流各自算法的过程,并能表达自己的想法。

教学目标:

1.理解加法交换律和乘法交换律的含义,能用字母式子表示加法交换律和乘法交换律。

2.经历交换律的探索过程,体会观察发现、猜测验证、归纳概括的数学学习方法,发展合情推理能力。

3.在自主探究、合作交流的过程中,体会数学研究的乐趣。

重点难点

通过观察、猜测、验证、归纳概括出加法和乘法交换律,发展合情推理能力。

教学过程:

一、谈话引入

1.以本班那女生人数为例复习加法意义。

2.口算比赛,质疑引思:在刚才的计算中,你有什么发现?

二、新知探究

1.提出猜想。

只要是两个数相加,交换它们的位置,和都不变吗?也许有不同的意见,引导学生展开验证活动。

2.举例验证。

(1)引导学生口头举例,计算两个算式,看他们的结果是否相等。

(2)分头举例。给学生一、两分钟时间,举出像这样的例子,并汇报。引导学生明确只有足够多,比较全面的例子才能证明结论的正确性。

(3)得出结论:两个数相加,交换加数位置,和不变。

3.再次提出猜想:得到加法交换律这个结论后,你有没有产生什么联想?学生质疑,两数相减、相乘、相除,交换它们的位置,结果会是怎样的呢?

4.验证结论。

(1)举例验证。学生独立完成,有困难或疑问可以和同学商量,或者向老师提问。

(2)汇报成果。第几个猜想是成立的?说出理由。

(3)就学生中可能出现的不计算,直接用等号连接两个算式的做法,强调研究的真实性。

5.结合加法和乘法的意义理解交换律。

你有什么办法说明交换两个加数的位置,和确实是不变的呢?

结合线段图和生活实例来说明结论的正确性。

6.唤起原有经验,完善认知结构。

我们以前在哪里见过加法和乘法的交换律?回顾小学数学学习经历中关于加法交换律和乘法交换律的内容,建立起新旧知的联系。

三、巩固练习

1. 16+35=35+( )

308+52=( )+308

5678287=( )5678

(现在为什么可以直接填写?)

25○16=16 ○25 ○可以填什么?

2. 用字母表示运算定律。

( )+( )=( )+( ),( )( )=( )( )

你想填什么数?写得完吗?有没有一种办法把所有情况都表示出来呢?

四、全课总结谈收获

通过学习,你有什么收获?

《乘法结合律和交换律》教学设计


《乘法结合律和交换律》教学设计
一、教学内容:北师大版四年级上册数学第二单元P45-P46
二、教学目标:
1、经历探索过程,发现乘法结合律和交换律,并用字母表示。
2、在理解乘法结合律和交换律的基础上,会对一结算式进行简便计算。
3、感受数学探索的乐趣,培养自主探索问题的能力。
三、教学重、难点
1、重点:探索、发现、理解和应用乘法结合律和交换律。
2、难点:乘法结合律和交换律的探索过程。
四、教学过程
(一)口算比赛,激发学习兴趣
1、出示口算题
5×225×425×8125×8
2、师:以后在计算乘法时,一般看到“5”想到2,看到“25”想到4,看到“125”想到8;因为这样的两个数相乘能整到十、整百、整千数,这样可以快速计算。
3、谈话引入:我们在前面已学过乘法的计算,在教学运算中,有许多有趣的规律,这节课请同学们和老师一起去探索,看看你能发现什么?
4、板书:探索与发现(二)
(二)创设情境,发现问题
1、多媒体出示情境图
2、估一估
师:请大家认真观察,估一估这个长方体是由多少个小正方体搭成的?
3、算一算
师:谁估计的准确呢?请同学们在本子上算一算,比一比看谁做的又对又快。
4、交流算法。
师:谁愿意把你的办法介绍给大家?学生汇报,汇报时说一说自己是怎样想的。
师板书:(3×5)×4=60(个)
3×(5×4)=60(个)
(三)比较算式的特点,发现规律
1、刚才两位同学不同的方法解决了这个问题,现在请同学们一起观察这两个算式,看看你能发现什么?
2、学生汇报:略
3、小结:(3×50)×4=3×(5×4)
(四)提出假设,举例验证
1、师:用别的三个数这样计算会不会结果也相同呢?请在本子上举例计算。
2、学生举例
同桌之间互相交流?
3、集体交流
谁愿意介绍一下你们小组举例的情况?
(五)概括规律
1、从刚才大家所举的例子看,每一组的结果都是相同的。这样的例子多不多?能举的完吗?
2、如果用字母a、b、c分别表示乘法算式中的三个数字,你能写出所发现的规律吗?
板书(a×b)×c=a×(b×c)
板题:乘法结合律
(六)运用规律,解决问题
1、比较(3×5)×4=603×(5×4)=60两个算式,哪个更简便?
2、看来运用乘法结合律可以使一些计算简便。
3、练习:P46“试一试”的题目
学生独立完成,集体订正。
(七)探索乘法交换律
1、出示两组数据
4×5=5×412×10=10×12
2、师:认真观察,看看你有什么新发现?
3、学生汇报。
4、学生举例验证。
师:你能举出像这样的例子吗?
5、师:如果用字母a、b表示两个数,你能写出发现的规律吗?
6、板书:a×b=b×a
板题:乘法交换律
三、巩固练习
1、(完成课本第46页练一练第1题)
学生口答,集体订正。
2、应用乘法结合律和交换律,快速计算下面各题。
25×17×413×8×128(25×125)×(8×4)
(1)学生独立完成,个别板演。
(2)订正时让学生说说运用什么运算定律。
四、总结:这节课你有什么收获?
五、学生读课本第45、46页,质疑。
六、作业:课本第46页第2题。
探索与发现(二)
乘法结合律乘法交换律
(3×4)×5=60(个)6×9=9×6
3×(5×4)=60(个)7×8=8×7
(3×4)×5=3×(5×4)
(a×b)×c=a×(b×c)a×b=b×a

乘法的交换律和结合律


教学内容:教材第8l一83页例1、例2和“练一练”,练习十七第1—4题。

教学要求:

1.使学生初步理解和掌握乘法交换律和乘法结合律,并能用字母表示。

2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。

教学过程:

一、揭示课题

我们在加法里,学过两个运算定律。谁还记得是哪两个运算定律?什么是加法交换律?用字母怎样表示?

什么是加法结合律?用字母怎样表示?

乘法也有类似的运算定律,这就是今天要学习的乘法交换律和乘法结合律。(板书课题)

二、教学乘法交换律

1.教学例l。

(1)出示例1及挂图。

提问:请同学们看一看,有几个几张?怎样算一共多少张?[板书:4x3=12(张)]

还可以怎样算一共多少张?[板书:3x4=12(张)]

(2)这两种算法都是求的什么?结果怎样?4x3和3x4有怎样的关系?(板书:4x 3=3x4)

这两个算式有什么相同和不同的地方?把4和3交换位置相乘,积怎样?

2.题组的计算、比较。

(1)用小黑板出示第8l页下面的题组。

(2)让学生计算,比较每组两个算式的结果,在课本上o里填上适当的符号。

学生口答练习结果,老师在o里板书符号。

(3)提问:第一组里两个因数15和4相乘,交换因数的位置再乘,积有什么特点?第二组的两个算式之间有什么联系和特点?第三组呢?

3.归纳乘法交换律。

这三组算式里,每组两个算式之间有什么共同的特点?

从这些例子里你能看出有什么规律吗?

老师总结乘法的交换律,说明这是乘法运算里的一条定律。

让学生读书上的乘法交换律结语。

4.用字母表示乘法交换律。

乘法交换律也可以用字母表示。如果用口、6表示两个因数,应该怎样表示乘法交换律?(板书:axb=bxa)

追问:axb=bxa表示的是什么意思?

5.认识乘法交换律的应用。

(1)我们学过用交换因数的位置再乘一遍的方法来验算乘法。想一想,为什么可以这样验算?这是应用了什么定律?

(2)做“练一练”第1题。

指名一人板演,其余学生做在练习本上。

集体订正。你是怎样看出前面的乘法计算是不是正确?

三、教学乘法结合律。 、

1.教学例2。

(1)出示例2。

让学生按运算顺序计算。

提问:第(1)题先算什么,再算什么?第(2)题呢?

指出:这两道题都先算括号里的,再算括号外面的

(2)比较两个算式的结果。

提问:这两个算式的结果怎样?[板书:(14x12)x5=14x(12x 5)]这两个算式有什么相同和不同的地方?它们的积有什么特点?

2.题组计算、比较。

(1)用小黑板出示第83页上面三行的三组题。

提问:第一组里两个算式有什么相同和不同的地方?第二组和第三组呢?

(2)大家计算一下每组里两个算式的积,看看它们的积有什么关系,在书上o里填上适当的符号。

学生口答,老师在小黑板上o里板书等号。

3.归纳乘法结合律。

提问:这三组算式里,你看出有什么共同的特点吗?

从上面的例子里,你发现了什么规律吗?

老师总结乘法结合律,说明这也是乘法的一条运算定律。

让学生读书上的乘法结合律。

4.用字母表示乘法结合律。

如果用a、b、c分别表示三个因数,你能根据上面的例子,用字母表示乘法的结合律吗?[板书:(axb)xc=ax(bxc)]

追问:这个字母式子表示的是什么运算定律?你能看着这个式子说说它表示的是什么意思吗?

四、巩固练习

1.这节课学习了什么内容?谁来说一说什么叫做乘法的交换律?乘法的结合律呢?

2.“练一练”第2题。

小黑板出示,指名一人板演;其余学生填在课本上。

集体订正。结合订正让学生说明理由。

3.练习十七第2题。

学生口答。

结合判断提问:为什么2lx 24=42x12不是应用的乘法交换律?

4x5x7=5x4x7是把哪两个因数交换位置的?

3x2x1=3+2+1为什么不是应用的乘法交换律?

4.练习十七第3题。

学生口答。

结合判断提问:为什么7x(8x 6)=7x(6x8)不是应用的乘法结合律?

(3x2)xl=3+(2+1)为什么也不是应用的乘法结合律?

第四小题12x4x 5x3里的因数是怎样结合起来相乘的?

五、课堂作业

练习十七第1、4题。

苏教版数学四年级上册教案 加法交换律和加法结合律


众所周知,一位优秀的老师离不开一份优质的教案。即使每天晚上一两点都要坚持制定出一份最详细的教学计划。上课才能够为同学讲更多的,更全面的知识。那么一份优秀的教案应该怎样写呢?以下是小编收集整理的“苏教版数学四年级上册教案 加法交换律和加法结合律”,希望对您的工作和生活有所帮助。

教材分析:

本教材是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。学生从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律的基础。教材安排这两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。教材有意识地让学生运用已有经验,经理运算律的发现过程,让学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。

“想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算律的理解;接着通过题组对比和凑整等练习,为学习简便计算作适当渗透。

教学目标:

1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。

教学准备:配套课件。

教学过程:

一、课前谈话。

有牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。引导学生得出:要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。

设计意图:由科学家从一个平常的现象得出伟大的发现,引导学生应注意观察身边的一些平常的、习以为常的现象,并从中的出一些规律,对学生进行良好学习习惯的教育。

二、教学加法交换律。

1、随着气候渐渐转凉,从下个月开始,同学们都将投入到冬季锻炼中去了。电脑出示第54页的例题,这是某个班级进行冬锻的情况,提问:从这张图片中,你获得了哪些数学信息?

你能根据这些信息,提出几个用加法计算的问题吗?根据学生的回答,电脑依次出示:①参加跳绳的一共有多少人?

②参加活动的女生一共有多少人?

③跳绳的男生和踢毽子的女生一共有多少人?

④参加活动的一共有多少人?

设计意图:从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生的发散性思维,并培养学生的问题意识。同时,也符合新课程“创造性使用教材”的理念。

2、今天这节课,我们就一起来研究其中的这两个问题:

在黑板上张贴:参加跳绳的一共有多少人?

参加活动的一共有多少人?

我们先来解决第一个问题:参加跳绳的一共有多少人?

3、你们能马上口头列式并口算出结果吗?

指名回答,教师板书:28+17=45,追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:17+28 =45(人)

为什么这两个算式的结果一样?

4、你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28

仔细地观察一下这两个算式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?

5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?

6、我们再仔细的观察这几个算式,从中你们有什么发现?你们能用一个算式来表示你们的发现吗?

教师巡视,并作相应的辅导,在学生交流后板书出示:两个数相加,交换加数的位置,它们的和不变。并板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?

7、同学们都自己用自己的喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:a+b=b+a。

8、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。

小结研究方法:刚才我们在研究加法法交换律的时候,我们是怎样一步一步开展研究的?引导学生能得出:列式计算——观察思考——猜测验证——得出结论。

9、练习:

完成想想做做第一题前面两小题。

设计意图:教师是教学的组织者和引导者,而不仅仅是解题指导者。本环节的设计,层层递进,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用字母表示,最后还归纳出了研究方法,都让学生有一种成就感。

三、学习加法结合律。

1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题“参加活动的一共有多少人?”看看我们有没有新的发现?

2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。

3、学生回答,教师有意识地板书:

(28+17)+23=68(人)

28+(17+23)

(28+23)+17

28+(23+17)

(23+17)+28

23+(17+28)

让回答的同学说说这么列式是怎么思考的?

下面,我们就来针对这两个算式开展研究:(28+17)+23 28+(17+23)

设计意图:本环节又是“用教材教”的一个很好体现,比较好地注意了关注学生的生成与教师预设之间的联系,并很好地引导到需要的算式。

4、根究研究方法,接下来我们应该进行哪一步?(观察思考)那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:

(28+17)+23=28+(17+23)

5、电脑出示:下面的Ο里能填上等号吗?

(45+25)+13Ο45+(25+13)

(36+18)+22Ο36+(18+22)

学生回答,教师板书:(45+25)+13=45+(25+13)

(36+18)+22=36+(18+22)

6、看着黑板上的板书,你们从中有了什么新的发现?学生小组交流后大堂再交流,教师张贴:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。

7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。

板书:(a+b)+c=a+(b+c)

教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。

8、完成“想想做做”第1题的后面两个小题。

设计意图:通过引导学生运用得到的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。

四、巩固练习。

1、完成“想想做做”第2题。

第4小题引导学生发现是运用了加法交换律和加法结合律。

2、完成“想想做做”第3题第1行。

3、插入“朝三暮四”的故事,让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老头采用了加法交换律。

4、完成“想想做做”第4题。

使学生初步感受应用加法运算律可以使计算简便。

设计意图:几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。

五、课堂总结。

通过本节课的学习,你有什么新的收获?

设计意图:体现了教师的主导作用和学生的主体作用,使学生在自己的整理总结中再次巩固了本节课的重难点。

四年级数学加法交换律教案精选


老师在上课时经常会遇到难解决的问题而耗费半节课的时间吧,通常大家都会准备一份教案来辅助教学。从而以举一反三的方式学会其他的知识点,那怎样写才能有一份高质量教案呢?小编特地为你收集整理“四年级数学加法交换律教案精选”,欢迎分享给你的朋友!

四年级数学加法交换律教案【篇1】

教学内容:《义务教育课程标准实验教科书数学(四年级下册)》第27~28页。

教学目标

1、探索和理解加法交换律,并能灵活运用。

2、感受数学与现实生活的联系,并能用所学知识解决简单的实际问题。

教学重、难点

从现实的问题情景中抽象概括出加法交换律。

教学过程

一、创设情景,提出问题

师:同学们,今天是什么节日?

生:植树节。

师:对呀,春天是植树的季节(展示课件)。咱们学校也组织了植树活动,一共有多少名同学参加这次活动,它们一共要植多少棵树,你们想不想知道?

生:想。

师:(展示课件。)这是我们学校植树的信息。

①这次参加植树活动的男生有36名,女生有22名。

②男生要植树60棵,女生要植树44棵。

你能算出有多少名同学参加植树活动,一共要植多少棵树呢?

二、自主探究,寻找规律

1、体验加法的意义。

师:请你在练习本上做一做(做完的可以同桌交流)。

生汇报,师板书。

①36+22=58(名)22+36=58(名)

②60+44=104(棵)44+60=104(棵)

师:这两个问题都是用加法计算的,谁来说一说,你为什么要用加法?

学生说想法。

师:这两道题都是要把两个数合并成一个数,就要用加法计算。

师:在日常生活中,哪些问题还要用到加法来计算,谁来举一个例子。

一生举例并列式解答。(师板书。)

师:生活中像这样用加法解决的问题多不多?说一个给同桌听听。

2、教学加法交换律。

师:现在请同学们观察这三组算式,你能发现些什么?把你的发现在小组内交流一下。

小组交流汇报。

(学生汇报时,让学生结合第一组算式说一说,师根据学生的汇报板书:

36+2222+36。)

师:大家看,这两个加数交换了位置,和相等。这两个算式可以怎么样?(板书:=)

师:第二组算式可以怎样写?

(生答,师板书:60+44=44+60。)

第三组算式呢?根据学生的回答,师板书。

师:大家看,这几个小组总结出了这几道算式中的两个加数交换了位置以后,它们的和不变。你们小组的结论和它们一样吗?谁能再来说一说。

师:这三组算式都是两个加数交换了位置,它们的和没有变。是不是任意的两个数相加,都有这么一个规律呢?谁能来任意说两个数?

生:38+56

师:咱们一起来验证一下。

师板书:

师:这两个数相加符合这个规律,其余的数是不是也有这个规律,请同学们先自己在练习本上举几个例子验证一下,然后在小组内交流一下,好吗?

小组交流,汇报。师板书。

师:刚才这么多的小组说出了这么多的算式,哪个小组还愿意把你们的结论告诉同学们。

师:刚才,经过同学们的努力,发现了不管这两个加数是什么,只要两个加数交换了位置,它们的和不变。我们把这个规律叫做加法交换律。(板书。)

学生齐读一遍。

师:这就是今天要学习的内容。(板书课题:加法交换律。)

3、学习用喜欢的方法表示。

师:刚才是咱们自己发现了加法的这个重要的规律,你能不能用喜欢的方法表示出来。

师:先把你的想法和同桌交流一下。谁来说一说你的想法。

生汇报,师板书。

a+b=b+a

(师:你能告诉同学们a、b分别表示什么吗?提示学生这两个字母可以是任意的两个数。)

甲+乙=乙+甲

△+○=○+△

师:同学们说出了这么多的办法,通常情况下,我们可以用字母表示。学生齐读一遍(a+b=b+a)。

4、加法的应用

师:咱们知道了加法交换律,并且会用自己喜欢的方法来表示。请同学们想一想,以前学过的知识中哪些地方用到过加法交换律?

