88教案网

你的位置: 教案 > 高中教案 > 导航 > 高中数学竞赛标准教材(第四章几个初等函数的性质)

高中函数的应用教案

发表时间:2020-12-01

高中数学竞赛标准教材(第四章几个初等函数的性质)。

一名优秀负责的教师就要对每一位学生尽职尽责,作为教师就要好好准备好一份教案课件。教案可以保证学生们在上课时能够更好的听课,帮助教师有计划有步骤有质量的完成教学任务。写好一份优质的教案要怎么做呢?为满足您的需求,小编特地编辑了“高中数学竞赛标准教材(第四章几个初等函数的性质)”,仅供参考,欢迎大家阅读。

第四章几个初等函数的性质

一、基础知识
1.指数函数及其性质:形如y=ax(a0,a1)的函数叫做指数函数,其定义域为R,值域为(0,+∞),当0a1时,y=ax是减函数,当a1时,y=ax为增函数,它的图象恒过定点(0,1)。
2.分数指数幂:。
3.对数函数及其性质:形如y=logax(a0,a1)的函数叫做对数函数,其定义域为(0,+∞),值域为R,图象过定点(1,0)。当0a1,y=logax为减函数,当a1时,y=logax为增函数。
4.对数的性质(M0,N0);
1)ax=Mx=logaM(a0,a1);
2)loga(MN)=logaM+logaN;
3)loga()=logaM-logaN;4)logaMn=nlogaM;,
5)loga=logaM;6)alogaM=M;7)logab=(a,b,c0,a,c1).
5.函数y=x+(a0)的单调递增区间是和,单调递减区间为和。(请读者自己用定义证明)
6.连续函数的性质:若ab,f(x)在[a,b]上连续,且f(a)f(b)0,则f(x)=0在(a,b)上至少有一个实根。
二、方法与例题
1.构造函数解题。
例1已知a,b,c∈(-1,1),求证:ab+bc+ca+10.
【证明】设f(x)=(b+c)x+bc+1(x∈(-1,1)),则f(x)是关于x的一次函数。
所以要证原不等式成立,只需证f(-1)0且f(1)0(因为-1a1).
因为f(-1)=-(b+c)+bc+1=(1-b)(1-c)0,
f(1)=b+c+bc+a=(1+b)(1+c)0,
所以f(a)0,即ab+bc+ca+10.
例2(柯西不等式)若a1,a2,…,an是不全为0的实数,b1,b2,…,bn∈R,则()()≥()2,等号当且仅当存在R,使ai=,i=1,2,…,n时成立。
【证明】令f(x)=()x2-2()x+=,
因为0,且对任意x∈R,f(x)≥0,
所以△=4()-4()()≤0.
展开得()()≥()2。
等号成立等价于f(x)=0有实根,即存在,使ai=,i=1,2,…,n。
例3设x,y∈R+,x+y=c,c为常数且c∈(0,2],求u=的最小值。
【解】u==xy+≥xy++2
=xy++2.
令xy=t,则0t=xy≤,设f(t)=t+,0t≤
因为0c≤2,所以0≤1,所以f(t)在上单调递减。
所以f(t)min=f()=+,所以u≥++2.
当x=y=时,等号成立.所以u的最小值为++2.
2.指数和对数的运算技巧。
例4设p,q∈R+且满足log9p=log12q=log16(p+q),求的值。
【解】令log9p=log12q=log16(p+q)=t,则p=9t,q=12t,p+q=16t,
所以9t+12t=16t,即1+
记x=,则1+x=x2,解得
又0,所以=
例5对于正整数a,b,c(a≤b≤c)和实数x,y,z,w,若ax=by=cz=70w,且,求证:a+b=c.
【证明】由ax=by=cz=70w取常用对数得xlga=ylgb=zlgc=wlg70.
所以lga=lg70,lgb=lg70,lgc=lg70,
相加得(lga+lgb+lgc)=lg70,由题设,
所以lga+lgb+lgc=lg70,所以lgabc=lg70.
所以abc=70=2×5×7.
若a=1,则因为xlga=wlg70,所以w=0与题设矛盾,所以a1.
又a≤b≤c,且a,b,c为70的正约数,所以只有a=2,b=5,c=7.
所以a+b=c.
例6已知x1,ac1,a1,c1.且logax+logcx=2logbx,求证c2=(ac)logab.
【证明】由题设logax+logcx=2logbx,化为以a为底的对数,得