生:验算加法时。

三、练习

师:通过努力,同学们有学会了新的知识,掌握了新的本领,老师真为你们高兴,你们呢?还有更高兴的事情呢?

师:(展示课件。)你们看,森林王国里的小鸟和小鸭,想和同学们来交朋友,你们愿意吗?不过他们可是有备而来,先看看大家的真本领。怎么样,敢不敢来试一试?

(课件出示。)

一、你能在括号里填上合适的数吗?试试看吧。

766+589=589+()

300+600=()+()

257+()=474+257

()+55=55+420

a+15=()+()

()+65=()+35

二、仔细看一看,

270+380=380+270

b+800=800+b

三、运用加法交换律,你能写出几个算式?写写试试吧。

25+49+75=()+()+()

学生写出算式以后,让学生观察这些算式,哪两个数交换了位置,在这些算式中,你认为哪一道计算起来比较简单?说说你的想法。

师:小鸟和小鸭的问题都解决了,它们高兴得不得了,想请同学们参观它们的家园,高兴吗?(课件展示。)

四、小结

师:这节课你学到了哪些新知识?

四年级数学加法交换律教案【篇2】

教学设计

教学内容:苏教版国标本四年级(上)教材p56-58页内容

教学目标:

1、使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交     换律和结合律。

2、使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解 决进行比较和分析,发现并概括出运算律。

3、使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

教学重点:

使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:

使学生经历探索加法交换律和结合律的过程,发现并概括出运算规律。

课程资源的开发与利用:多媒体课件

教学过程:

一、 创设情境,初步感知

1、课前谈话(讲“朝三暮四”的故事)

听了这个故事,你想说些什么呢?(交换、不变)

2、情境引入

(1)谈话:同学们喜欢体育活动吗?谁来说说你最喜欢哪些体育活动?(自由说)

(2)媒体出示情境图,从图中你知道了哪些数学信息?(生自由说)

(3)师:你能提出用加法计算的问题吗?

①参加跳绳的一共有多少人?

②参加活动的女生一共有多少人?

③跳绳的男生和踢毽子的女生一共有多少人

④参加活动的一共有多少人?

(2)我们先来解决第一个问题:参加跳绳的一共有多少人?

你们能马上口头列式并口算出结果吗?

指名回答,教师板书:28+17=45(人 ),追问:还有不同的算式吗?在学生回答后,教师完成板书:17+28=45(人)

观察比较这两个不同算式的计算结果。提问:你们发现了什么?

引导学生说出:28+17和17+28的结果都是45。

教师接着指出:这两道算式的得数相同,我们可以把这两道算式写成这样的等式。(板书:28+17=17+28)

(如果有学生说出这是加法交换律,就问你能说说什么是加法交换律吗?如果有学生说出:交换加数的位置和不变,就及时指出,我们不能根据一个例子就做出一般的结论,应该多举几个例子,多观察几组不同数目的算式,才能从中发现规律。)请学生根据这个等式完成第二个问题。下面请同学们汇报前置性作业第二题。

2、在列举中验证规律

象这样的等式你会写吗?试试看,越多越好。开始:汇报前置性作业第三题。

谁愿意来交流。

提问:你写了几个?说说看 。

根据学生回答,教师相机板书算式,

有没有比她多的 。

提问:指着板书,你们写的时候有没有什么规律?

学生能说到加数不变,交换位置,结果是一样的就行。

按照这样的规律,如果老师给你时间你还能写吗?

能写几个?无数个,写不完,用省略号表示(板书……)

3、在反思中概括规律

有这样规律的算式很多,写不完,谁能用一句话概括出这个规律。(四人一组讨论,然后交流。)用课件出示加法交换律的文字表术法。用语言表示加法交换律很长,又比较难记。你能用自己喜欢的方法把这个规律简明的表示出来吗?

需要合作的同学,可以四人小组合作。教师巡视搜集信息。

估计情况:  甲数+乙数=乙数+甲数,……

请同学起来交流:

如果没说到:假如我们用a来表示第一个加数,用b来表示第二个加数,那怎样表示这个规律呢?板书:a+b=b+a。

小结:用图形,用字母,用文字来表示这类等式都起着相同的作用,简单明了的表示出这类等式的规律:(用手势比划)“交换两个加数的位置,和不变”。这一运算规律,我们称为“加法交换律”。习惯上,我们用小写字母表示加法交换律a+b=b+a。

指出:我们过去学过用交换加数的位置再加一遍的方法来验算加法,就是用了加法交换律。

5.看第二个问题,谁能马上列出算式,17+23,马上说出不同的算式?应用了?(加法交换律)

三、学习加法结合律。

1.在情境中感受规律

刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究“参加活动的一共有多少人?”看看我们有没有新的发现?

你们会列综合算式解决这个问题吗?再自备本上做,计算出结果。

交流:估计又学生列式28+17+23=68(人),你先算的是什么?(跳绳的人数)添上小括号表示强调先算,板书:(28+17)+23(人)

有没有不同的解法?估计有学生有列式28+(17+23)追问:这样列式先算的是什么?(女生人数)

如果还出现其他算式基本上都归为两种思路,先算跳绳的人数或先算女生的人数。

观察比较这两个不同算式的计算结果,引导学生说出计算结果是一样的,这两个算式也可以写成等式。生一起说,师板书:(28+17)+23=28+(17+23)

提问:它符合加法交换律吗?(不符合,加数的位置没变)

提问:加数的位置没变,那究竟加数的什么发生了变化呢?(相加的顺序不同)

引导学生一起说出:左边的算式是先把前两个加数相加,再加第三个数,右边的算式是先把后两个加数相加,再同第一个数相加。但他们的结果是一样的。

2、在计算中验证规律。

再来看这样两组算式:算一算,下面的ο 里能填上等号吗?汇报前置性作业第四题。

(45+25)+13ο45+(25+13)

(36+18)+22ο36+(18+22)

如果有学生直接回答结果是一样的,教师添上= 请学生分组验算。

学生回答,教师板书:(45+25)+13=45+(25+13)

(36+18)+22=36+(18+22)

那现在老师来写个算式(28+46)+27=你能按照上面三个等式的规律写出等号后面的吗?

你还能写出类似的等式吗?汇报前置性作业第五题。

指名几个学生回答,追问:你是怎么想的?

回答要点:先算前两个加数的和和先算后两个加数的和的结果是一样的 。

有这样规律的算式多吗?板书……

3、揭示加法结合律

观察黑板上的几个等式,你能发现等号两边的算式什么没变?什么变了吗?

小组讨论:(要点:三个加数没变,加数的位置没变,运算顺序变了,结果没变)

提问:你们组发现了什么规律?谁来总结一下这个规律。这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。你能用a,b,c,表示加法结合律吗?这里的a,表示?b表示?c表示?

板书:(a+b)+c=a+(b+c)

跟老师一起读一遍。

指出:我们过去学过的加法的某些口算方法就是应用了加法结合律。例如:

9+7想:

=9+(1+6)

=(9+1)+6

=10+6

=16

三:巩固内化,拓展应用。

1、课件出示想想做做第1题。

师:下面的加法等式各应用了什么运算律?先说给同桌听听。

师:第一题运用了加法的交换律,第二、三题应用了加法的结合律,我们再来看最后一道等式,先运用了加法的交换律,交换加数48和25的位置,再应用了加法的结合律。所以在一道加法算式中,有时我们也可以同时应用两种运算律。

2、课件出示想想做做第2题:

师:请同学们在课本上独立完成以上填空题。再说说你是怎样想的,为什么能这么填写。

师:第三、四两道算式 ,我们都可以有两种填法,一种是只用加法的结合律,一种是同时使用加法的交换律和结合律。

3、课件出示想想做做第4题。

师:下面我们进行一场比赛,老师这有4道题,每组做一道,比一比,哪一组做得最快。

(1)38+76+24                    (3)(88+45)+12

(2)38+(76+24)                  (4)45+(88+12)

师:对于这样的比赛结果,你有什么话想说?

比较每组中的两道题有什么联系?哪道题计算更简便些?

师:通过计算,我们发现,每组两道算式中的第二道算式相对来说比较快,因为我们在计算时第一步都可以凑整,计算的结果是100。从中我们可以发现应用了加法的运算律可以使计算简便。

4、完成想想做做第5题

师:哪两片树叶上的和是100?连一连。想一想,怎样的两个数相加和是100。

师:我们在找的时候,是先看个位上的数是几,然后再看哪一个数的个位上的数和它可以凑十,因为凑十是凑整的基础。例如75的个位上是5和25的个位上5可以凑十,然后再看两个数的十位上的数相加是否得九。7+2得9,再加上个位进上来的1,两个数相加的和就是100。在今后的计算中,同学们要做个有心人,在计算之前先观察一下,看看能否运用我们所学过的运算律,把能凑成整十、整百或整千的数先计算,这样可以使计算变得简便,有助于提高计算的速度和正确率。)

5、游戏:谈话:我们班有60位学生,那么老师就是班级中61号,老师想和班级中的9、19、29、39、49、59号交朋友。猜一猜老师为什么要和他们交朋友?(凑整,简便)

6、你想和班级中哪几号同学交朋友?

四、课堂总结

师:今天这节课,通过同学们的共同努力,我们一起认识了加法交换律和结合律,那么减法、乘法、除法有没有运算定律呢?今后我们再研究。不管学习什么内容,只要我们每一位同学都要相信自己能行,只要自己努力去学,就一定会学有所成。

板书设计:

加法的运算定律

加法交换律                                 加法结合律

28+17=45(人) 17+28=45(人)   (28+17)+23  28+(17+23)

28+17=17+28                 =45+23       =28+40

17+23=23+17                 =68(人)    =68(人)

学生汇报的算式                  (28+17)+23=28+(17+23

(45+25)+13=45+(25+13)

(36+18)+22=36+(18+22)

a+b=b+a                                (a+b)+c=a+(b+c)

四年级数学加法交换律教案【篇3】

1、知识与技能:①结合具体的情境,引导学生认识和理解结合律的含义。

2、过程与方法:能用字母式子表示加法结合律,初步学会应用加法结合律进行一些简便运算。

3、情感态度与价值观:①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。②培养学生观察,比较,抽象,概括的初步思维能力。

1、根据例2情境图中信息列出算式。

5、对比上面的两道算式,你发现了什么?用自己的话说一说。

(二)学生自学(学生对照自学提纲,自学教材P29页例2,并完成自学提纲问题,将不会的问题做标注)

(学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)

387+425=( )+ 387 525+( )=137+ 525

(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解。)

(引导学生正确地计算,鼓励学生分工合作,探索交流,教师巡回辅导,发现、收集学生存在的问题)

1、解答各小组自学中遇到不会的问题。

(1)让学生提出不会的问题,并让学生解决。

(2)教师引导学生解决学生还遗留的问题。

(3)如何用字母表示加法交换律和结合律?

(4)用字母表示这些运算定律有什么优点?

2、教师有针对性地请不同做法的同学汇报自己的解题思路与方法。

1、根据加法结合律填空题。

2、连线。

3、简便计算下面各题。

课堂小结:谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

(1)450+320=( )+ 450 65+95=95+( )

(2)( )+ 100 =100+150 250+( )=125+250

2、下面的哪些算式符合加法结合律,哪些算式符合加法交换律。

(3)10 + 20 + 30 + 40 =10 + (20 + 30) + 40

4、简便计算。

四年级数学加法交换律教案【篇4】

教学目标:

1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。教学难点:使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。

教学准备:配套课件。

教学过程:

一、课前谈话。有牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。引导学生得出:要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。设计意图:由科学家从一个平常的现象得出伟大的发现,引导学生应注意观察身边的一些平常的、习以为常的现象,并从中的出一些规律,对学生进行良好学习习惯的教育。

二、教学加法交换律。1、随着气候渐渐转凉,从下个月开始,同学们都将投入到冬季锻炼中去了。电脑出示第54页的例题,这是某个班级进行冬锻的情况,提问:从这张图片中,你获得了哪些数学信息?你能根据这些信息,提出几个用加法计算的问题吗?根据学生的回答,电脑依次出示:①参加跳绳的一共有多少人?②参加活动的女生一共有多少人?③跳绳的男生和踢毽子的女生一共有多少人?④参加活动的一共有多少人?设计意图:从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生的发散性思维,并培养学生的问题意识。同时,也符合新课程创造性使用教材的理念。2、今天这节课,我们就一起来研究其中的这两个问题:在黑板上张贴:参加跳绳的一共有多少人?参加活动的一共有多少人?我们先来解决第一个问题:参加跳绳的一共有多少人?3、你们能马上口头列式并口算出结果吗?指名回答,教师板书:28+17=45,追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:17+28=45(人)为什么这两个算式的结果一样?4、你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28仔细地观察一下这两个算式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?6、我们再仔细的观察这几个算式,从中你们有什么发现?你们能用一个算式来表示你们的发现吗?教师巡视,并作相应的辅导,在学生交流后板书出示:两个数相加,交换加数的位置,它们的和不变。并板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?7、同学们都自己用自己的喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:a+b=b+a。8、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。小结研究方法:刚才我们在研究加法法交换律的时候,我们是怎样一步一步开展研究的?引导学生能得出:列式计算观察思考猜测验证得出结论。9、练习:完成想想做做第一题前面两小题。设计意图:教师是教学的组织者和引导者,而不仅仅是解题指导者。本环节的设计,层层递进,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用字母表示,最后还归纳出了研究方法,都让学生有一种成就感。

三、学习加法结合律。1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题参加活动的一共有多少人?看看我们有没有新的发现?2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。3、学生回答,教师有意识地板书:(28+17)+23=68(人)28+(17+23)(28+23)+1728+(23+17)(23+17)+2823+(17+28)让回答的同学说说这么列式是怎么思考的?下面,我们就来针对这两个算式开展研究:(28+17)+2328+(17+23)设计意图:本环节又是用教材教的一个很好体现,比较好地注意了关注学生的生成与教师预设之间的联系,并很好地引导到需要的算式。4、根究研究方法,接下来我们应该进行哪一步?(观察思考)那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:(28+17)+23=28+(17+23)5、电脑出示:下面的里能填上等号吗?(45+25)+1345+(25+13)(36+18)+2236+(18+22)学生回答,教师板书:(45+25)+13=45+(25+13)(36+18)+22=36+(18+22)6、看着黑板上的板书,你们从中有了什么新的发现?学生小组交流后大堂再交流,教师张贴:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。板书:(a+b)+c=a+(b+c)教师揭示:这就是我们今天所学的第二个运算律加法结合律(板书:加法结合律)。8、完成想想做做第1题的后面两个小题。设计意图:通过引导学生运用得到的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。

四、巩固练习。

1、完成想想做做第2题。第4小题引导学生发现是运用了加法交换律和加法结合律。

2、完成想想做做第3题第1行。

3、插入朝三暮四的故事,让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老头采用了加法交换律。

4、完成想想做做第4题。使学生初步感受应用加法运算律可以使计算简便。设计意图:几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。

五、课堂总结。通过本节课的学习,你有什么新的收获?设计意图:体现了教师的主导作用和学生的主体作用,使学生在自己的整理总结中再次巩固了本节课的重难点。板书设计:

加法交换律

28+17=45(人)17+28=45(人)

加法结合律

(28+17)+2328+(17+23)28+17=17+28=45+23=28+40=68(人)=68(人)

(28+17)+23=28+(17+23)

(45+25)+13=45+(25+13)(36+18)+22=36+(18+22)a+b=b+a(a+b)+c=a+(b+c)

四年级数学加法交换律教案【篇5】

教学目的:

1、使学生在已学过的加法知识的基础上,理解并概括出加法的意义,对加法的认识从感性上升到理性。

2、进一步认识加法算式中各部分的名称及明确0在加法中的特殊性。

3、通过观察比较,理解并应用加法交换律,培养学生的初步归纳推理能力及应用能力。

4、在课堂中向学生灌输环保意识。

教学重点:掌握加法的交换律,理解加法的意义。

教学难点:加法意义的理解及概括。

教学用具:每位学生若干支笔(学生准备)、投影片、练习纸。

教学过程:

一、导入

今天同学们都把自己的笔按老师的要求准备好了,现在请同学们,数数自己的笔有多少支,然后把自己的笔都拿在手上。(学生活动)

现在请同学们把自己的笔和同桌的笔合并在一起,看看两个同学一共有多少支。(学生活动)

老师很想知道你们的两束笔合并成一束笔的结果,谁能告诉我?你能用一个数学算式来表示吗?(指名学生汇报,板书学生的算式)

同学们都用了加法算式来表示,那么这节课就让我们一起走进加法的天地,来了解加法的基本知识和规律。

(板书课题:加法的意义和运算定律)

二、新授

1、加法的意义的教学

(1)加法的意义

(出示例1及例1线段图)请同学们默读题目再在练习纸上解答,再想一想你为什么这样列算式?(学生解题)

(指名学生回答,板书学生的算式:137+357=494(千米)357+137=494(千米))

现在我们已经列了几个加法算式了,我们来观察算式,=左边的数称为什么?有几个?(加数,有两个)=右边的数称为什么?(和,有一个)

你能说说什么叫做加法吗?(小组讨论)

(学生汇报,得出并出示:把两个数合并成一个数的运算,叫做加法。)

反馈练习:(出示习题)列出算式,并应用加法的意义说说下面各题为什么要用加法算?

1、学校举办环保手抄报评比活动,三年级制作了47份,四年级制作了43份,三、四年级一共制作了手抄报多少份?

2、同学们为美化校园,低年级捐花67盆,高年级捐花85盆,全校共捐花多少盆?

(学生在练习纸上列算式,指名汇报)

(2)有关0的加法计算

(指导学生观察板书的算式)老师从这些算式中发现和都是比加数大的,那我就推想所有的加法算式中和都比加数大,谁能帮老师判断一下这个推想对吗?为什么?你能举出例子来吗?(板书例子:0+0=00+3=34+0=4)

原来老师的想法是错误的。从同学们举的例子我们又可以发现些什么呢?(小组讨论)

(学生汇报,得出并出示:任何数和0相加都得原数。)

2、加法交换律的教学

刚才我们在解答例1时,就有同学列出了两个算式,(指导学生观察算式)比较两种列法,137+357和357+137的计算结果是相等的,都是求北京到济南的铁路有多长,也就是说137+357=357+137。

出示:观察下面每组的两个算式,它们有什么样的关系?你能再举出几个这样的例子吗?

18+17〇17+18

124+235〇235+124

0+25〇25+0

(学生在练习纸上完成,指名学生汇报板书)

观察同学们举的这么多例子,你发现了什么呢?(小组讨论)

(学生汇报,得出并出示:两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律。)

现在同学们都学习了加法交换律了,(出示题目)那来判断下面各等式运用了加法交换律吗?为什么?

9+7=7+9()10+1=10+1()

2+0=0+2()20+8=2+26()

谁能告诉老师要判断等式符不符合加法交换律,我们必须怎样来判断呢?(两个加数的位置变不变,和变不变,等号两边的两个加数必须相同)

用语言表述加法交换律比较麻烦,大家想一想怎样能把这一规律表示得既简单有清楚呢?(用字母表示可以做到这一点)

如果用字母a和字母b分别表示两个加数,怎样表示加法交换律呢?(指名学生回答,板书a+b=b+a)

说明:a和b可以表示0、1、2、3、......中的任意一个数,用a+b=b+a就可以表示任意两个数相加,交换加数的位置,和不变,比如a+b=b+a可以表示2+1=1+2、137+357=357+137、18+17=17+18等等。

我们学习掌握加法交换律,目的在于更好地运用,实际上,在以前我们早就应用它解决计算问题了。同学们想一想,在哪些计算中用到了加法交换律?(笔算加法的验算方法)

(出示)用交换加数位置再加一遍的方法验算下题结果。

7896+53267=61063()

7896验

+53267算

61063

(学生在练习纸上完成)

三、巩固练习(机动)

(学生在练习纸上完成)

四、小结

今天学的知识,哪些在你的脑海里留下了深刻的印象?说给其他同学听听。

乘法交换律和结合律的应用


教学内容:教材第84页例3、例4和“练一练”,练习十七第5~7题。

教学要求:

使学生初步理解和学会应用乘法交换律、结合律进行简便计算的方法,并能对一些乘法算式用简便算法正确计算,培养学生采用合理、灵活的方法进行乘法计算的能力。

教学过程:

一、复习引新

1.什么叫做乘法的交换律?你能用字母表示吗?(板书字母表示的乘法交换律)

2.什么叫做乘法的结合律?你能用字母表示吗?(板书字母表示的乘法结合律)

3.口算。

15x2x12= 25x4x17= 35x2x9=

125x8x3= 45x2x8= 4x15x13=

提问:上面各题口算时为什么比较方便?(前两个因数相乘的积是整十、整百或整千数)

指出:连乘时如果两个数先乘得的积是整十、整百或整千数,再和第三个数相乘就比较简便。

4.引入新课。

应用刚才复习的乘法的交换律和结合律,可以使一些计算简便。这节课就学习应用乘法的交换律和结合律,进行简便计算(板书课题)。应用这两个运算定律进行简便计算时,就是要先把能乘得整十、整百或整千的数先乘起来,然后再计算就比较简便。请看下面的例题;

二、教学新课

1.教学例3。

(1)出示例3的第(1)、(2)题。

(2)请看第(1)题。(板书:23x15x2)

提问:三个因数里哪两个数相乘可以得到整十数的积?先算什么比较简便?[板书:=23x(15x 2)]为什么?应用了什么运算定律?

谁能说一说,这道题哪两个数相乘得整十数,应用乘法结合律先算什么?

让学生口算,老师板书计算过程。

提问:这里的简便算法是怎样想到的?

(3)再看第(2)题。[板书:125x(7x8)]

提问:这里哪两个数先相乘比较简便?要先算125x8,要把因数7和8的位置怎样变化?这就应用了什么运算定律?[板书:=125x(8x 7)]交换7和8的位置后,又要应用什么运算定律先算8乘1257

谁来告诉大家,怎样看出这道题是可以简便计算的?先应用乘法交换律怎样做,再应用乘法结合律怎么做?

哪位同学连起来说说看,用简便算法这道题要怎样想?(板书计算过程)

(4)提问:从上面两道题可以看出,在连乘里怎样的题可以应用乘法运算定律使计算简便?第(1)题应用了什么运算定律使计算简便?第(2)题应用了哪些运算定律使计算简便?

2.“练一练”第1题。

(1)提问每道题怎样算比较简便。

(2)指名三人板演,其余学生做在练习本上。

集体订正,让学生说一说每道题是怎样想的。

3.教学例4。

(1)出示例4。

提问:35乘以18不便口算。想一想,35和几相乘可以得十数?这就要把18看成2和几的积?[板书:=35x(2x 9)]

你能看出怎样算比较简便吗?这是应用了什么运算定律?

谁来说一说,用简便算法这道题要怎样想?

(2)小结:35和18相乘不便用口算时,把18看成2和9的积,应用乘法结合律,先算35乘以2得整十数70,就可以使计算简便。

4.“练一练”第2题。

(1)请大家按照例4这样的算法,说说“练一练”第2题里每道题怎样算。

(2)指名三人板演,其余学生做在练习本上。

集体订正,让学生说一说每道题是怎样想的。

小结:当两个因数相乘不便用口算时,如果一个因数看做几与几相乘的积之后,就能得到整十、整百的数,那么按刚才的算法就比较简便。

三、课堂练习

1.练习十七第5题。

指名四人板演,其余学生分两组,每组做一行的两道题。

先按照原来的运算顺序算一遍,再应用乘法的运算定律来简便计算。然后集体订正。

提问:这里四道题,都是哪一种算法比较简便?为什么这样算比较简便?

小结:在乘法计算时,如果有两个因数相乘的积是整十、整百的数,就可以应用乘法的交换律或结合律,把这两个数先乘,再和其他因数相乘,使计算简便。

2.练习十七第6题。

小黑板出示,让学生说一说每道题先算哪两个数相乘,应用的什么运算定律。

四、课堂作业

练习十七第6、7题。

四年级下册《加法交换律和结合律》导学案


四年级下册《加法交换律和结合律》导学案
一、教学内容:加法交换律和结合律P17——P18
二、教学目标:
1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。
2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。
3、培养学生的观察能力和概括能力。
三、教学重难点
重点:发现并掌握加法交换律、结合律。
难点:由具体上升到抽象,概括出加法交换律和加法结合律。
四、教学准备
多媒体课件
五、教学过程
(一)导入新授
1、出示教材第17页情境图。
师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?
师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!
2、获取信息。
师:从中你知道了哪些数学信息?(学生回答)
3、师小结信息,引出课题:加法交换律和结合律。
(二)探索发现
第一环节探索加法交换律
1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”
学生口头列式,教师板书出示:40+56=96(千米)56+40=96(千米)
你能用等号把这两道算式写成一个等式吗?40+56=56+40
你还能再写出几个这样的等式吗?
学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。
2、观察写出的这些算式,你有什么发现?并用自己喜欢的方式表示出来。
全班交流。从这些算式可以发现:两个数相加,交换加数的位置,和不变。
可以用符号来表示:△+☆=☆+△;
可以用文字来表示:甲数十乙数=乙数十甲数。
3、如果用字母a、b分别表示两个加数,又可以怎样来表示发现的这个规律呢?
a+b=b+a
教师指出:这就是加法交换律。
4、初步应用:在()里填上合适的数。
37+36=36+()305+49=()+305b+100=()+b
47+()=126+()m+()=n+()13+24=()+()第二环节探索加法结合律
1、课件出示教材第18页例2情境图。
师:从例2的情境图中,你获得了哪些信息?
师生交流后提出问题:要求“李叔叔三天一共骑了多少千米”可以怎样列式?
学生独立列式,指名汇报。
汇报预设:
方法一:先算出“第一天和第二天共骑了多少千米”:
(88+104)+96
=192+96
=288(千米)
方法二:先算出“第二天和第三天共骑了多少千米”:
88+(104+96)
=88+200
=288(千米)
把这两道算式写成一道等式:
(88+104)+96=88+(104+96)
2、算一算,下面的○里能填上等号吗?
(45+25)+13○45+(25+13)(36+18)+22○36+(18+22)
小组讨论。先比较每组的两个算式,再比较这三组算式,在小组里说说你有什么发现。
集体交流,使学生明确:三个算式加数没变,加数的位置也没变,运算的顺序变了,它们的和不变。也就是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
3、如果用字母a、b、c分别表示三个加数,可以怎样用字母来表示这个规律呢?
(a+b)+c=a+(b+c)
教师指出:这就是加法结合律。
4、初步应用。
在横线上填上合适的数。
(45+36)+64=45+(36+)
(560+)+=560+(140+70)
(360+)+108=360+(92+)
(57+c)+d=57+(+)
(三)巩固发散
1、完成教材第18页“做一做”。
学生独立填写,组织汇报时,让学生说说是根据什么运算律填写的。
2、下面各等式哪些符合加法交换律,哪些符合加法结合律?
(1)470+320=320+470
(2)a+55+45=55+45+a
(3)(27+65)+35=27+(65+35)
(4)70+80+40=70+40+80
(5)60+(a+50)=(60+a)+50
(6)b+900=900+b
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
师生交流后总结:学习了加法交换律和结合律,并知道了如何用符号和字母来表示发现的规律。
(五)板书设计
加法交换律和结合律
加法交换律加法结合律
例1:李叔叔今天一共骑了多少千米?例2:李叔叔三天一共骑了多少千米?
40+56=96(千米)(88+104)+9688+(104+96)
56+40=96(千米)=192+96=88+200
=288(千米)=288(千米)
40+56=56+40(88+104)+96=88+(104+96)
a+b=b+a(a+b)+c=a+(b+c)
两个数相加,交换加数的位置,和不变。三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
六、教学后记

四年级数学加法交换律教案(10篇)


今天栏目小编为大家带来了一篇关于“四年级数学加法交换律教案”的相关文章,相信一定会对你有所帮助。老师工作中的一部分是写教案课件,这就需要我们老师自己抽时间去完成。 教案和课件设计质量与教学效果密不可分。

四年级数学加法交换律教案(篇1)

教材分析及重难点:

教材开篇就给于我们一幅李叔叔骑自行车旅行的情境图,画出了旅行途中记录行程的情景。考虑到学生对自行车上的记录仪表比较陌生,所以画了一个仪表表面的放大图,并让小精灵作提示性介绍,进而打造出三道例题,分别求李叔叔上下午的路程和、前三天的路程和、后四天的路程和。其中小精灵说的话:李叔叔准备骑车旅行一个星期。对于解答例1无关紧要,但能为后面引出例2、例3埋下伏笔。例1和例2提供了概括加法交换律和结合律的具体事例。

例1是在主题图的基础上提出了要解决的问题。解答这个问题所需要的条件,都在主题图中。教学时可以让学生自己解答并交流。学生说出40+56和56+40这两个算式,一般不会有困难。由此引出加法交换律。让学生用语言表达加法交换律,感觉表述比较麻烦。顺水推舟引出符号、图形等得出加法交换律:a+b=b+a。之后,进而引导学生体会用字母能更简单明了地表示:任意两个数相加,交换位置和不变。例1下面的做一做可让学生独立完成。这样编排,一方面有利于符号感的培养,且方便记忆;另一方面提高了知识的抽象概括程度,也为以后正式教学用字母表示数打下初步的基础。

例2同样采用图画表示题意。图中将李叔叔笔记本上的内容加以放大,从中可以看出分别记录了三天各行了多少千米,并提出求这三天所行路程和的问题。从解决这个问题的两种算法中,可以得到加法结合律的一个实例。在此基础上,引导学生观察、比较、概括得出结合律的过程,与例1相仿。教学时可以让学生看着例2的插图叙述图意。学生可能会提出疑问,例1算得的结果是全天一共骑了96千米,怎么这里第一天骑的路程却是88千米?对此,教师可以让看懂了的同学说一说这是怎么回事。即例1求的是第三天一共行了96千米,到现在李叔叔一共骑车旅行了三天。理解了题意,并搞清了条件和问题之后,可以放手让学生自己列出算式计算。通常,会有学生按顺序计算,也会有学生发现后两个加数能凑成整百数,所以先相加。引导学生比较两种算法,得出先把前两个数相加,与先把后两个数相加,结果相同,都是这三天行的总路程,所以可以用等号把这两个算式连起来。

接着,学生举例时完成课本第29页用符号表示的填空时,也可能出现这种现象。如(a+b)+c=a+(b+c)。对此,教师应给予肯定,同时指出:加法交换律前面已经总结,这里总结不交换加数的规律。

教学目标:

1.通过尝试解决实际问题,观察、比较,发现并概括加法交换律、加法结合律。

2.初步学习用加法运算定律进行简便计算,并用来解决实际问题。

3.通过公式推导的教学,培养学生深刻的思维品质和观察能力、概括能力和语言表达能力。

教学重难点

教学重点:在观察、比较中发现并推导加法交换律、加法结合律,并会应用。

教学难点:加法交换律和结合律的推导过程是学习的难点.

教学过程:

一、创设情境

1.引入谈话。

在我们班里,有多少同学会骑车?你最远骑到什么地方?

骑车是一项有益健康的运动,这不,这里有一位李叔叔正在骑车旅行呢!

(出示:李叔叔骑车旅行的场景。)

2.获得信息。

问:从中你可以得到哪些信息?

(学生同桌交流,然后全班汇报。)

随着学生的回答,多媒体从左往右展示线段图,出现大括号与问题:

3.解决问题。

问:能列式计算解决这个问题吗?

(学生自己列式并口答。)

二、探索规律

1.加法交换律。

(1)解决例1的问题。

根据学生回答板书:

40+56=96(千米)

56+40=96(千米)

多媒体展示:从右往左再现线段图。

问:两个算式都表示什么?得数怎样?○里填什么符号?

40+56○56+40,

(2)你能照样子再举几个例子吗?

(3)从这些例子可以得出什么规律?请用最简洁的话概括出来。

(4)反馈交流。两个加数交换位置,和不变。

(5)揭示定律。

问:①知道这条规律叫什么吗?

②把加数换成其他任意的数,交换律还成立吗?

③怎样表示任意两数相加,交换加数位置和不变呢?请你用自己喜欢的方式来表示,好吗?(同桌轻声交流。)

④交流反馈,然后看书:看看课本上的小朋友是怎么说的。

⑤根据加法交换律对口令。

师:25+65=______(生:等于65+25)

78+64=______

⑥完成课本第28页下面的做一做:

300+600=______+______+65=______+35

2.加法结合律。

多媒体展示:李叔叔三天骑车的路程统计。

(1)找出信息解决问题。

问:你能解决李叔叔提出的问题吗?

学生独立完成后交流。

多媒体展示线段图:根据学生列出的不同算式,表示三天路程的线段先后出现。

问:通过线段图的演示,你们发现什么?(不论哪两天的路程先相加,总长度不变。)

我们来研究把三天所行路程依次连加的算式,可以怎样计算:

比较

比较:为什么要先算104+96呢?(后两个加数先相加,正好能凑成整百数。)

出示:(88+104)+96○88+(104+96),怎么填?

(2)你能再举几个这样的例子吗?

问:观察、比较这些算式,说一说你发现了什么秘密?(鼓励学生用自己的话来说。)

(3)揭示规律。

三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这就是加法结合律。

(4)用符号表示。(学生独立完成,集体核对。)

(▲+★)+●=____+(____+____)

(a+b)+c=____+(____+____)

(5)问:①用语言表达与用字母表示,哪一种更一目了然?

②这里的a、b、c可以表示哪些数?

三、练习巩固

1.指出下面哪几道题运用了加法运算定律,分别运用了什么运算定律

(1)(运用了加法交换律)

(2)用凑十法7+9=6+(1+9)(运用了加法结合律)

(3)~(7)为教材练习五第4题(略)。

2.连一连。

想一想:最后一组连线的依据是什么?

四、小结

1.今天我们发现了哪些数学规律?

2.这些运算定律是怎样发现、归纳的?

3.对于加法的交换律、结合律的应用,我们已经知道的有哪些?

五、布置课后作业

完成课本练习五第1题、第3题。

四年级数学加法交换律教案(篇2)

教学内容:

国标本苏教版四年级上册P56-57例题,完成P58的想想做做。

教学目标:

1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。

2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。

3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

一、情境引入:

(1)同学们你们喜欢体育活动吧?谁来说说你最喜欢哪项体育活动?

(2)下面请同学们看屏幕(出示图),仔细观察这幅图,你从图上知道哪些信息?

(3)根据这些信息,你能提出哪些用加法计算的问题?

B、参加活动的女生有多少人?

C、男生跳绳和女生踢毽子的有多少人?

D、参加活动的一共有多少人?

同学们提出的问题都非常好,下面我们先来解决第一个问题。

二、探索加法交换律:

1、(1)要求参加跳绳的有多少人,应该怎样列式计算?

指名回答,教师板书:28+17=45(人)

(2)还可怎么列式?板书:17+28=45(人)

(3)这两道算式都是求什么的人数?结果都是多少?再观察算式它们有什么相同点?不同在哪里?

(引导学生说出:加数相同,得数也一样,只不过是把加数的位置调换了一下)。

师:这两道算式的得数相同,都是求的跳绳的总人数。我们可以用怎样的方法连接这两道算式?(等号)板书:28+17=17+28

这是一个等式,读一读。

(4)你能照样子说出一个这样的等式吗?试试看。(指名学生回答说,教师把学生说的等式有序地板书在黑板上)。

(5)请同学们仔细观察这些等式,你发现每一组的两个算式都有什么共同的地方?有什么不同的地方(同桌交流)?

(6)从这些例子中,你可以发现什么规律?(让学生用自己的语言说一说)

(7)你能用自己喜欢的方法把它们的规律表示出来吗?可以用符号、字母、文字等等表示,试试看。谁愿意上黑板写?(学生写,教师了解学生写的情况)。

(8)观察板演的等式,问:等式中的符号代表什么,如:○+□=□+○,教师就提问:□和○都代表什么,○+□=□+○表示什么呢?(代表任意的数)

小结:同学们想出来的方法可真多!两个数相加,交换加数的位置和不变这一规律叫做加法的交换律(板书:加法交换律),通常用字母表示:a+b=b+a

2、练习。

(1)想想做做第2题第1排的两题填好。

96+35=35+□204+□=57+204

指名回答,为什么?

(2)下面的等式符合加法交换律吗?为什么?

46+59=46+5990+10=5+95

[没有交换加数的位置;等号两边的加数不同。]

(3)同学们,想一想:过去我们学过的计算中,哪些地方应用过加法交换律?