因为ac0,ac1,所以logab=logacc2,所以c2=(ac)logab.
注:指数与对数式互化,取对数,换元,换底公式往往是解题的桥梁。
3.指数与对数方程的解法。
解此类方程的主要思想是通过指对数的运算和换元等进行化简求解。值得注意的是函数单调性的应用和未知数范围的讨论。
例7解方程:3x+4x+5x=6x.
【解】方程可化为=1。设f(x)=,则f(x)在(-∞,+∞)上是减函数,因为f(3)=1,所以方程只有一个解x=3.
例8解方程组:(其中x,y∈R+).
【解】两边取对数,则原方程组可化为①②
把①代入②得(x+y)2lgx=36lgx,所以[(x+y)2-36]lgx=0.
由lgx=0得x=1,由(x+y)2-36=0(x,y∈R+)得x+y=6,
代入①得lgx=2lgy,即x=y2,所以y2+y-6=0.
又y0,所以y=2,x=4.
所以方程组的解为.
例9已知a0,a1,试求使方程loga(x-ak)=loga2(x2-a2)有解的k的取值范围。
【解】由对数性质知,原方程的解x应满足.①②③
若①、②同时成立,则③必成立,
故只需解.
由①可得2kx=a(1+k2),④
当k=0时,④无解;当k0时,④的解是x=,代入②得k.
若k0,则k21,所以k-1;若k0,则k21,所以0k1.
综上,当k∈(-∞,-1)∪(0,1)时,原方程有解。

三、基础训练题
1.命题p:“(log23)x-(log53)x≥(log23)-y-(log53)-y”是命题q:“x+y≥0”的_________条件。
2.如果x1是方程x+lgx=27的根,x2是方程x+10x=27的根,则x1+x2=_________.
3.已知f(x)是定义在R上的增函数,点A(-1,1),B(1,3)在它的图象上,y=f-1(x)是它的反函数,则不等式|f-1(log2x)|1的解集为_________。
4.若log2a0,则a取值范围是_________。
5.命题p:函数y=log2在[2,+∞)上是增函数;命题q:函数y=log2(ax2-4x+1)的值域为R,则p是q的_________条件。
6.若0b1,a0且a1,比较大小:|loga(1-b)|_________|loga(1+b).
7.已知f(x)=2+log3x,x∈[1,3],则函数y=[f(x)]2+f(x2)的值域为_________。
8.若x=,则与x最接近的整数是_________。
9.函数的单调递增区间是_________。
10.函数f(x)=的值域为_________。
11.设f(x)=lg[1+2x+3x+…+(n-1)x+nxa],其中n为给定正整数,n≥2,a∈R.若f(x)在x∈(-∞,1]时有意义,求a的取值范围。
12.当a为何值时,方程=2有一解,二解,无解?
四、高考水平训练题
1.函数f(x)=+lg(x2-1)的定义域是_________.
2.已知不等式x2-logmx0在x∈时恒成立,则m的取值范围是_________.
3.若x∈{x|log2x=2-x},则x2,x,1从大到小排列是_________.
4.若f(x)=ln,则使f(a)+f(b)=_________.