下面一道题357+218,请同学们计算并用加法交换律进行验算。指名板演,集体订正。

同学们,刚才我们通过计算加法找出了一条规律(加法交换律),接下来我们继续研究加法的另一条规律

三、探索加法结合律

1、同学们根据例题这幅图再算一算参加活动的一共有多少人会列式吗?

(1)指名回答,板书:28+17+23

第一步先求什么?为了看得更清楚,我们可给28+17添上括号,表示参加跳绳的总人数:(28+17)+23,再求什么?结果是多少?

(2)还是这个式子28+17+23(板书)如果要先算参加活动的女生人数应该怎么办?教师添上括号:28+(17+23),添上括号后表示先求什么,再求什么?结果是多少?

(3)请同学们比较这两道算式:它们有什么相同点和不同点?

(4)这两道算式结果相同我们可把它写成怎样的等式?

板书:(28+17)+23=28+(17+23)

(5)算一算,下面的○里能填上等号吗?(教师当场板书)

(45+25)+13○45+(25+13)

(36+18)+22○36+(18+22)

3、归纳加法结合律:

(1)观察这三个等式,每组的两个算式有什么相同的地方?有什么不同的地方?你从这些等式中能发现怎样的规律?和你的同桌交流一下。

(2)你能用字母a、b、c代表这三个加数把上面的规律表示出来吗?(独立写一写)板书:(a+b)+c=a+(b+c)

a、b、c代表什么?(a+b)+c表示什么?a+(b+c)表示什么?

(3)小结:三个数连加,改变运算顺序,和不变。这就是加法结合律。(板书:加法结合律)

4、练习:在□里填上合适的数,想想做做2后两排。

(45+36)+64=45+(□+□)

560+(140+70)=(560+□)+□

全课总结:这节课我们一起学习了加法的交换律和结合律,知道两个数相加,交换加数的位置和不变,还知道了三个数连加,改变运算顺序和不变。

四、巩固练习

1、想想做做1

下面的等式各运用了加法的什么运算律?

82+0=0+82

47+(30+8)=(47+30)+8

(84+68)+32=84+(68+32)

75+(48+25)=(75+28)+48

(以游戏的方式进行:女生代表加法交换律,男生代表加法结合律)

2、想想做做4

38+76+24(88+45)+12

38+(76+24)45+(88+12)

请每个同学选一组题独立完成。

反馈提问:为什么每组两道题的得数相同?哪种方法简便,为什么?

小结:可见,合理地运用加法的交换律和结合律可以使计算简便。

3、想想做做5

出示题目后学生说。

五、拓展练习

1、在□里填上合适的数

□+147=□+a

45+□+55=74+(□+□)

18+(c+□)=(18+□)+a

2、想一想:怎样应用加法运算律使计算简便。

30+28+70+45+72

=(30+70)+45+(28+72)

=100+45+100

=245

同学们,加法的这两个运算律,可以推广到任意多个数相加,即多个

数相加,任意交换加数的位置,或者把其中的几个数结合成一组相加,它们的和不变!应用加法交换律和结合律,有时可以使计算简便。下一节课我们将继续学习。

加法的交换律和结合律(练习题):

1、在□里填上合适的数。

96+35=35+□204+57=□+204

2、下面的等式符合加法交换律吗?为什么?

46+59=46+59()90+10=5+95()

3、计算并用加法交换律进行验算。

357+218

4、算一算,下面的○里能填上等号吗?(教师当场板书)

(45+25)+13○45+(25+13)

(36+18)+22○36+(18+22)

4、在□里填上合适的数。

(45+36)+64=45+(□+□)

560+(140+70)=(560+□)+□

5、计算下面各题。

38+76+24(88+45)+12

38+(76+24)45+(88+12)

6、在□里填上合适的数。

□+147=□+a

45+□+55=74+(□+□)

18+(c+□)=(18+□)+a

7、想一想:怎样应用加法运算律使计算简便?

30+28+70+45+72

四年级数学加法交换律教案(篇3)

教学内容:P17:例1“做一做”、练习五:2、3。

教学目标

1、知识与技能:结合具体的情境,引导学生认识和理解加法交换含义。

2、过程与方法:能用字母式子表示加法交换律,初步学会应用加法交换律进行一些简便运算。

3、情感态度与价值观:体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。培养学生观察,比较,抽象,概括的初步思维能力。

教学重点:认识和理解加法交换律含义。

教学难点:引导学生抽象概括加法交换律。

教具学具:多媒体课件

教学过程

一、创设情境

1、引入谈话。

在我们班里,有多少同学会骑车?你最远骑到什么地方?

骑车是一项有益健康的运动,这不,这里有一位李叔叔正在骑车旅行呢!(多媒体演示:李叔叔骑车旅行的场景。)

2、获得信息。

问:从中你可以得到哪些信息?(学生同桌交流,然后全班汇报。)问题是什么?

3、解决问题。

问:能列式计算解决这个问题吗?(学生自己列式并口答。)

二、探索规律

1、加法交换律。

(1)解决例1的问题。根据学生回答板书:

40+56=96(千米)56+40=96(千米)

问:两个算式都表示什么?得数怎样?○里填什么符号?40+56○56+40,

(2)你能照样子再举几个例子吗?

(3)从这些例子可以得出什么规律?请用最简洁的话概括出来。

(4)反馈交流。两个加数交换位置,和不变。

(5)揭示定律。

问:①知道这条规律叫什么吗?

②把加数换成其他任意的数,交换律还成立吗?

③怎样表示任意两数相加,交换加数位置和不变呢?请你用自己喜欢的方式来表示,好吗?(同桌轻声交流)

④交流反馈,然后看书:看看课本上的小朋友是怎么说的。

⑤根据加法交换律对口令。

师:25+65=______78+64=______

⑥完成课本第18页下面的“做一做”1

三、巩固提高

1、运用加法交换律填上合适的数

830+420=()+()()+200=()+37

27+29=29+()A+()=20+()

2、完成P19“练习五”第2题。

3、完成P19“练习五”第3题。

四、课堂小结:你有什么收获?

板书设计加法交换律

加法交换律:两个加数交换位置,和不变。

加法交换律用字母表示为:A+b=b+A

四年级数学加法交换律教案(篇4)

教学内容:苏教版小学数学第七册第七单元运算律第56――58页例题,想想做做的第1――5题。

教学目标:

1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会运用加法交换律进行加法验算,初步感受到应用加法交换律和结合律可以使一些计算简便。

2.在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。

3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。

教学重点:发现规律,理解和掌握运算律。

教学难点:概括运算律并用字母表示。

教学过程:

一.师生合作,探索加法交换律

1.创设情境,解决问题

(1)谈话:随着学校开展冬锻活动以来,课间同学们的活动变得更加丰富多彩了。(出示挂图)提问:从这张图片中,你获得了哪些数学信息?

(2)你能根据这些信息提出一些用加法计算的问题吗?指名口答。

(3)今天这节课,我们就一起来研究其中的这两个问题(出示问题)

(4).先解决第一个问题:参加跳绳的一共有多少人?

①应怎样列式计算

指名回答,教师板书:28+17=45(人)

②追问:还可以写成什么?

指名回答,教师板书:17+28=45(人)

2.观察、比较、发现规律

(1).这两道算式都是求什么的人数?结果都是多少?

(2).你能用一个符号把它们连接起来吗?

板书:28+17=17+28

(3)仔细地观察这个算式,在等号的两边,什么变了?什么不变?你有什么发现?

同桌交流

(4)你们能够自己模仿写出几个这样的算式吗?试试看。

追问:这样的算式能写几个?

指名回答,教师板书。

(5)你能用自己喜欢的方法把我们发现的规律简单明了地表示出来吗?可以用符号、字母、文字等。

学生试着写一写。

指名回答,教师板书。

(6)谈话:刚才同学们能用自己喜欢的方式表示了我们发现的规律,这些规律叫运算律。但是自己创造的符号只有自己明白,还要学习数学界公认的表示方法,那就是用字母a、b分别表示两个加数,我们发现的规律就可以写成a+b=b+a,这个规律我们给它起个名字叫加法交换律。

(7)谁来说说加法交换律用字母怎样表示?用语言怎样表达?

齐读。

(8)其实加法交换律我们早就会用了,想想看,什么时候我们用过?

指出:在验算加法时用的就是加法交换律。

3..练习:

96+35=35+()

204+57=()+204

a+45=45+()

二.学法迁移,探索加法结合律

1.解答例题,发现规律

(1)刚才通过解决第一个问题,我们得到了加法交换律,现在我们再来研究第二个问题,看看有没有新的发现?

(2)齐读问题。你会列式解决这个问题吗?

你打算先求什么?再求什么?

学生练习,教师巡视。

学生汇报,教师板书:(28+17)+23=68(人)

28+(17+23)=68(人)

(3)比较一下这两道算式,他们有什么相同点和不同点?

(4)这两道算式结果相同,我们可把它写成怎样的算式?

板书(28+17)+23=28+(17+23)

(5)练习:

下面的○里能填上等号吗?

(45+25)+23○45+(25+23)

(36+18)+22○36+(18+22)

(6)观察这三个等式,每组的两个算式有什么相同的地方?有什么不同的地方?你从这些等式中能发现怎样的规律,和你的同桌交流一下。

2.呈现运算律

(1)你能从第一个运算律中得到启发,用简便的方法表示你们的发现吗?试一试。

学生口答,教师板书:(a+b)+c=a+(b+c)

(2)三个数相加,改变运算顺序,和不变,这就是我们今天所学的第二个运算律――加法结合律。

3.练习

(45+36)+64=45+(□+□)

560+(140+70)=(560+140)+□

a+(27+b)=(□+□)+b

三.组织练习

1.第58页想想做做第1题。

仔细观察,同桌交流后汇报。

重点讨论第四个等式,引导学生发现这里同时运用了两种加法运算律。

2.想想做做第3题。

学生计算第1小题,并用加法交换律验算,请学生板演。

评讲,让学生体会加法交换律的价值。

3.想想做做第4题

(1)下面我们来比一比谁做得对又快。

男生计算每组题中的第1小题,女生计算每组题中的第2小题。

(2)交换题目再来比一比。

(3)问:如果让你来选,你愿意做哪一题?为什么?

(4)小结:因为运用了加法运算律可以使计算简便,而每组中的第2小题都运用了加法运算律,所以第2小题做得快。

4.想想做做第5题

(1)谈话:在做第4题时,大家觉得先把和是100的两个数加起来,下一步就容易算了,那么什么样的两个数和是100呢?下面我们来做第5题,你能很快找出哪两片树叶上数的和是100吗?

(2)学生独立连线,同桌互相校对。

(3)提问:什么样的两个数和是100?

(4)小结:看来,在计算过程中,要有一双敏感的眼睛,看到数字就能很快地判断出能不能凑成整百数。

四.回顾总结

有个成语叫学有所成,请同学们说说看,这节课你学到了什么?有什么新的收获?

五.作业:想想做做第3题剩下的题目。

四年级数学加法交换律教案(篇5)

教学目标:

1、使学生理解加法的意义,并能在实际计算中应用。

2、使学生掌握加法交换律,并会应用定律进行验算。

3、培养学生观察、比较、概括推理的能力。

教学重点:

由于学生对加法的计算已经比较熟悉,对加法的意义及加法交换律也有了感性认识,所以这节课就是要明确地概括出加法的意义及加法交换律,使学生的认识由感性上升到理性.因此教学重点应放在引导学生概括、总结加法的意义及加法交换律的过程中。

教学难点:

由于学生对抽象概括定义、定律重视不够,又不习惯于用加法意义进行说理,因此这也是教学的难点。

教学过程:

一、复习准备

1.口算.

39+4783+15420+180

47+3915+83180+420

2.口答.

(1)小明栽了18棵杨树和14棵柳树,他一共栽了多少棵树?

(2)小敏做了25朵红花,做的黄花比红花多5朵。做黄花多少朵?

(3)赵强读一本书,已经读了46页,还有58页没读,这本书共有多少页?

二、学习新课

师:我们已经学过了加法的计算方法,今天要在学加法知识的基础上,明确概括出加法的意义,并且能应用它解答实际问题.(板书:加法的意义和运算定律)

1.教学加法的意义.

(1)例一列火车从北京过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?

读题后,师生共同完成线段图:

学生独立解答:

137+357=494(千米)

加数加数和

答:北京到济南的铁路长494千米。

提问:

①这道题为什么用加法计算?

②加法是一种什么样的运算?

③要合并的两个数指的是什么数?合并成的一个数指的是什么数?

引导学生明确:要求北京到济南铁路的长度,就要把北京到天津的铁路长137千米和天津到济南的铁路长357千米这两个数合并起来,所以要用加法计算;加法是求两个数合并成一个数的运算;要合并的两个数是137千米和357千米,合并成的一个数是494千米。

启发提问:加法的意义是什么?说说看。

引导学生概括出加法的意义:“把两个数合并成一个数的运算,叫做加法”。

教师板书加法的意义。

练一练

练习十一第1题,应用加法的意义说明各题为什么用加法计算。

在学生独立计算的基础上,教师强调要合并的两个数和合并成的一个数分别指的是什么数,从而让学生更深刻理解加法意义,并会运用它解决实际问题。

(2)教学加法各部分名称。

提问:例1中的137和357在等式中叫什么数?(加数)它们相加得到的494叫什么数?(和)

教师板书。(写在例1算式的下面)

教师联系加法意义说明:相加的两个数也就是要合并的两个数,叫做加数,加得的数也就是合并的结果,叫做和.

反馈提问:你能根据加法的意义说明72+28=100这个算式的各部分名称吗?

(3)加法中有关0的问题.

提问:

①我们例1做的加法,两个加数是什么样的数?(是自然数)

②任何两个自然数相加的和与加数比较会怎样?(相加的和会比原自然数大)

③0和一个自然数相加的和会怎样呢?(0和自然数相加还得原来的自然数)

引导学生讨论:

0的加法可能有哪几种情况?举例说明.

在学生讨论的基础上,使学生明确:一个数加上0,还得原数.

(4)阅读课本第47页“加法的意义”。

2.教学加法交换律.

根据加法的意义引出加法交换律。

提问:

(1)我们刚才计算例1时,求济南到北京的铁路长用137+357,根据加法的意义还可以怎么算?(还可用357十137)

(2)观察比较一下,这两种解法的结果,能得出什么结论?(可以得出:相加的两个加数交换位置,和不变.也可说出这是两个相等的式子,写成137+357=357+137)

教师指出:我们不能只根据一个例子就得出结论,我们必须多参考几组不同的数目.

(3)出示18+17○17+18

350+150○150+350

274+100○100+274

873+127○127+873

提问:

①观察每组算式有什么关系?○里应填什么符号?

引导学生明确:每组算式里加数是一样的,和也一样,每组两个算式是相等关系,○里应填“=”.

②这几组算式有什么共同特点?你发现了什么规律?

引导学生明确:这几组算式的共同点是,两个数相加,其结果只与加数的大小有关,而与这两个加数的顺序无关.因此可以得出:交换加数的位置,它们的和不变.

教师明确:你们发现的这个规律,就叫做加法交换律.

板书:“两个数……,它们的和不变.”

教师继续指出:上述几组算式说明,每组等式只能表示两个具体的数交换位置和不变,但不能表示任意整数.大家想一想,怎样用字母把加法交换律表示得既简单又清楚呢?

学生看书自学:第48页.

反馈提问:

什么叫加法交换律?怎样用字母公式表示?过去在什么地方应用了这个定律?

教师板书加法交换律的字母公式:

a+b=b+a

引导学生小结出:过去学过的加法的验算方法既可以用交换加数的位置再加一遍,也可以利用原来的竖式从下往上加一遍.

教师指出:学习了加法交换律,可以进行加法验算,要会运用定律.

练一练

现在用你们学过的知识做第48页的“做一做”.

订正题时要说出根据,以进一步巩固加法交换律的概念及其应用.

3.总结.

(1)说一说加法的意义是什么?

(2)什么叫加法交换律?它的字母公式是什么?怎样应用加法交换律?

三、巩固反馈

1.口答.(用加法意义说明算法)

玉门县要修一条公路,已经修了400千米,还有260千米没修,这条公路有多少千米?

2.下面各式哪些符合加法交换律?

140+250=260+130260+450=460+250

20+70+30=70+30+20a+400=400+a

3.根据运算定律在“□”里填上适当的数.

(1)□+55=55+42(2)a+44=□+□

(3)38+35=□+38(4)48+□=72+□

订正时,要求学生严格按照定义、定律来加以说明.

四、作业

练习十一第2~4题.

板书设计

加法的意义和运算定律

例1一列火车,从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?

137+357=494(千米)

加数加数和

357+137=494(千米)

答:北京到济南的铁路长494千米.

把两个数合并成一个数的运算,叫做加法.

18+1717+18

350+150150+350

274+100100+274

873+127127+873

两个数相加,交换加数的位置,它们的和不变.这叫做加法交换律.字母公式:

a+b=b+a

五、教学后记:

学生能理解加法的意义,掌握了、加法的交换律并会用运算定律进行计计算。

四年级数学加法交换律教案(篇6)

1、教材分析

加法交换律和加法结合律是国标版苏教版小学四年级上册第八单元中的第一课时,它是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。

2、目标分析

(1)教学技能目标:利用学生熟悉的情境引入教学内容,使学生理解并掌握加法交换律和加法结合律,并能用字母来表示交换律和结合律。

(2)过程方法目标:通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法交换律和结合律的过程,进行比较和分析,发现并概括出运算律。

(3)情感、态度、价值观目标:通过学生积极参与规律的探索,发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。

教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:使学生经历探索加法交换律和结合律的过程,发现并概括出运算定律。

二、说教学过程

(一)探索加法交换律:

这部分分成4步进行

1、感知规律

课的开始出示第56页的例题(前两幅图),通过解决参加跳绳的一共有多少人?得出一个等式,从而导入新课,进行加法交换律的研究。

(设计意图:用学生身边事情引入新知,并为下而面的探究呈现素材。)

2、验证规律

(1)组织学生观察这个等式的特点,然后自己照样子仿写等式。

(2)运用自己写出的等式,再次观察、比较有何相同点和不同点,从而初步感知其中的规律。

(设计意图:丰富学生的表象,进一步感知加法交换律。)

3、概括规律

(1)通过自己仿写式子,独立思考或小组讨论,引导学生概括出规律,尝试用语言表述。

(2)用自己喜欢的形式表示出来着重强调用字母来表示加法交换律的简便性。

(设计意图:帮助学生构建了简单的数学模型,使学生体会到符号的简洁性,从而发展了学生的符号感。)

4、巩固规律

出示一组填空,根据加法交换律填出所缺的数字

(设计意图:一个规律教授结束就配以针对性的练习,既有利于概念的正确建立,同时也及时地巩固了新知。)

(二)探索加法结合律:

1、感受规律。

在学生解决三个项目共得多少分?过程中得出等式。学生交流各自列式,并让学生说清列式理由。选择两种不同列式,探索规律。

(设计意图:抓住加法交换律和加法结合律的内在联系,利用学生已有知识经验,把加法交换律的学习,迁移类推到加法结合律的学习中来。)

2、验证规律

(1)教师出示两组题目,判断左右两边是否可以写等号,分别算一算。

(2)学生依据自己经验,开始写出这一类型的等式题,让学生在实践操作与锻炼,并体会认识加法结合律。

3、揭示规律

(1)小组讨论,观察等式,左边和右边有什么变化,你发现了什么规律?