5.命题p:函数y=log2在[2,+∞)上是增函数;命题q:函数y=log2(ax2-4x+1)的值域为R,则p是q的_________条件.
6.若0b1,a0且a1,比较大小:|loga(1-b)|_________|loga(1+b)|.
7.已知f(x)=2+log3x,x∈[1,3],则函数y=[f(x)]2+f(x2)的值域为_________.
8.若x=,则与x最接近的整数是_________.
9.函数y=的单调递增区间是_________.
10.函数f(x)=的值域为_________.
11.设f(x)=lg[1+2x+3x+…+(n-1)x+nxa],其中n为给定正整数,n≥2,a∈R。若f(x)在x∈(-∞,1]时有意义,求a的取值范围。
12.当a为何值时,方程=2有一解,二解,无解?
四、高考水平训练题
1.函数f(x)=+lg(x2-1)的定义域是__________.
2.已知不等式x2-logmx0在x∈时恒成立,则m的取值范围是________.
3.若x∈{x|log2x=2-x},则x2,x,1从大到小排列是________.
4.若f(x)=ln,则使f(a)+f(b)=成立的a,b的取值范围是________.
5.已知an=logn(n+1),设,其中p,q为整数,且(p,q)=1,则pq的值为_________.
6.已知x10,y10,xy=1000,则(lgx)(lgy)的取值范围是________.
7.若方程lg(kx)=2lg(x+1)只有一个实数解,则实数k的取值范围是________.
8.函数f(x)=的定义域为R,若关于x的方程f2(x)+bf(x)+c=0有7个不同的实数解,则b,c应满足的充要条件是________.
(1)b0且c0;(2)b0且c0;(3)b0且c=0;(4)b≥0且c=0。
9.已知f(x)=x,F(x)=f(x+t)-f(x-t)(t0),则F(x)是________函数(填奇偶性).
10.已知f(x)=lg,若=1,=2,其中|a|1,|b|1,则f(a)+f(b)=________.
11.设a∈R,试讨论关于x的方程lg(x-1)+lg(3-x)=lg(a-x)的实数解的个数。
12.设f(x)=|lgx|,实数a,b满足0ab,f(a)=f(b)=2f,求证:
(1)a4+2a2-4a+1=0,b4-4b3+2b2+1=0;(2)3b4.
13.设a0且a1,f(x)=loga(x+)(x≥1),(1)求f(x)的反函数f-1(x);(2)若f-1(n)(n∈N+),求a的取值范围。
五、联赛一试水平训练题
1.如果log2[log(log2x)]=log3[log(log3x)]=log5[log(log5z)]=0,那么将x,y,z从小到大排列为___________.
2.设对任意实数x0x1x2x30,都有log1993+log1993+log1993klog1993恒成立,则k的最大值为___________.
3.实数x,y满足4x2-5xy+4y2=5,设S=x2+y2,则的值为___________.
4.已知0b1,00α450,则以下三个数:x=(sinα)logbsina,y=(cosα)logbsina,z=(sinα)logbsina从小到大排列为___________.
5.用[x]表示不超过x的最大整数,则方程lg2x-[lgx]-2=0的实根个数是___________.
6.设a=lgz+lg[x(yz)-1+1],b=lgx-1+lg[xyz+1],c=lgy+lg[(xyz)-1+1],记a,b,c中的最大数为M,则M的最小值为___________.
7.若f(x)(x∈R)是周期为2的偶函数,当x∈[0,1]时,f(x)=,则,由小到大排列为___________.
8.不等式+20的解集为___________.
9.已知a1,b1,且lg(a+b)=lga+lgb,求lg(a-1)+lg(b-1).
10.(1)试画出由方程所确定的函数y=f(x)图象。
(2)若函数y=ax+与y=f(x)的图象恰有一个公共点,求a的取值范围。
11.对于任意n∈N+(n1),试证明:[]+[]+…+[]=[log2n]+[log3n]+…+[lognn]。
六、联赛二试水平训练题
1.设x,y,z∈R+且x+y+z=1,求u=的最小值。
2.当a为何值时,不等式loglog5(x2+ax+6)+loga3≥0有且只有一个解(a1且a1)。
3.f(x)是定义在(1,+∞)上且在(1,+∞)中取值的函数,满足条件;对于任何x,y1及u,v0,f(xuyv)≤[f(x)][f(y)]①都成立,试确定所有这样的函数f(x).
4.求所有函数f:R→R,使得xf(x)-yf(x)=(x-y)f(x+y)①成立。
5.设m≥14是一个整数,函数f:N→N定义如下:
f(n)=,
求出所有的m,使得f(1995)=1995.
6.求定义在有理数集上且满足下列条件的所有函数f:
f(x+y)=f(x)+f(y)+f(x)f(y),x,y∈Q.
7.是否存在函数f(n),将自然数集N映为自身,且对每个n1,f(n)=f(f(n-1))+f(f(n+1))都成立。
8.设p,q是任意自然数,求证:存在这样的f(x)∈Z(x)(表示整系数多项式集合),使对x轴上的某个长为的开区间中的每一个数x,有
9.设α,β为实数,求所有f:R+→R,使得对任意的x,y∈R+,f(x)f(y)=y2f成立。

延伸阅读

高中数学竞赛标准教材(第五章数列)


第五章数列

一、基础知识
定义1数列,按顺序给出的一列数,例如1,2,3,…,n,….数列分有穷数列和无穷数列两种,数列{an}的一般形式通常记作a1,a2,a3,…,an或a1,a2,a3,…,an…。其中a1叫做数列的首项,an是关于n的具体表达式,称为数列的通项。
定理1若Sn表示{an}的前n项和,则S1=a1,当n1时,an=Sn-Sn-1.
定义2等差数列,如果对任意的正整数n,都有an+1-an=d(常数),则{an}称为等差数列,d叫做公差。若三个数a,b,c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d,则a=b-d,c=b+d.
定理2等差数列的性质:1)通项公式an=a1+(n-1)d;2)前n项和公式:Sn=;3)an-am=(n-m)d,其中n,m为正整数;4)若n+m=p+q,则an+am=ap+aq;5)对任意正整数p,q,恒有ap-aq=(p-q)(a2-a1);6)若A,B至少有一个不为零,则{an}是等差数列的充要条件是Sn=An2+Bn.
定义3等比数列,若对任意的正整数n,都有,则{an}称为等比数列,q叫做公比。
定理3等比数列的性质:1)an=a1qn-1;2)前n项和Sn,当q1时,Sn=;当q=1时,Sn=na1;3)如果a,b,c成等比数列,即b2=ac(b0),则b叫做a,c的等比中项;4)若m+n=p+q,则aman=apaq。
定义4极限,给定数列{an}和实数A,若对任意的0,存在M,对任意的nM(n∈N),都有|an-A|,则称A为n→+∞时数列{an}的极限,记作
定义5无穷递缩等比数列,若等比数列{an}的公比q满足|q|1,则称之为无穷递增等比数列,其前n项和Sn的极限(即其所有项的和)为(由极限的定义可得)。
定理3第一数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)时n=k成立时能推出p(n)对n=k+1成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。

竞赛常用定理
定理4第二数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)对一切n≤k的自然数n都成立时(k≥n0)可推出p(k+1)成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。
定理5对于齐次二阶线性递归数列xn=axn-1+bxn-2,设它的特征方程x2=ax+b的两个根为α,β:(1)若αβ,则xn=c1an-1+c2βn-1,其中c1,c2由初始条件x1,x2的值确定;(2)若α=β,则xn=(c1n+c2)αn-1,其中c1,c2的值由x1,x2的值确定。
二、方法与例题
1.不完全归纳法。
这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。
例1试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。
【解】1)an=n2-1;2)an=3n-2n;3)an=n2-2n.
例2已知数列{an}满足a1=,a1+a2+…+an=n2an,n≥1,求通项an.
【解】因为a1=,又a1+a2=22a2,
所以a2=,a3=,猜想(n≥1).
证明;1)当n=1时,a1=,猜想正确。2)假设当n≤k时猜想成立。
当n=k+1时,由归纳假设及题设,a1+a1+…+a1=[(k+1)2-1]ak+1,,
所以=k(k+2)ak+1,
即=k(k+2)ak+1,
所以=k(k+2)ak+1,所以ak+1=
由数学归纳法可得猜想成立,所以
例3设0a1,数列{an}满足an=1+a,an-1=a+,求证:对任意n∈N+,有an1.
【证明】证明更强的结论:1an≤1+a.
1)当n=1时,1a1=1+a,①式成立;
2)假设n=k时,①式成立,即1an≤1+a,则当n=k+1时,有
由数学归纳法可得①式成立,所以原命题得证。
2.迭代法。
数列的通项an或前n项和Sn中的n通常是对任意n∈N成立,因此可将其中的n换成n+1或n-1等,这种办法通常称迭代或递推。
例4数列{an}满足an+pan-1+qan-2=0,n≥3,q0,求证:存在常数c,使得an+
【证明】an+1+(pan+1+an+2)+=an+2(-qan)+=
+an(pqn+1+qan)]=q().
若=0,则对任意n,+=0,取c=0即可.
若0,则{+}是首项为,公式为q的等比数列。
所以+=qn.
取即可.
综上,结论成立。
例5已知a1=0,an+1=5an+,求证:an都是整数,n∈N+.
【证明】因为a1=0,a2=1,所以由题设知当n≥1时an+1an.
又由an+1=5an+移项、平方得