(2)按照这种规律,你还能写出这样的算式吗?

(3)用字母表示这样的规律。

(设计意图:多引导学生独立发现,思考、解答,有利于学生概括出相应的运算律。)

4、巩固规律。出示针对结合律的一些填空,巩固新知。

三、实践应用

1、书面训练

(1)想想做做4,每个学生选一组题独立完成,使学生通过比较,知道应用加法运算律有时可以使两个加数的尾数凑成整十数,使计算简便。

(2)想想做做5

(设计意图:让学生意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。为后头运用加法运算律进行简便运算打好基础。)

2、活动训练。游戏找朋友

(1)如:师说出2,学生要找出它的好朋友8,因为2和8和是10,教师配合学生完成。

(2)找出与一个数和是100的数。同学配合完成。

(设计意图:让学生在游戏中意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。)

四年级数学加法交换律教案(篇7)

1、知识与技能:①结合具体的情境,引导学生认识和理解结合律的含义。

2、过程与方法:能用字母式子表示加法结合律,初步学会应用加法结合律进行一些简便运算。

3、情感态度与价值观:①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。②培养学生观察,比较,抽象,概括的初步思维能力。

1、根据例2情境图中信息列出算式。

5、对比上面的两道算式,你发现了什么?用自己的话说一说。

(二)学生自学(学生对照自学提纲,自学教材P29页例2,并完成自学提纲问题,将不会的问题做标注)

(学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)

387+425=( )+ 387 525+( )=137+ 525

(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解。)

(引导学生正确地计算,鼓励学生分工合作,探索交流,教师巡回辅导,发现、收集学生存在的问题)

1、解答各小组自学中遇到不会的问题。

(1)让学生提出不会的问题,并让学生解决。

(2)教师引导学生解决学生还遗留的问题。

(3)如何用字母表示加法交换律和结合律?

(4)用字母表示这些运算定律有什么优点?

2、教师有针对性地请不同做法的同学汇报自己的解题思路与方法。

1、根据加法结合律填空题。

2、连线。

3、简便计算下面各题。

课堂小结:谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

(1)450+320=( )+ 450 65+95=95+( )

(2)( )+ 100 =100+150 250+( )=125+250

2、下面的哪些算式符合加法结合律,哪些算式符合加法交换律。

(3)10 + 20 + 30 + 40 =10 + (20 + 30) + 40

4、简便计算。

四年级数学加法交换律教案(篇8)

教学内容: 教科书第56―57页的命题及58页的“想想做做”。 教学目标: 1、使学生经历探索加法去处律的过程,理解并掌握加法的交换律和结合律,并初步感知加法运算的价值,发展应用意识。 2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维的水平。 3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。 教学过程: 一、课前一分钟: 师:同学们,我们来玩个语言游戏好吗?老师说个词,你们把它倒过来说一遍,比如,我说“喜欢”,你们就说“欢喜”,会说吗? 好,现在开始:“千万”(生:万千);“语言”(生:言语)。很好,接着来,回答声音再响亮些!“好听”(生:听好);“好说”(生:说好);“好学”(生:学好)。(贴出) 师:好!这可都是你们自己说的哦!“听好!说好!学好!”老师希望大家在这节课的学习中都能做到这三点。 二、创设情境、探究例题 学习好,身体也要棒才行!为了增强体质,同学们都积极投入到体育锻炼中去。让我们去看看吧!(出示例题图) 从这张图片中,你获得了哪些数学信息? 你能根据这些信息,提出几个用加法计算的问题吗? 我们先来研究第一个问题:参加跳绳的一共有多少人? 你们能马上口头列式并口算出结果吗?还有其他的方法来解决吗? 这两道算式的得数相同,我们可以把这两道版式写成这样的等式。 (板书)28+17=17+28 2、引导发现,  提问:请大家认真观察,右边的算式和左边的算式相比较,有什么共同点,有什么不同点? 帮助学生发现交换加数位置,和不变。 3、验证 其它的式子有没有这样的规律呢?出示: 38+12○12+38 450+50○50+450 7000+0○0+7000 你们也能再写几个这样的等式吗?   指名读一下。 总结通过那么的例子可以证明这句话是对的,  4、个性创造,构建模型。 问:用语言表示这一规律要说一句很长的话,比较难记忆。你能不能自己喜欢的符号、图形或用字母把这个规律表示呢? 学生尝试用符号、图形或用字母来表示加法交换律,教师巡视,并选一些典型的进行板书。(学生可能有类似以下一些表示方法:√+×=×+√ ▲+■ =■ + ▲ 甲数+ 乙数=乙数+甲数 a+b=b+a 等) 小结:同学们都自己用自己的喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:a+b=b+a。 这就是加法的第一个运算律:加法交换律。板书:加法交换律。 6、联系旧知,简单应用。 这个规律其实是我们的老朋友了,你们记得以前在什么地方见过它吗? 小练习:计算并验算 690+174= 提问:怎么验算,根据什么运算律? 三、探索加法结合律 1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究第二个问题。看看我们有没有新的发现?读题。参加活动的一共有多少人?   学生列式计算,教师巡视。注意发现用不同的方法解答,并指名两人板演不同方法的算式,说说每个算式各是先算什么。 2、让学生观察和比较两个不同算式的计算结果。说明由于两个算式的结果相同,所以可以写成等式。板书。 (28+17)+23=28+(17+23) 3、提问:这两个算式有什么相同的地方?有什么不同的地方? 小结:这两个算式中三个加数分别相同,加数的'位置也相同。但两个算式加的顺序不同:左边的算式是先把前两个数相加;右边的算式是先把后两个加数相加。不管是哪两个数先加,最后的结果都一样。 4、算一算,下面的○里能填上等号吗? 其他的式子是不是也有这样的规律呢?我们来验证一下。 (45+25)+13○45+(25+13) (36+18)+22○36+(18+22) 5、归纳加法结合律: (1)观察这三个等式, 最后你能发现什么规律?向你的同桌说一说? (2)如果用a、b、c分别表示这三个加数,这个规律可以怎么样表示呢? (独立写一写)板书:(a+b)+c=a+(b+c) a、b、c代表什么?(a+b)+c表示什么?a+(b+c)表示什么? 小结:这就是加法结合律。板书:加法结合律。 全课总结:这节课我们一起探索了加法的哪两个运算律?有哪些发现? 指出:交换律和结合律都是在加法运算中存在的,涉及到的数都是加数。加法交换律只是交换加数的位置,和不变;加法结合律是改变运算顺序,和不变。 四、巩固练习1、“想想做做”1 同学们能不能分清什么是交换律什么是结合律呢? 下面的等式各运用了加法的什么运算律? 82+0=0+82 47+(30+8)=(47+30)+8 (84+68)+32=84+(68+32) 75+(48+25)=(75+25)+48 最后一题让学生体会在一个式子里既应用了加法的交换律又应用了加法的结合律。 插入“朝三暮四”的故事(机动) 下面我们来轻松一下,听个小故事。 (1)、美猴王孙悟空从天宫带了许多跆业交ü山,他把这些多鲜美的桃子分给山上猴子。他对身边一只小猴说:“从明天起,我每天早上给你3只桃子,晚上给你4只桃子”。贪心的小猴一听不满意地说:“早上才3只桃子,大王太少了。请你多给点。”悟空灵机一动说:“那这样吧,早上4只,晚上3只吧!”小猴连忙高兴地说:“多谢大王。” (2)、其实同学们一定很明白这两种分法,桃的总和是……(生:一样多或不变的。) (3)、孙悟空在这则朝三暮四的故事中运用了我们数学中的运算律是(生:加法交换律),满足贪心小猴的要求。 我们同学今天学会了加法交换律,一定不会像故事里的小猴那么愚蠢了。   2、想想做做2。 说说其中的第二题和第四题是根据什么填的。 3、想想做做4。   把学生分成两小组完成下面两组题目。   38+76+24 (88+45)+12   38+(76+24) 45+(88+12) 每组中哪题更简便,为什么?使用了什么规律? 小结:看样子在加的过程中使用加法交换律和加法结合律把能得整十整百的数先算,可以达到简便的效果。   五、全课总结,评价反思。

四年级数学加法交换律教案(篇9)

教学目标

1.使学生理解加法的意义,并会应用解答实际问题.

2.进一步认识加法算式中各部分的名称以及明确0在加法中的特殊性.

3.使学生理解并掌握加法交换律并能运用这一定律进行验算.

教学重点

使学生对加法的意义的建立,加法交换律的概括及对它们的理解、掌握.

教学难点

学生对加法意义、加法交换律运用.

教学步骤

一、铺垫孕伏.

1、口算.

44+5637+23180+2042+8+10

12+00+17386+124124+235

2、导入:以前我们学过了加法的计算方法,这节课我们还要进一步学习、掌握加法的一些规律性知识,这将对我们以后的学习有很大帮助.

二、探究新知.

(一)教学加法的意义.

1、加法的意义.

(1)例1一列火车从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?

教师提问:这题怎样解答?

(因为已知北京到天津铁路长是137千米,又知道天津到济南的铁路长是357千米,要求北京到济南的铁路长,就是把137与357合起来,所以要用加法计算.)

教师提示:把137与357合并起来用加法计算,加法是什么样的运算呢?

(板书:两个数合并成一个数的运算就叫加法)

教师明确:这就叫加法的意义.

(板书:加法的意义)

(2)练习:小强有125枚邮票,小明有75枚邮票.小强和小明一共有多少枚邮票?

说明理由:已知小强与小明的邮票张数,要求小强与小明共有多少张邮票,就是把两人的邮票数合并起来.加法就是把两个数合并成一个数的运算,所以这道题要用加法计算.

2、加法等式中各部分名称.

教师提问:我们已经学过加法各部分的名称,在137+357=494算式中,各部分的名称是什么?(板书:加数加数和)

3、有关0的加法.

教师提问:一个自然数和0相加,得到的和与加数比较会怎样呢?有关0的加法可有

哪几种情况呢?

小结:任何数和0相加都得原数.

(二)教学加法交换律

1、教师谈话:通过以上学习,我们知道了加法的意义,加法各部分的名称以及有关0的加法的特殊性.除此之外,关于加法的运算还有一些基本性质,它对我们以后的计算将起到很大的作用.

2、教师提问:137+357=494(千米),表示求的是什么?

如果要求济南到北京的铁路长又该怎样列式计算呢?

357+137=494(千米)

3、引导学生观察,比较两种解法的结果.

教师板书:137+357=357+13

4、出示例2,引导学生归纳规律.

18+17○17+18

124+235○235+124

0+25○25+0

规律:

①每个等式中,每组算式中有两个加数,而且两个加数相同,只是交换了位置.

②每个等式中,左右两边的加数的和相等.

教师说明:两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律.

教师强调:我们要看一些等式哪些符号不符合加法交换律就必须看两个加数的位置变不变,它们的和变不变.当然前提是等号两边的两个加数必须相同.

5、练习:判断:下面各等式运用了加法交换律,对吗?为什么?

9+7=7+910+1=10+1

20+8=2+262+0=0+2

6、用字母表示加法交换律.

教师指出:以上我们学习了加法的交换律,并运用它做了练习,这一定律若用字母该怎样表示呢?

教师强调:用字母表示这一运算定律更简单清楚.如果用字母a和b分别表示两个加数(注意:a、b是拉丁字母),在这我们读作ei和bi,(教师领读几遍,提醒学生不要按汉语拼音来读)

教师板书:a+b=b+a

提醒注意:a与b可以表示0、1、2、3、中任意整数,如1+2=2+1,9+20=20+9等,所以a+b=b+a表示任意两个数相加,交换加效的位置,和不变.而像这些(指其中的等式)一个用数字表示的等式只能表示两个具体的数,交换位置,和不变.a+b=b+a这一公式表示的一类所有符合条件的式子,交换加数位置,和不变.

7、学生分组自由举例说明加法交换律.

8、学习、掌握了加法的交换律,目的在于更好地运用.实际上,在以前我们早就应用它解决计算问题.同学们想一想:在哪些计算中都用了加法交换律呢?(验算)

9、练习:运用加法交换律,在下面的□里填上适当的数.

766+589=589+□257+□=474+257a+15=15+□

三、巩固发展.

1、填空.

(1)把()数合并成()数的运算叫做加法.

(2)一个数加0,还得().如12+0=().

2、下面各等式哪些符合加法交换律?符合的画.

230+370=380+22030+50+40=50+30+40

a+10=100+a230+420=430+220

四、课堂小结.

今天我们学习了加法的意义和加法的一个运算定律加法交换律.谁能结合具体的题目说一说加法的意义和加法交换律的含义?

五、布置作业.

1、根据运算定律在下面的□填上适当的数.

48+□=72+□29+35=□+29

a+38=□+□□+55=55+42

2、口算下面各题,说一说是怎样应用运算定律的`.

91+89+1185+41+15+59

168+250+32282+53+37+18

六、板书设计

加法的意义和运算定律

例1、一列火车从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?

137+357=494(千米)

357+137=494(千米)

答:北京到济南的铁路长494千米.

意义:把两个数合并成一个数的运算叫做加法.

7+0=70+7=70+0=0

例2加法交换律:

137+357=357+137

18+17=17+18

24+235=235+24

四年级数学加法交换律教案(篇10)

教学目标:

1.引导学生探究和理解加法交换律、结合律。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

(1)李叔叔今天一共骑了多少千米?

(2)李叔叔三天一共骑了多少千米?

练习本上用自己的方法列出综合算式,解答黑板上问题。

教师巡视,找出课堂上需要的答案,找学生板演。

学生观察第一组算式,发现特点。

根据学生的举例,进行板书。

通过这几组算式,你们发现了什么?

学生发现规律:两个加数交换位置,和不变。这叫做加法交换律。

教师根据学生的小结,板书。

你能用自己喜欢的方式表示出加法交换律吗?

学生用多种形式表示。

引导学生观察第二组算式,总结出:

(88+104+96)=88+(104+96)学生观察第二组算式,发现特点。

学生继续观察几组算式。

通过上面的几组算式,你们发现了什么?

学生总结观察到的规律。

教师板书:先把前两个数相加,或者先把后两个数相加,和不变。这叫做叫法结合律。

学生用自己喜欢的方式表示加法结合律。

学生根据这两个运算定律,举一些生活中的例子。

学生小结本节课学习的加法的运算定律。

今天这节课你们都有什么收获?

你能把这些运用于以后的学习中吗?

(1)李叔叔今天一共骑了多少千米?(2)李叔叔三天一共骑了多少千米?

40+56=96(千米)56+40=96(千米)88+104+96104+96+88

40+56=56+40(88+104)+96=88+(104+96)

两个加数交换位置,和不变。155+(145+207)=(155+145)+207

这叫做加法交换律。先把前两个数相加,或者先把后两个数相加,

和不变。这叫做加法结合律。

数学四下:《乘法交换律结合律》教案


课题

乘法交换律结合律

教学内容

苏教版小学数学四年级上册第61-62页例题,及62-63页想想做做的第1-6题。

教学目标

1.让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2.培养学生观察、比较、分析、综合和归纳、概括等思维能力。

3.培养学生的探究意识和问题解决能力。增强合作意识,激发学生学习数学的兴趣。

教学重点

引导学生概括出乘法结合律,并运用乘法结合律进行简便计算

教学难点

乘法结合律的推导过程是学习的难点。

教学准备

教学课件

教学流程

教师、学生活动

设计意图

一、

故事引入,揭示课题

①课件出示球赛换场的图片,引入交换位置的概念。

球赛时交换了位置,是为了比赛的公平性。我们刚学了加法的运算定律,也和交换位置有关。将加法交换律说给同学们听听。

②复习用字母表示加法交换律、结合律并板书。

板书:a+b=b+a a+b+c=a+(b+c)

③引入课题乘法有没有类似的规律?今天我们就来学习乘法的一些运算定律。(板书课题) 乘法交换律结合律

用球赛规则拉开学习的序幕,激发学生学习的兴趣,活跃课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起点,为学生的探索规律作好知识铺垫。

二、猜测验证,探索规律

1. 大胆猜测。 猜一猜乘法可能有哪些运算定律?

学生根据已有的知识体验和迁移能够猜出:可能有交换律、结合律。

提出与旧知相关联的问题,让学生产生疑问、猜想,目的是能有效地激发学生学习的动机。

2. 学习乘法交换律

①乘法是否具有你们猜测的规律呢?怎样确认自己的猜测?请大家在小组内交流。(要求每人都把自己的想法介绍给自己的合作伙伴)

②学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)

③小结乘法的交换律。

两个数相乘,交换乘数的位置,积不变。

放手让学生去探索规律,并通过小组合作想办法予以确认,这样的目的是想充分激发学生学习的积极性,并且使学生体会发现新规律的方法。在此过程中,培养学生的探究意识,并获得成功的体验。

3、学习例题

①最近学校要举行亲子运动会了,每个班的学生都在练习,看!这是老师在校园里看到的景象。(课件出示踢毽子的场景图。)

②你能看图把下面的等式填写完整吗?

35=( )( )

你能再举一些象这样的例子吗?

能用字母来表示:ab=ba (板书)

③ 小结:这就是乘法交换律。

④运用乘法交换律,在下面的□里

填上适当的数。

7324=24□

26□=6326

b12=12□

出示例题,巩固所学的新知。让学生在自己的探索中学习,目的是体现新课程下的自主学习。

及时巩固练习,使知识进一步深化。

4.学习乘法结合律。

问:乘法也有结合律吗?

①将学生发现的乘法结合律投影显示。如:(34)6=3(46)。

②我们一起来证明一下这个结论是否正确?

③学习例2

出示例题2: 华风小学6个年级的同学参加跳绳比赛,每个年级有5个班,每班有23人参加。一共有多少人参加比赛?

㈠小组讨论,你们是怎样计算的,体会结合律.

方法1:先算出一个年级参加的人数。

(235)6=1156=690(人)

方法2:先算出全校有多少个班。

23(56)=2330=690(人)

师:你会把上面的两道算式写成一个等式吗?

(235)6= ( )

㈡比较等号两边的算式,有什么相同点和不同点?

相同点:比较左右两边的数字位置没变,结果也相同。

不同点:等号两边的运算顺序不同.

右边的算式计算简便,可以直接口算出答案。

师:非常好,我们在计算的时候,可以根据运算定律来简便计算,这样能节省时间。

先让学生自己感受交换两个乘数的位置,计算起来比较简便,为下面学习试一试部分奠定基础。而放手让学生去探索规律,目的是激发学生学习的积极性,体会发现新规律的方法。

5、小结:

请同学们也写几组这样的等式,把你的发现在小组里交流。能用自己的语言描述一下乘法结合律吗?

结论:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

协助记忆的方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示先把前两个数相乘,第三个手指靠过来表示再和第三个数相乘;它等于先把后两个手指靠在一起,再把第一个手指靠过来。

④怎样用字母表示乘法结合律?

板书:(ab)c=a(bc)

⑤巩固练习

㈠根据运算定律在下面的□里填上适当的数。

127331 =12 (□31)

(1363) 56 =13 (□□)

A6C=( ) ( )

㈡下面各个等式符合什么运算定律。请说出原因。

8050=5080

506070=50(6070)

b600=600b

6020=3040

151743=43 (1517)

乘法结合律与交换律相比,用语言完整地表述有一定难度。为了能更好的规范数学语言,教师展示记忆方法,拓展学生的思维。

简单的练习有两个目的,一是巩固,二是使知识加以应用。

5.教学试一试(用简便方法计算)。

①出示试一试上的习题。(1)23152

(2)5372

放手让学生们自己做,并能说出各用了什么运算定律?请学生上黑板演示,其余学生独立完成。

②巡视,辅导

③集体评讲.

④计算下列各题。

3954

15(417)

12395

16(75)

直接教学试一试的内容,目的是让学生自己体会乘法结合律与交换律对计算的简便之处,有利于以后计算时能快速运用。

三、巩固深化,应用拓展

①基本练习:

1、判断下面等式中哪些符合乘法结合律

(1)6(5 9)=(6 5) 9

(2)4+(11+23)=(45+11)+23

(3)(9 4)53 =9 (4 5) 3

2、选择哪种算法简便

(1)28 5 6 (2)35 12

A 先算28 5 A 变形为35 2 6

B 先算5 6 B 变形为35 3 4

(3)25 28

A 先算25 4 再乘7 B 先算25 7 再乘4

3、想想做做的第1题。

4、想想做做的第2题。 先让学生算一算,再比较每组中两道题的计算过程,交流各自的体会,进一步体会使计算简便的关键。

5、想想做做的第3题。注重培养简算的意识和能力,在思考和计算后组织交流。

发展练习:1、利用乘法的交换律和结合律,写出所有和下面算式相等的式子。

869=( )

2、你会计算吗?

25542

3、利用乘法的交换律和结合律,

写出所有和下面算式相等的

式子。

869=( )

层次鲜明的练习,有利与使学生目标明确; 促进学生构建新的知识网络。有利于培养简便运算的意识和能力

四、全课小结,布置作业

今天这节课你学到了什么?

课堂作业:

①P62页第4题。

②P63页第5题

③P63页第6题

板书设计:

乘法交换律结合律

乘法交换律: ab=ba

乘法结合律: abc=a(bc)

试一试(用简便方法计算)

(1)23152 (2)5372

=23(152) =5237

=2330 =1037

=690 =370

四年级数学下册《加法交换律和结合律》教学设计


在上课时老师为了能够精准的讲出一道题的解决步骤。通常大家都会准备一份教案来辅助教学。这样可以有效的提高课堂的教学效率,你知道有哪些教案是比较简单易懂的呢?下面是小编为大家整理的“四年级数学下册《加法交换律和结合律》教学设计”,仅供参考,但愿对您的工作带来帮助。

教学内容:

教科书第27、28、29页的例题1和例题2。

教学目标:

知识与技能

1、 通过学习,使学生理解和掌握加法交换律和结合律。

2、 让学生学会用符号或字母表示加法交换律和结合律。

过程与方法

通过观察比较、归纳的方法,来进行教学。

情感态度与价值观

培养学生抽象概括的能力,引导学生由感性认识上升到一定的理性认识。

教学重点、难点:理解和掌握加法交换律和结合律,学会用符号或字母表示加法交换律和结合律。

教学用具:主题图、课件。

教学过程:

一、 创设情境、生成问题

课件出示主题图:看图,你发现了哪些数学信息?

二、探索交流、解决问题

(1)学习例题1:李叔叔今天上午骑了40千米,下午骑了56千米。李叔叔今天一共骑了多少千米?

教师:这个问题该怎样解决呢?如何列算式。

40+56=96(千米)

或56+40=96(千米)

观察,这两道算式有什么联系?

(结果相同,所以可以写成40+56=56+40)

(2)你还能举出这样的例子吗?(学生举例)

如:37+45=45+37

88+32=32+88

53+29=29+53

(3)观察每组算式的结果,你发现了什么?(结果都相同)用自己的话说一说。

学生发言,交流并归纳板书:两个加数相加,交换两个加数的位置,和不变。也就是加法的交换律。

(4)如果用符号来表示,该怎样写呢?

甲数+乙数=乙数+甲数

☆ +△=△+☆

a+b=b+a

(5)学习教科书第28页的例题2。

出示主题图,通过看图你找到了哪些有用的信息?

李叔叔第一天行了88千米,第二天行了104千米,第三天行了96千米,这三天李叔叔一共行了多少千米?

学生独立思考,列出算式:88+104+96

=192+96

=288(千米)

或88+(104+96)

=88+200

=288(千米)

答:李叔叔三天一共行了288千米。

比较这两题的结果怎么样啊?(相同)

因此可以写成:(88+104)+96=88+(104+96)

用自己的话说说,三个数相加,可以先把前两个数先加,再加上后一个数,也可以先把后两个数先加,再加上前一个数,和不变。这就是加法的结合律。

(6)谁还能举出这样的例子来。

学生举例:(69+172)+28=69+(172+28)

155+(145+207)=(155+145)+207

加法结合律又该怎样用字母表示呢?

(a+b)+c=a+(b+c)

三、巩固应用、内化提高

1、完成教科书第28页的做一做。

2、完成教科书第31页练习五的第1题。

学生独立填写表格,找找表格中数的特点。

3、完成教科书第31页练习五的第2、3题。

加法的验算是根据什么运算定律进行的?

四、回顾整理、反思提升

通过今天的学习,你有哪些收获?

浙教版数学四下:《乘法交换律》教案


作为一小学位老师,我们要让同学们听得懂我们所讲的内容。就必须编写一份较为完整的教案,这样有利于我们准确的把握教材中的重难点。让同学听的快乐,老师自己也讲的轻松。那么优秀的教案是怎么样的呢?以下是小编为大家收集的“浙教版数学四下:《乘法交换律》教案”,欢迎阅读,希望您能阅读并收藏。

教学内容:
教材P11例1
教学目标:
1、 理解掌握乘法交换律(用字母表示)会运用这个定律,使一些计算简便。
2、 培养学生的抽象概括能力。
教学过程:
(一)口算
30400 6900 48070
40030 9006 70480
分组口算出结果,然后观察比较,每一组有什么特征?
(二)教学新知
1、 例题教学
(1) 感知定律。
23( )32 1150( )5011 30200( )20030
观察上面三组题的特征,填上左右两个两个积的大小关系,然后计算出结果进行验验证,完成后校对结果。请学生也用等号连接,然后,教师板书。
(2) 总结定律:观察以上各组等式,你发现了什么规律?学会总结后看书填空,并尝试用字母a、b表示这组关系。
(3) 巩固定律:练一练第1题,练完后校对。
2、 运用定律。
(1) 计算,并比较一下哪一种方法简便,为什么?
17 234
234 17
学生计算后四人小组讨论,接着指名回答。然后教师板书17234。这个算式可以选择上面的哪种竖式进行计算?依据的什么?最后教师总结:运用乘法交换律使一些计算简便?
(2) 应用。
课本试一试提问:怎样摆竖式计算简便,为什么?学会回答后计算。
(三)巩固练习
1、 简便方法计算练习
练一练第2题。
学生摆竖式计算,教师巡回纠错,完成后校对讲评。
2、 比较练习。
练一练第3题。
先口答,上面三题分别怎样摆竖式计算简便?教师总结。
(四)总结
这节课我们学习了乘法交换律,它用文字和字母表示分别的怎么样的?在什么情况下可以运用乘法交换律使运算简便?
(五)作业
《作业本》[9]

苏教版数学四年级上册教案 加法的交换律和结合律


作为一小学位老师,我们要让同学们听得懂我们所讲的内容。为了不消耗上课时间,就需要有一份完整的教学计划。让同学们很好的吸收课堂上所讲的知识点,你们知道那些比较有创意的教学方案吗?小编收集整理了一些苏教版数学四年级上册教案 加法的交换律和结合律,供您参考,希望能够帮助到大家。

教学目标:

1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。

2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。

3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

教学过程:

一、情境引入:

(1)同学们你们喜欢体育活动吧?谁来说说你最喜欢哪项体育活动?

(2)下面请同学们看屏幕(出示图),仔细观察这幅图,你从图上知道哪些信息?

(3)根据这些信息,你能提出哪些用加法计算的问题?

B、参加活动的女生有多少人?

C、男生跳绳和女生踢毽子的有多少人?

D、参加活动的一共有多少人?

同学们提出的问题都非常好,下面我们先来解决第一个问题。

二、探索加法交换律:

1、(1)要求参加跳绳的有多少人,应该怎样列式计算?

指名回答,教师板书:28+17=45(人)

(2)还可怎么列式?板书:17+28=45(人)

(3)这两道算式都是求什么的人数?结果都是多少?再观察算式它们有什么相同点?不同在哪里?

(引导学生说出:加数相同,得数也一样,只不过是把加数的位置调换了一下)。

师:这两道算式的得数相同,都是求的跳绳的总人数。我们可以用怎样的方法连接这两道算式?(等号)板书:28+17=17+28

这是一个等式,读一读。

(4)你能照样子说出一个这样的等式吗?试试看。(指名学生回答说,教师把学生说的等式有序地板书在黑板上)。

(5)请同学们仔细观察这些等式,你发现每一组的两个算式都有什么共同的地方?有什么不同的地方(同桌交流)?

(6)从这些例子中,你可以发现什么规律?(让学生用自己的语言说一说)

(7)你能用自己喜欢的方法把它们的规律表示出来吗?可以用符号、字母、文字等等表示,试试看。谁愿意上黑板写?(学生写,教师了解学生写的情况)。

(8)观察板演的等式,问:等式中的符号代表什么,如:○+□=□+○,教师就提问:“□”和“○”都代表什么,○+□=□+○表示什么呢?(代表任意的数)……

小结:同学们想出来的方法可真多!两个数相加,交换加数的位置和不变这一规律叫做加法的交换律(板书:加法交换律),通常用字母表示:a+b=b+a

2、练习。

(1)想想做做第2题第1排的两题填好。

96+35=35+□ 204+□=57+204

指名回答,为什么?

(2)下面的等式符合加法交换律吗?为什么?

46+59=46+59 90+10=5+95

[没有交换加数的位置;等号两边的加数不同。]

(3)同学们,想一想:过去我们学过的计算中,哪些地方应用过加法交换律?

下面一道题357+218,请同学们计算并用加法交换律进行验算。指名板演,集体订正。

同学们,刚才我们通过计算加法找出了一条规律(加法交换律),接下来我们继续研究加法的另一条规律

三、探索加法结合律

1、 同学们根据例题这幅图再算一算“参加活动的一共有多少人”会列式吗?

(1)指名回答,板书:28+17+23

第一步先求什么?为了看得更清楚,我们可给28+17添上括号,表示参加跳绳的总人数:(28+17)+23,再求什么?结果是多少?

(2)还是这个式子28+17+23(板书)如果要先算参加活动的女生人数应该怎么办?教师添上括号:28+(17+23),添上括号后表示先求什么,再求什么?结果是多少?

(3)请同学们比较这两道算式:它们有什么相同点和不同点?

(4)这两道算式结果相同我们可把它写成怎样的等式?

板书:(28+17)+23=28+(17+23)

(5)算一算,下面的○里能填上等号吗?(教师当场板书)

(45+25)+13○45+(25+13)

(36+18)+22○36+(18+22)

3、归纳加法结合律:

(1)观察这三个等式, 每组的两个算式有什么相同的地方?有什么不同的地方? 你从这些等式中能发现怎样的规律?和你的同桌交流一下。

(2)你能用字母a、b、c代表这三个加数把上面的规律表示出来吗?(独立写一写) 板书:(a+b)+c=a+(b+c)

a、b、c代表什么?(a+b)+c表示什么?a+(b+c)表示什么?

(3)小结:三个数连加,改变运算顺序,和不变。这就是加法结合律。(板书:加法 结合律)

4、练习:在□里填上合适的数,想想做做2后两排。

(45+36)+64=45+(□+□)

560+(140+70)=(560+□)+□

全课总结:这节课我们一起学习了加法的交换律和结合律,知道两个数相加,交换加数的位置和不变,还知道了三个数连加,改变运算顺序和不变。

四、巩固练习

1、“想想做做”1

下面的等式各运用了加法的什么运算律?

82+0=0+82

47+(30+8)=(47+30)+8

(84+68)+32=84+(68+32)

75+(48+25)=(75+28)+48

(以游戏的方式进行:女生代表加法交换律,男生代表加法结合律)

2、想想做做4

38+76+24 (88+45)+12

38+(76+24) 45+(88+12)

请每个同学选一组题独立完成。

反馈提问:为什么每组两道题的得数相同?哪种方法简便,为什么?

小结:可见,合理地运用加法的交换律和结合律可以使计算简便。

3、想想做做5

出示题目后学生说。

五、拓展练习

1、 在□里填上合适的数

□+147=□+a

45+□+55=74+(□+□)

18+(c+□)=(18+□)+a

2、想一想:怎样应用加法运算律使计算简便。

30+28+70+45+72

=(30+70)+45+(28+72)

=100+45+100

=245

同学们,加法的这两个运算律,可以推广到任意多个数相加,即多个

数相加,任意交换加数的位置,或者把其中的几个数结合成一组相加,它们的和不变!应用加法交换律和结合律,有时可以使计算简便。下一节课我们将继续学习。

精选四年级数学加法交换律教案(精选10篇)


88教案网相关专题:“四年级数学加法交换律教案”。

四年级数学加法交换律教案 篇1

教学内容:第56第58页

教学目标:1,让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会运用加法交换律进行加法验算.

2,在探索规律的过程中发展学生的分析比较抽象概括能力,培养学生的符号感.

教者:唐荣

教学设计:

明确今天的教学内容板书:运算律

简介运算律的含义:即运算过程中发现的规律.

一,教学加法交换律:

1,出示例题画面,由学生仔细观察画面并根据题中所提问题(跳绳的有多少人)选择相关条件并进行解答.

2,学生交流各自的解法,说说列式的理由

板书:28+17男生跳绳人数+女生跳绳人数

17+28女生跳绳人数+男生跳绳人数

3,比较两式结果,总结规律

4,由学生说出他们的发现:你还能举出这样的例子吗

5,比较两式异同点,明确式中各部分的名称,逐步导出规律:两数相加,交换加数的位置,它们的和不变.

6,说明这样的例子举不胜举,太多太多,为了简明表示出这一规律,我们用一个字母式子表示为a+b=b+a,明确这里的a,b分别代表两个数,等号表示不变.

二,数学加法结合律的条件(通过例题发现规律)

1,根据例题的条件,你能求出参加活动一共有多少人吗各自列出算式:

2,交流解题方法,明确算理

(28+17)+2328+(17+23)

由学生分别算出结果,并比较异同,明确虽然顺序不一样,但结果相同,说明这也是一种规律,由各人再举出例子试试,看这一规律是不是具有普遍性.

4,总结归纳这一规律,并学习用字母表示.

5,明确两规律的名称.

三,组织练习

1,做第58页想想做做第1题,说出每一个等式各运用了什么运算定律.

2,做第2题,让学生先填一填,再说出各是怎么想的.

3,完成第4题,说出每组题中哪种方法简便,为什么

4,完成第5题.

四,全课总结

1,由学生说说本节课的收获.

2,教师总结及要求

这节课我们学习加法运算中的两种运算规律,要能准确说出它们的字母表达式,并明白其含义.关于学习它有什么作用,下节课我们再作进一步研究.

教学反思:

通过学习这节课的教学,我有这样的想法:

1,四年级组的学生已具备一定的观察,分析,思考的能力,教学过程中要注意充分利用,引领他们去思考分析培养和提高这方面的能力.

2,课堂上留给学生自主的空间,能够易于让学生发现和理解相关知识,有利于激发和调动他们学习的兴趣.

四年级数学加法交换律教案 篇2

教学目的:

1.使学生在已学过的加法知识的基础上,概括出加法的意义,对加法的认识从感性上升到理性。

2、使学生理解并掌握加法交换律。

教学重点:加法的意义

教学难点:加法交换律

教具准备:小黑板

教学过程:

一、教学加法的意义

教师:我们在前三年已经学过加法的计算方法,现在要进一步学习、掌握加法的一些规律性知识,这些知识对以后学习有很大帮助。

1、加法的意义。

(1)教学例1。

教师出示例1,让学生读题,边指名说出条件和问题,教师边用线段图表示出数量关系。

137千米357千米

北京天津济南

然后让学生自己解答,解答后,说一说为什么用加法计算。(因为已知北京到天津的铁路长137千米,又知道天津到济南的铁路长357千米,要求北京到济南的铁路长,就要把两段铁路长合并起来,出就是要把137和357合并起来,所以要用加法计算。)教师边重述用加法算的理由,边板书出算式和答案。现进一步提问:

加法是什么样的运算?