当n≥2时,把①式中的n换成n-1得,即

因为an-1an+1,所以①式和②式说明an-1,an+1是方程x2-10anx+-1=0的两个不等根。由韦达定理得an+1+an-1=10an(n≥2).
再由a1=0,a2=1及③式可知,当n∈N+时,an都是整数。
3.数列求和法。
数列求和法主要有倒写相加、裂项求和法、错项相消法等。
例6已知an=(n=1,2,…),求S99=a1+a2+…+a99.
【解】因为an+a100-n=+=,
所以S99=
例7求和:+…+
【解】一般地,

所以Sn=

例8已知数列{an}满足a1=a2=1,an+2=an+1+an,Sn为数列的前n项和,求证:Sn2。
【证明】由递推公式可知,数列{an}前几项为1,1,2,3,5,8,13。
因为,①
所以。②
由①-②得,
所以。
又因为Sn-2Sn且0,
所以Sn,所以,
所以Sn2,得证。
4.特征方程法。
例9已知数列{an}满足a1=3,a2=6,an+2=4n+1-4an,求an.
【解】由特征方程x2=4x-4得x1=x2=2.
故设an=(α+βn)2n-1,其中,
所以α=3,β=0,
所以an=32n-1.
例10已知数列{an}满足a1=3,a2=6,an+2=2an+1+3an,求通项an.
【解】由特征方程x2=2x+3得x1=3,x2=-1,
所以an=α3n+β(-1)n,其中,
解得α=,β,
所以3]。
5.构造等差或等比数列。
例11正数列a0,a1,…,an,…满足=2an-1(n≥2)且a0=a1=1,求通项。
【解】由得=1,

令bn=+1,则{bn}是首项为+1=2,公比为2的等比数列,
所以bn=+1=2n,所以=(2n-1)2,
所以an=…a0=
注:C1C2…Cn.
例12已知数列{xn}满足x1=2,xn+1=,n∈N+,求通项。
【解】考虑函数f(x)=的不动点,由=x得x=
因为x1=2,xn+1=,可知{xn}的每项均为正数。
又+2≥,所以xn+1≥(n≥1)。又
Xn+1-==,①
Xn+1+==,②
由①÷②得。③
又0,
由③可知对任意n∈N+,0且,
所以是首项为,公比为2的等比数列。
所以,所以,
解得。
注:本例解法是借助于不动点,具有普遍意义。
三、基础训练题
1.数列{xn}满足x1=2,xn+1=Sn+(n+1),其中Sn为{xn}前n项和,当n≥2时,xn=_________.
2.数列{xn}满足x1=,xn+1=,则{xn}的通项xn=_________.
3.数列{xn}满足x1=1,xn=+2n-1(n≥2),则{xn}的通项xn=_________.
4.等差数列{an}满足3a8=5a13,且a10,Sn为前n项之和,则当Sn最大时,n=_________.
5.等比数列{an}前n项之和记为Sn,若S10=10,S30=70,则S40=_________.
6.数列{xn}满足xn+1=xn-xn-1(n≥2),x1=a,x2=b,Sn=x1+x2+…+xn,则S100=_________.
7.数列{an}中,Sn=a1+a2+…+an=n2-4n+1则|a1|+|a2|+…+|a10|=_________.
8.若,并且x1+x2+…+xn=8,则x1=_________.
9.等差数列{an},{bn}的前n项和分别为Sn和Tn,若,则=_________.
10.若n!=n(n-1)…21,则=_________.
11.若{an}是无穷等比数列,an为正整数,且满足a5+a6=48,log2a2log2a3+log2a2log2a5+log2a2log2a6+log2a5log2a6=36,求的通项。
12.已知数列{an}是公差不为零的等差数列,数列{}是公比为q的等比数列,且b1=1,b2=5,b3=17,求:(1)q的值;(2)数列{bn}的前n项和Sn。