在此基础上,教师给出加法的意义:把两个数合并成一个数的运算叫做加法。

(2)做练习十一的第1题。

要让学生应用加法的意义说明各题为什么用加法计算。如第1小题,可以启发学生说出:因为已知小强和小明邮票的张数,要求小强和小明一共有多少张邮票,就要把他俩的邮票张数合并起来,加法就是把两个数合并成一个数的运算,所以这道题要用加法计算。

2.加法各部分的名称。

教师指着137+357=494,提问:

137和357在加法算式中叫什么数?(加数。)

它们相加得到的结果494叫什么?(和。)

然后教师联系的意义说明:相加的两个数叫做加数,加得的数也就是合并的结果叫做和。边说边对应地板书出:

137+357=494

加数+加数=和

提问:

我们上面做的加法,两个加数是什么样的数?(自然数。)

任何两个自然数相加得到的和都比加数怎样?(大。)

一个自然数和0相加得到的和怎样呢?(还得原数。)

你能举出一个自然数和0相加的几个例子吗?

教师把学生举出的例子板书出来。(如,3+0=3,0+4=4,0+0=0)

然后接着问:

0和0相加会怎样?(还得0。)

人上面的例子我们可以看出一个自然数和0相加还得这个自然数,0和0相加还得0,也就是说任何数和0相加都怎样?(得原数。)

二、教学加法交换律

教师:加法运算有一些基本性质,对我们以后的计算很有用。下面我们就来学习加法的一个运算定律。

1、结合例1的两种解法,引导学生比较它们的特点。

提问:

上面的例1,求北京到济南的铁路长是怎样列式计算的?

如果求济南到北京的铁路长该怎样列式计算?(如果学生说仍用原来的算式,教师可以引导学生想还可以怎样列式计算。)

学生回答后,教师板书出:357+137=494(千米),并让学生说一说为什么用加法计算。

接着让学生观察、比较两种解法的结果怎样,启发学生说出:137+357和357+137的结果相等。教师板书:137+357=357+137

然后让学生比较一下等号两边的算式的相同点是什么?(都是137和357两个数相加)不同点是什么?(等号左边是137加357,等号右边是357加137。)

引导学生回答后,教师归纳:137和357与357和137的得数一样,出就是和不变。

2.再出两组算式,引导学生比较,加以概括。

提出:能不能只从这一个例子就得出相加的两个数交换位置,和不变?

教师指出:不能只根据一个例子就做出一般结论,我们必须多考察几组不同的算式。下面我们观察一下这几组算式,看一看它们有什么样的关系。

教师板书出下面的算式:

18+1717+18

124+235235+124

让学生算一算,再提问:

每组算式有什么关系?里应填什么?这几组算式有什么共同特点?你发现了什么规律?从这几组算式你能得出什么结论?

3.比较三个等工,归纳出一般规律。

引导学生归纳,突出以下几点:

(1)这三个等式中,每组算式有几个加数?(两个加数)

(2)每个等式中,左右两边的加数的位置怎样?左右两边的和怎样?请几个学生试着把发现的规律说一说,然后教师完整地叙述一遍,说明这一规律叫做加法交换律。再看看教科书第48页方框里的话。

4.用字母表示加法交换律。

教师提出:用语言表述加法交换律比较麻烦,大家想一想怎样能把这一规律表示得既简单又清楚?

学生回答后,教师肯定地说明用字母表示可以做到这一点。然后提出:如果用字母a或b分别表示两个加数,怎样表示加法交换律?(同时说明a、b是拉丁字母,通常读作eibi,不要按汉语拼音来读,并领读几遍。)

学生回答后,教师板书:a+b=b+a

说明:a和b可以表示0、1、2、3、中的任意一个数;一个用数字表示的等式只能表示两个具体的数交换位置,和不变,不能表示任意的两个数交换位置,和不变,而用a+b=b+a,就可以表示任意两个数相加,交换加数的位置,和不变。比如,a+b=b+a可以表示2+1=1+2,137+357=357+137,18+17=17+18等等。

接着教师提问:

想一想我们在以前学过的哪些计算中用到了加法交换律?

使学生明确以前学过的用交换加数的位置再加一遍的方法来验算加法,就是用加法交换律的。

5.做第48页的做一做。

第1题,让学生在方框里填上适当的数,订正时,说一说是根据哪个规律填写的。

第2题,验算的竖式可以直接写在原始的右边。

三、巩固练习

做练习十一的第24题。

1.第2题,要注意让学生清根据哪个运算定律来填数,对有困难的学生可以对照运算定律的结语及字母表达式帮助理解,对于运算定律的表述,只要求表达得清楚没有错误,不要求学生一字不差地背下来。

2.第3题,让学生根据运算定律来判断每个等式是不是符合运算定律的要求。如230+370=380+220,虽然左右两边的得数相等,但由于两边的加数不同,所以不符合加法交换律。又如,30+50+40=50+30+40,虽然是三个数相加,但是前两个加数交换了位置,加得的和不变,还是符合加法交换律的。

四、小结

教师:今天我们学习了加法的意义和加法的一个运算定律加法交换律。谁能结合具体的题目说一说加法的意义和加法交换律的含义?

四年级数学加法交换律教案 篇3

加法的交换律和结合律一课属于数的运算中的一个重要内容。是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。学生从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律结合律的基础。

新教材安排这两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。

片断一:

师:谈话:天气渐渐凉了,我们学校又要组织大家进行冬锻炼比赛了,冬锻炼比赛有些什么项目呢?看,同学们正在紧张的训练呢。

(出示情境图),从图中你获得了哪些信息?你能提出哪些用加法计算的问题?

根据学生的回答,板书:1、参加跳绳活动的有多少人?

2、参加活动的女生有多少人?

3、参加活动的一共有多少人?

【反思】

从课堂的引入老师就以最贴近生活的冬季锻炼比赛为题,一下子激起了学生学习的兴奋点,学生提出了很多加法问题,从而很自然的进入了后面的学习。

片断二:

下面我们先来解决第一个问题,求跳绳的有多少人,怎样列式计算?

指名口答,教师板书:28+17=45(人)

追问:还可以怎样列式?在学生回答后,教师完成板书:17+28=45(人)

这两个算式都是求的什么?它们的结果怎么样?那你能用一个符号把他们连接起来吗?(等号)板书:28+17=17+28,这是一个等式,我们一起来读一读。

仔细的观察一下这个等式,在等号的两边,什么地方相同,什么地方不同?

【反思】

在这样一个教师引导,学生进行比较、分析、举例、验证,表达的过程中,充分发挥了学生主体的作用,也让学生感受到了发现规律的一般过程,从而达到经历过程,讨论提升,归纳概括的目的。结合律的教学过程则更多的体现了学生自主探索,推导,验证的一个完整过程。

新教材的目标设定及教学过程,更多的体现了动态生成,寓数学思考,探究,发现于一体的数学活动过程,教师只有把握住了这个精髓才能去上好课,发展学生的综合能力。

四年级数学加法交换律教案 篇4

教学内容:

北师大版小学数学四年级上册第三单元乘法探索与发现(三)加法交换律与结合律P47.

教学目标:

1、经历探索过程,推导出加法交换律和结合律,会用字母表示数。

2、会运用加法交换律和结合律对一些算式进行简便计算。

3、激发学生的学习兴趣,培养学生的思维能力和科学的学习方法。

教学重点:

引导学生探索概括出加法交换律和结合律,并初步理解运用、进行简便计算。

教学难点:

加法交换律和结合律的探索推导过程与运用。

教具准备:

PPT课件等

教学过程:

一、复习导入,回忆旧知。

要求学生回忆一下上一节课学过的乘法的运算规律。

(我们上节课学习了《乘法交换律和乘法结合律》,那么,大家回忆一下,乘法交换律和乘法结合律的公式又是什么呢?)

ab=ba

(ab)c=a(bc)(黑板板书)

(那么加法是否也有同样的规律呢?让我们现在来探讨一下)

二、创设情境、操作体验

1、由生活引入,通过对话的形式与学生共同探讨交换的含义。

数一数:本班男生的人数和本班女生的人数,求本班一共有多少人?

男生+女生:(26+17)人

女生+男生:(17+26)人

结果无论哪一种计算方法,计算出来的结果都是相等的。

再举书本上两个例子来说明。

26+17=17+26

3+2=2+3

15+20=20+15

a+b=b+a(黑板板书)

让学生列出不同的算式,分析比较两个算式的共同点和不同点。

突出强调交换的意思。结果表明:两个式子的加数交换了位置,但和不变。再要求学生自己举一两个例子来试试看。

2、出示题目:同学们的课间活动很丰富,看,有28个男生在跳绳,17个女生在跳绳,23个女生在踢毽子,参加活动的一共有多少人?

方法一:先算跳绳的一共有多少人:28+17人,再算全部的人数:(28+17)+23人。

方法二:先算一下女生,再算一下他们加起来一共是多少人:28+(17+23)人。

那么得出:(28+17)+23=28+(17+23)整十

(3+2)+5=3+(2+5)

(19+12)+38=19+(12+38)整十

(a+b)+c=a+(b+c)

结果表明,计算出来的结果都是相等的。

3、再举书本中的例子来说明结合的两个数的条件和原因。

57+49

=50+7+40+9

=50+40+7+9

=(50+40)+(7+9)因为50+40=90,90是一个整十数。

=90+16

=106

三、巩固练习,加深记忆。

1、书本P47(3)利用你发现的规律,计算下列各式。

2、想一想:下面的等式各应用了什么运算律?

82+0=0+82

47+(30+8)=(47+30)+8

(87+68)+32=84+(68+32)

75+(48+25)=(75+25)+48

3、比一比:谁算得又快又对!

38+76+24(88+45)+12

四、布置作业。

五、板书设置。

四年级数学加法交换律教案 篇5

教材分析及重难点:

教材开篇就给于我们一幅李叔叔骑自行车旅行的情境图,画出了旅行途中记录行程的情景。考虑到学生对自行车上的记录仪表比较陌生,所以画了一个仪表表面的放大图,并让小精灵作提示性介绍,进而打造出三道例题,分别求李叔叔上下午的路程和、前三天的路程和、后四天的路程和。其中小精灵说的话:李叔叔准备骑车旅行一个星期。对于解答例1无关紧要,但能为后面引出例2、例3埋下伏笔。例1和例2提供了概括加法交换律和结合律的具体事例。

例1是在主题图的基础上提出了要解决的问题。解答这个问题所需要的条件,都在主题图中。教学时可以让学生自己解答并交流。学生说出40+56和56+40这两个算式,一般不会有困难。由此引出加法交换律。让学生用语言表达加法交换律,感觉表述比较麻烦。顺水推舟引出符号、图形等得出加法交换律:a+b=b+a。之后,进而引导学生体会用字母能更简单明了地表示:任意两个数相加,交换位置和不变。例1下面的做一做可让学生独立完成。这样编排,一方面有利于符号感的培养,且方便记忆;另一方面提高了知识的抽象概括程度,也为以后正式教学用字母表示数打下初步的基础。

例2同样采用图画表示题意。图中将李叔叔笔记本上的内容加以放大,从中可以看出分别记录了三天各行了多少千米,并提出求这三天所行路程和的问题。从解决这个问题的两种算法中,可以得到加法结合律的一个实例。在此基础上,引导学生观察、比较、概括得出结合律的过程,与例1相仿。教学时可以让学生看着例2的插图叙述图意。学生可能会提出疑问,例1算得的结果是全天一共骑了96千米,怎么这里第一天骑的路程却是88千米?对此,教师可以让看懂了的同学说一说这是怎么回事。即例1求的是第三天一共行了96千米,到现在李叔叔一共骑车旅行了三天。理解了题意,并搞清了条件和问题之后,可以放手让学生自己列出算式计算。通常,会有学生按顺序计算,也会有学生发现后两个加数能凑成整百数,所以先相加。引导学生比较两种算法,得出先把前两个数相加,与先把后两个数相加,结果相同,都是这三天行的总路程,所以可以用等号把这两个算式连起来。

接着,学生举例时完成课本第29页用符号表示的填空时,也可能出现这种现象。如(a+b)+c=a+(b+c)。对此,教师应给予肯定,同时指出:加法交换律前面已经总结,这里总结不交换加数的规律。

教学目标:

1.通过尝试解决实际问题,观察、比较,发现并概括加法交换律、加法结合律。

2.初步学习用加法运算定律进行简便计算,并用来解决实际问题。

3.通过公式推导的教学,培养学生深刻的思维品质和观察能力、概括能力和语言表达能力。

教学重难点

教学重点:在观察、比较中发现并推导加法交换律、加法结合律,并会应用。

教学难点:加法交换律和结合律的推导过程是学习的难点.

教学过程:

一、创设情境

1.引入谈话。

在我们班里,有多少同学会骑车?你最远骑到什么地方?

骑车是一项有益健康的运动,这不,这里有一位李叔叔正在骑车旅行呢!

(出示:李叔叔骑车旅行的场景。)

2.获得信息。

问:从中你可以得到哪些信息?

(学生同桌交流,然后全班汇报。)

随着学生的回答,多媒体从左往右展示线段图,出现大括号与问题:

3.解决问题。

问:能列式计算解决这个问题吗?

(学生自己列式并口答。)

二、探索规律

1.加法交换律。

(1)解决例1的问题。

根据学生回答板书:

40+56=96(千米)

56+40=96(千米)

多媒体展示:从右往左再现线段图。

问:两个算式都表示什么?得数怎样?○里填什么符号?

40+56○56+40,

(2)你能照样子再举几个例子吗?

(3)从这些例子可以得出什么规律?请用最简洁的话概括出来。

(4)反馈交流。两个加数交换位置,和不变。

(5)揭示定律。

问:①知道这条规律叫什么吗?

②把加数换成其他任意的数,交换律还成立吗?

③怎样表示任意两数相加,交换加数位置和不变呢?请你用自己喜欢的方式来表示,好吗?(同桌轻声交流。)

④交流反馈,然后看书:看看课本上的小朋友是怎么说的。

⑤根据加法交换律对口令。

师:25+65=______(生:等于65+25)

78+64=______

⑥完成课本第28页下面的做一做:

300+600=______+______+65=______+35

2.加法结合律。

多媒体展示:李叔叔三天骑车的路程统计。

(1)找出信息解决问题。

问:你能解决李叔叔提出的问题吗?

学生独立完成后交流。

多媒体展示线段图:根据学生列出的不同算式,表示三天路程的线段先后出现。

问:通过线段图的演示,你们发现什么?(不论哪两天的路程先相加,总长度不变。)

我们来研究把三天所行路程依次连加的算式,可以怎样计算:

比较

比较:为什么要先算104+96呢?(后两个加数先相加,正好能凑成整百数。)

出示:(88+104)+96○88+(104+96),怎么填?

(2)你能再举几个这样的例子吗?

问:观察、比较这些算式,说一说你发现了什么秘密?(鼓励学生用自己的话来说。)

(3)揭示规律。

三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这就是加法结合律。

(4)用符号表示。(学生独立完成,集体核对。)

(▲+★)+●=____+(____+____)

(a+b)+c=____+(____+____)

(5)问:①用语言表达与用字母表示,哪一种更一目了然?

②这里的a、b、c可以表示哪些数?

三、练习巩固

1.指出下面哪几道题运用了加法运算定律,分别运用了什么运算定律

(1)(运用了加法交换律)

(2)用凑十法7+9=6+(1+9)(运用了加法结合律)

(3)~(7)为教材练习五第4题(略)。

2.连一连。

想一想:最后一组连线的依据是什么?

四、小结

1.今天我们发现了哪些数学规律?

2.这些运算定律是怎样发现、归纳的?

3.对于加法的交换律、结合律的应用,我们已经知道的有哪些?

五、布置课后作业

完成课本练习五第1题、第3题。

四年级数学加法交换律教案 篇6

教学目标:

1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。教学难点:使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。

教学准备:配套课件。

教学过程:

一、课前谈话。有牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。引导学生得出:要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。设计意图:由科学家从一个平常的现象得出伟大的发现,引导学生应注意观察身边的一些平常的、习以为常的现象,并从中的出一些规律,对学生进行良好学习习惯的教育。

二、教学加法交换律。1、随着气候渐渐转凉,从下个月开始,同学们都将投入到冬季锻炼中去了。电脑出示第54页的例题,这是某个班级进行冬锻的情况,提问:从这张图片中,你获得了哪些数学信息?你能根据这些信息,提出几个用加法计算的问题吗?根据学生的回答,电脑依次出示:①参加跳绳的一共有多少人?②参加活动的女生一共有多少人?③跳绳的男生和踢毽子的女生一共有多少人?④参加活动的一共有多少人?设计意图:从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生的发散性思维,并培养学生的问题意识。同时,也符合新课程创造性使用教材的理念。2、今天这节课,我们就一起来研究其中的这两个问题:在黑板上张贴:参加跳绳的一共有多少人?参加活动的一共有多少人?我们先来解决第一个问题:参加跳绳的一共有多少人?3、你们能马上口头列式并口算出结果吗?指名回答,教师板书:28+17=45,追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:17+28=45(人)为什么这两个算式的结果一样?4、你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28仔细地观察一下这两个算式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?6、我们再仔细的观察这几个算式,从中你们有什么发现?你们能用一个算式来表示你们的发现吗?教师巡视,并作相应的辅导,在学生交流后板书出示:两个数相加,交换加数的位置,它们的和不变。并板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?7、同学们都自己用自己的喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:a+b=b+a。8、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。小结研究方法:刚才我们在研究加法法交换律的时候,我们是怎样一步一步开展研究的?引导学生能得出:列式计算观察思考猜测验证得出结论。9、练习:完成想想做做第一题前面两小题。设计意图:教师是教学的组织者和引导者,而不仅仅是解题指导者。本环节的设计,层层递进,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用字母表示,最后还归纳出了研究方法,都让学生有一种成就感。

三、学习加法结合律。1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题参加活动的一共有多少人?看看我们有没有新的发现?2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。3、学生回答,教师有意识地板书:(28+17)+23=68(人)28+(17+23)(28+23)+1728+(23+17)(23+17)+2823+(17+28)让回答的同学说说这么列式是怎么思考的?下面,我们就来针对这两个算式开展研究:(28+17)+2328+(17+23)设计意图:本环节又是用教材教的一个很好体现,比较好地注意了关注学生的生成与教师预设之间的联系,并很好地引导到需要的算式。4、根究研究方法,接下来我们应该进行哪一步?(观察思考)那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:(28+17)+23=28+(17+23)5、电脑出示:下面的里能填上等号吗?(45+25)+1345+(25+13)(36+18)+2236+(18+22)学生回答,教师板书:(45+25)+13=45+(25+13)(36+18)+22=36+(18+22)6、看着黑板上的板书,你们从中有了什么新的发现?学生小组交流后大堂再交流,教师张贴:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。板书:(a+b)+c=a+(b+c)教师揭示:这就是我们今天所学的第二个运算律加法结合律(板书:加法结合律)。8、完成想想做做第1题的后面两个小题。设计意图:通过引导学生运用得到的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。

四、巩固练习。

1、完成想想做做第2题。第4小题引导学生发现是运用了加法交换律和加法结合律。

2、完成想想做做第3题第1行。

3、插入朝三暮四的故事,让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老头采用了加法交换律。

4、完成想想做做第4题。使学生初步感受应用加法运算律可以使计算简便。设计意图:几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。

五、课堂总结。通过本节课的学习,你有什么新的收获?设计意图:体现了教师的主导作用和学生的主体作用,使学生在自己的整理总结中再次巩固了本节课的重难点。板书设计:

加法交换律

28+17=45(人)17+28=45(人)

加法结合律

(28+17)+2328+(17+23)28+17=17+28=45+23=28+40=68(人)=68(人)

(28+17)+23=28+(17+23)

(45+25)+13=45+(25+13)(36+18)+22=36+(18+22)a+b=b+a(a+b)+c=a+(b+c)

四年级数学加法交换律教案 篇7

教学内容:

教科书第56~58页的内容。

教学目标:

1、让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会运用加法交换律进行加法验算。

2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。

教学重点:

让学生在探索中经历运算律的发现过程,理解不同算式间的相等关系,发现规律,概括运算律。

教学难点:

概括运算律。

教学过程:

一、教学加法交换律

1、创设情境,解决问题。

(1)请仔细观察画面,并根据题中所提问题(跳绳的有多少人?)选择相关的已知条件。

(2)学生各自列式、解答。如果出现两个算式:28+17=45(人),17+28=45(人),让学生交流想法。如果只出现28+17=45(人),提问:还可以怎样列式?

2、观察、比较,发现规律。

(1)观察两道算式,得数怎样?

28+17和17+28的得数相同,说明这两道算式是相等的,可以写成等式:28+17=17+28(板书)。

(2)你能再写出几个这样的等式吗?

学生写出等式后,老师讲故事来引导学生发现规律。

(3)比较一下等号两边的算式的相同点是什么?不同点是什么?你有什么发现?

(4)同学们都发现了两个加数相加,交换加数的位置,它们的和不变。

(5)你能创造两个符号分别表示两个加数,把你们发现的规律表示出来吗?学生说老师板书。

(6)我们发现的规律就可以写成a+b=b+a(板书),这个规律我们给它起个名字叫加法交换律。谁来说说加法交换律用字母怎样表示?用语言怎样表达?

二、教学加法会合律

1、解答例题,发现规律。

(1)(课件出示例题)提问:要求算出参加活动的一共有多少人,可以先算什么,怎样列算式?

组织学生讨论得出:

①先算出跳绳的有多少人。(28+17)+23=68(人)

②先算出女生有多少人。28+(17+23)=68(人)。哪种计算简便。

(2)提问:依据上面两道算式可以写成怎样的等式?

学生回答后板书:(28+17)+23=28+(17+23)

出示练习:(45+25)+13()45+(25+13)

(36+18)+22()36+(18+22)

一定要先分别计算,再根据计算结果填符号。

(3)认真观察、比较这几个等式,你有什么发现?

等号两边算式的加数相同,加数的位置不变,只是运算顺序不同,等号左边的算式是先把前两个加数相加,右边的算式是先把后两个加数相加,得到的和是相等的。也就是三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再同第一个数相加,它们的和不变。

2、呈现运算律。

如果用a、b、c表示三个加数,这个规律可以怎样表示?

学生回答后板书:(a+b)+c=a+(b+c),这就是加法结合律。

谁能看着加法结合律的字母表达式,再用自己的话说说什么是加法结合律?

三、组织练习

1、做想想做做第1题。

让学生说一说每一个等式各应用了什么运算律,指名回答。其中75+(48+25)=(75+25)+48运用的是加法交换律和结合律,先把括号内的48和25交换位置,再运用加法结合律把先加后肉个加数改为先加前两个加数。

2、做想想做做第2题。

让学生先填一填,再说说各是怎样想的。

3、做想想做做第4题。

(1)让学生一组题一组题地计算。

(2)提问:为什么每组两题的得数相同?每组中哪道题计算起来比较简便?为什么觉得简便?运用什么运算律。

4、做想想做做第5题。

(1)在做第4题时,大家觉得先把和是100的两个数加起来,下一步就容易了,那么什么样的两个数和是100呢?请做第5题,把和是100的两个数连一连。

(2)提问:什么样的两个数和是100?(十们上和是9,个位上和是10)

四、全课总结

1、提问:这节课我们学习了哪两条运算律?你能它们的字母表达式吗?能用自己的话说说它们的意思吗?

2、教师总结。

五、课堂作业

想想做做第3题。

六、结束下课。

四年级数学加法交换律教案 篇8

教学内容:苏教版小学数学第七册第七单元运算律第56――58页例题,想想做做的第1――5题。

教学目标:

1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会运用加法交换律进行加法验算,初步感受到应用加法交换律和结合律可以使一些计算简便。

2.在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。

3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。

教学重点:发现规律,理解和掌握运算律。

教学难点:概括运算律并用字母表示。

教学过程:

一.师生合作,探索加法交换律

1.创设情境,解决问题

(1)谈话:随着学校开展冬锻活动以来,课间同学们的活动变得更加丰富多彩了。(出示挂图)提问:从这张图片中,你获得了哪些数学信息?

(2)你能根据这些信息提出一些用加法计算的问题吗?指名口答。

(3)今天这节课,我们就一起来研究其中的这两个问题(出示问题)

(4).先解决第一个问题:参加跳绳的一共有多少人?

①应怎样列式计算

指名回答,教师板书:28+17=45(人)

②追问:还可以写成什么?

指名回答,教师板书:17+28=45(人)

2.观察、比较、发现规律

(1).这两道算式都是求什么的人数?结果都是多少?

(2).你能用一个符号把它们连接起来吗?

板书:28+17=17+28

(3)仔细地观察这个算式,在等号的两边,什么变了?什么不变?你有什么发现?

同桌交流

(4)你们能够自己模仿写出几个这样的算式吗?试试看。

追问:这样的算式能写几个?

指名回答,教师板书。

(5)你能用自己喜欢的方法把我们发现的规律简单明了地表示出来吗?可以用符号、字母、文字等。

学生试着写一写。

指名回答,教师板书。

(6)谈话:刚才同学们能用自己喜欢的方式表示了我们发现的规律,这些规律叫运算律。但是自己创造的符号只有自己明白,还要学习数学界公认的表示方法,那就是用字母a、b分别表示两个加数,我们发现的规律就可以写成a+b=b+a,这个规律我们给它起个名字叫加法交换律。

(7)谁来说说加法交换律用字母怎样表示?用语言怎样表达?

齐读。

(8)其实加法交换律我们早就会用了,想想看,什么时候我们用过?

指出:在验算加法时用的就是加法交换律。

3..练习:

96+35=35+()

204+57=()+204

a+45=45+()

二.学法迁移,探索加法结合律

1.解答例题,发现规律

(1)刚才通过解决第一个问题,我们得到了加法交换律,现在我们再来研究第二个问题,看看有没有新的发现?

(2)齐读问题。你会列式解决这个问题吗?

你打算先求什么?再求什么?

学生练习,教师巡视。

学生汇报,教师板书:(28+17)+23=68(人)

28+(17+23)=68(人)

(3)比较一下这两道算式,他们有什么相同点和不同点?

(4)这两道算式结果相同,我们可把它写成怎样的算式?

板书(28+17)+23=28+(17+23)

(5)练习:

下面的○里能填上等号吗?

(45+25)+23○45+(25+23)

(36+18)+22○36+(18+22)

(6)观察这三个等式,每组的两个算式有什么相同的地方?有什么不同的地方?你从这些等式中能发现怎样的规律,和你的同桌交流一下。

2.呈现运算律

(1)你能从第一个运算律中得到启发,用简便的方法表示你们的发现吗?试一试。

学生口答,教师板书:(a+b)+c=a+(b+c)

(2)三个数相加,改变运算顺序,和不变,这就是我们今天所学的第二个运算律――加法结合律。

3.练习

(45+36)+64=45+(□+□)

560+(140+70)=(560+140)+□

a+(27+b)=(□+□)+b

三.组织练习

1.第58页想想做做第1题。

仔细观察,同桌交流后汇报。

重点讨论第四个等式,引导学生发现这里同时运用了两种加法运算律。

2.想想做做第3题。

学生计算第1小题,并用加法交换律验算,请学生板演。

评讲,让学生体会加法交换律的价值。

3.想想做做第4题

(1)下面我们来比一比谁做得对又快。

男生计算每组题中的第1小题,女生计算每组题中的第2小题。

(2)交换题目再来比一比。

(3)问:如果让你来选,你愿意做哪一题?为什么?

(4)小结:因为运用了加法运算律可以使计算简便,而每组中的第2小题都运用了加法运算律,所以第2小题做得快。

4.想想做做第5题

(1)谈话:在做第4题时,大家觉得先把和是100的两个数加起来,下一步就容易算了,那么什么样的两个数和是100呢?下面我们来做第5题,你能很快找出哪两片树叶上数的和是100吗?

(2)学生独立连线,同桌互相校对。

(3)提问:什么样的两个数和是100?

(4)小结:看来,在计算过程中,要有一双敏感的眼睛,看到数字就能很快地判断出能不能凑成整百数。

四.回顾总结

有个成语叫学有所成,请同学们说说看,这节课你学到了什么?有什么新的收获?

五.作业:想想做做第3题剩下的题目。

四年级数学加法交换律教案 篇9

教学内容:P28例1(加法交换律)P29/例2(加法结合律)

教学目标:

1、引导学生探究和理解加法交换律、结合律。

2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3、使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学过程:

一、主题图引入

观察主题图,根据条件提出问题

(1)李叔叔今天一共骑了多少千米?

(2)李叔叔三天一共骑了多少千米?

等等。

引导学生观察主题图

教师根据学生提出的问题板书。

二、新授

练习本上用自己的方法列出综合算式,解答黑板上问题。

教师巡视,找出课堂上需要的答案,找学生板演。

学生观察第一组算式,发现特点。

引导学生观察第一组算式,总结出:

40+56=56+40

试着再举出几个这样的例子。

根据学生的举例,进行板书。

通过这几组算式,你们发现了什么?

学生发现规律:两个加数交换位置,和不变。这叫做加法交换律。

教师根据学生的小结,板书。

你能用自己喜欢的方式表示出加法交换律吗?

板书:a+b=b+a

学生用多种形式表示。

符号表示:△+☆=☆+△

引导学生观察第二组算式,总结出:

(88+104+96)=88+(104+96)学生观察第二组算式,发现特点。

学生继续观察几组算式。

出示:

(69+172)+28

69+(172+28)

155+(145+207)

(155+145)+207

通过上面的几组算式,你们发现了什么?

学生总结观察到的规律。

教师板书:先把前两个数相加,或者先把后两个数相加,和不变。这叫做叫法结合律。

学生用自己喜欢的方式表示加法结合律。

符号表示:(△+☆)+○=△+(☆+○)

教师板书:

(a+b)+c=a+(b+c)

学生根据这两个运算定律,举一些生活中的例子。

三、巩固练习

P28/做一做

P31/4、1

四、小结

学生小结本节课学习的加法的运算定律。

今天这节课你们都有什么收获?

你能把这些运用于以后的学习中吗?

五、作业:P31/3

板书设计:

加法的运算定律

(1)李叔叔今天一共骑了多少千米?(2)李叔叔三天一共骑了多少千米?

40+56=96(千米)56+40=96(千米)88+104+96104+96+88

=192+96=200+88

=288(千米)=288(千米)

40+56=56+40(88+104)+96=88+(104+96)

┆(学生举例)(69+172)+28=69+(172+28)

两个加数交换位置,和不变。155+(145+207)=(155+145)+207

这叫做加法交换律。先把前两个数相加,或者先把后两个数相加,

和不变。这叫做加法结合律。

a+b=b+a(a+b)+c=a+(b+c)

四年级数学加法交换律教案 篇10

教学目标:

1、使学生理解加法的意义,并能在实际计算中应用。

2、使学生掌握加法交换律,并会应用定律进行验算。

3、培养学生观察、比较、概括推理的能力。

教学重点:

由于学生对加法的计算已经比较熟悉,对加法的意义及加法交换律也有了感性认识,所以这节课就是要明确地概括出加法的意义及加法交换律,使学生的认识由感性上升到理性.因此教学重点应放在引导学生概括、总结加法的意义及加法交换律的过程中。

教学难点:

由于学生对抽象概括定义、定律重视不够,又不习惯于用加法意义进行说理,因此这也是教学的难点。

教学过程:

一、复习准备

1.口算.

39+4783+15420+180

47+3915+83180+420

2.口答.

(1)小明栽了18棵杨树和14棵柳树,他一共栽了多少棵树?

(2)小敏做了25朵红花,做的黄花比红花多5朵。做黄花多少朵?

(3)赵强读一本书,已经读了46页,还有58页没读,这本书共有多少页?

二、学习新课

师:我们已经学过了加法的计算方法,今天要在学加法知识的基础上,明确概括出加法的意义,并且能应用它解答实际问题.(板书:加法的意义和运算定律)

1.教学加法的意义.

(1)例一列火车从北京过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?

读题后,师生共同完成线段图:

学生独立解答:

137+357=494(千米)

加数加数和

答:北京到济南的铁路长494千米。

提问:

①这道题为什么用加法计算?

②加法是一种什么样的运算?

③要合并的两个数指的是什么数?合并成的一个数指的是什么数?

引导学生明确:要求北京到济南铁路的长度,就要把北京到天津的铁路长137千米和天津到济南的铁路长357千米这两个数合并起来,所以要用加法计算;加法是求两个数合并成一个数的运算;要合并的两个数是137千米和357千米,合并成的一个数是494千米。

启发提问:加法的意义是什么?说说看。

引导学生概括出加法的意义:“把两个数合并成一个数的运算,叫做加法”。

教师板书加法的意义。

练一练

练习十一第1题,应用加法的意义说明各题为什么用加法计算。

在学生独立计算的基础上,教师强调要合并的两个数和合并成的一个数分别指的是什么数,从而让学生更深刻理解加法意义,并会运用它解决实际问题。

(2)教学加法各部分名称。

提问:例1中的137和357在等式中叫什么数?(加数)它们相加得到的494叫什么数?(和)

教师板书。(写在例1算式的下面)

教师联系加法意义说明:相加的两个数也就是要合并的两个数,叫做加数,加得的数也就是合并的结果,叫做和.

反馈提问:你能根据加法的意义说明72+28=100这个算式的各部分名称吗?

(3)加法中有关0的问题.

提问:

①我们例1做的加法,两个加数是什么样的数?(是自然数)

②任何两个自然数相加的和与加数比较会怎样?(相加的和会比原自然数大)

③0和一个自然数相加的和会怎样呢?(0和自然数相加还得原来的自然数)

引导学生讨论:

0的加法可能有哪几种情况?举例说明.

在学生讨论的基础上,使学生明确:一个数加上0,还得原数.

(4)阅读课本第47页“加法的意义”。

2.教学加法交换律.

根据加法的意义引出加法交换律。

提问:

(1)我们刚才计算例1时,求济南到北京的铁路长用137+357,根据加法的意义还可以怎么算?(还可用357十137)

(2)观察比较一下,这两种解法的结果,能得出什么结论?(可以得出:相加的两个加数交换位置,和不变.也可说出这是两个相等的式子,写成137+357=357+137)

教师指出:我们不能只根据一个例子就得出结论,我们必须多参考几组不同的数目.

(3)出示18+17○17+18

350+150○150+350

274+100○100+274

873+127○127+873

提问:

①观察每组算式有什么关系?○里应填什么符号?

引导学生明确:每组算式里加数是一样的,和也一样,每组两个算式是相等关系,○里应填“=”.

②这几组算式有什么共同特点?你发现了什么规律?

引导学生明确:这几组算式的共同点是,两个数相加,其结果只与加数的大小有关,而与这两个加数的顺序无关.因此可以得出:交换加数的位置,它们的和不变.

教师明确:你们发现的这个规律,就叫做加法交换律.

板书:“两个数……,它们的和不变.”

教师继续指出:上述几组算式说明,每组等式只能表示两个具体的数交换位置和不变,但不能表示任意整数.大家想一想,怎样用字母把加法交换律表示得既简单又清楚呢?

学生看书自学:第48页.

反馈提问:

什么叫加法交换律?怎样用字母公式表示?过去在什么地方应用了这个定律?

教师板书加法交换律的字母公式:

a+b=b+a

引导学生小结出:过去学过的加法的验算方法既可以用交换加数的位置再加一遍,也可以利用原来的竖式从下往上加一遍.

教师指出:学习了加法交换律,可以进行加法验算,要会运用定律.

练一练

现在用你们学过的知识做第48页的“做一做”.

订正题时要说出根据,以进一步巩固加法交换律的概念及其应用.

3.总结.

(1)说一说加法的意义是什么?

(2)什么叫加法交换律?它的字母公式是什么?怎样应用加法交换律?

三、巩固反馈

1.口答.(用加法意义说明算法)

玉门县要修一条公路,已经修了400千米,还有260千米没修,这条公路有多少千米?

2.下面各式哪些符合加法交换律?

140+250=260+130260+450=460+250

20+70+30=70+30+20a+400=400+a

3.根据运算定律在“□”里填上适当的数.

(1)□+55=55+42(2)a+44=□+□

(3)38+35=□+38(4)48+□=72+□

订正时,要求学生严格按照定义、定律来加以说明.

四、作业

练习十一第2~4题.

板书设计

加法的意义和运算定律

例1一列火车,从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?

137+357=494(千米)

加数加数和

357+137=494(千米)

答:北京到济南的铁路长494千米.

把两个数合并成一个数的运算,叫做加法.

18+1717+18

350+150150+350

274+100100+274

873+127127+873

两个数相加,交换加数的位置,它们的和不变.这叫做加法交换律.字母公式:

a+b=b+a

五、教学后记:

学生能理解加法的意义,掌握了、加法的交换律并会用运算定律进行计计算。