四、高考水平训练题
1.已知函数f(x)=,若数列{an}满足a1=,an+1=f(an)(n∈N+),则a2006=_____________.
2.已知数列{an}满足a1=1,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项an=.
3.若an=n2+,且{an}是递增数列,则实数的取值范围是__________.
4.设正项等比数列{an}的首项a1=,前n项和为Sn,且210S30-(210+1)S20+S10=0,则an=_____________.
5.已知,则a的取值范围是______________.
6.数列{an}满足an+1=3an+n(n∈N+),存在_________个a1值,使{an}成等差数列;存在________个a1值,使{an}成等比数列。
7.已知(n∈N+),则在数列{an}的前50项中,最大项与最小项分别是____________.
8.有4个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和中16,第二个数与第三个数的和是12,则这四个数分别为____________.
9.设{an}是由正数组成的数列,对于所有自然数n,an与2的等差中项等于Sn与2的等比中项,则an=____________.
10.在公比大于1的等比数列中,最多连续有__________项是在100与1000之间的整数.
11.已知数列{an}中,an0,求证:数列{an}成等差数列的充要条件是
(n≥2)①恒成立。
12.已知数列{an}和{bn}中有an=an-1bn,bn=(n≥2),当a1=p,b1=q(p0,q0)且p+q=1时,(1)求证:an0,bn0且an+bn=1(n∈N);(2)求证:an+1=;(3)求数列
13.是否存在常数a,b,c,使题设等式
122+232+…+n(n+1)2=(an2+bn+c)
对于一切自然数n都成立?证明你的结论。
五、联赛一试水平训练题
1.设等差数列的首项及公差均为非负整数,项数不少于3,且各项和为972,这样的数列共有_________个。
2.设数列{xn}满足x1=1,xn=,则通项xn=__________.
3.设数列{an}满足a1=3,an0,且,则通项an=__________.
4.已知数列a0,a1,a2,…,an,…满足关系式(3-an+1)(6+an)=18,且a0=3,则=__________.
5.等比数列a+log23,a+log43,a+log83的公比为=__________.
6.各项均为实数的等差数列的公差为4,其首项的平方与其余各项之和不超过100,这样的数列至多有__________项.
7.数列{an}满足a1=2,a2=6,且=2,则
________.
8.数列{an}称为等差比数列,当且仅当此数列满足a0=0,{an+1-qan}构成公比为q的等比数列,q称为此等差比数列的差比。那么,由100以内的自然数构成等差比数列而差比大于1时,项数最多有__________项.
9.设h∈N+,数列{an}定义为:a0=1,an+1=。问:对于怎样的h,存在大于0的整数n,使得an=1?
10.设{ak}k≥1为一非负整数列,且对任意k≥1,满足ak≥a2k+a2k+1,(1)求证:对任意正整数n,数列中存在n个连续项为0;(2)求出一个满足以上条件,且其存在无限个非零项的数列。
11.求证:存在唯一的正整数数列a1,a2,…,使得
a1=1,a21,an+1(an+1-1)=

六、联赛二试水平训练题
1.设an为下述自然数N的个数:N的各位数字之和为n且每位数字只能取1,3或4,求证:a2n是完全平方数,这里n=1,2,….
2.设a1,a2,…,an表示整数1,2,…,n的任一排列,f(n)是这些排列中满足如下性质的排列数目:①a1=1;②|ai-ai+1|≤2,i=1,2,…,n-1。
试问f(2007)能否被3整除?
3.设数列{an}和{bn}满足a0=1,b0=0,且
求证:an(n=0,1,2,…)是完全平方数。
4.无穷正实数数列{xn}具有以下性质:x0=1,xi+1xi(i=0,1,2,…),
(1)求证:对具有上述性质的任一数列,总能找到一个n≥1,使≥3.999均成立;
(2)寻求这样的一个数列使不等式4对任一n均成立。
5.设x1,x2,…,xn是各项都不大于M的正整数序列且满足xk=|xk-1-xk-2|(k=3,4,…,n)①.试问这样的序列最多有多少项?
6.设a1=a2=,且当n=3,4,5,…时,an=,
(ⅰ)求数列{an}的通项公式;(ⅱ)求证:是整数的平方。
7.整数列u0,u1,u2,u3,…满足u0=1,且对每个正整数n,un+1un-1=kuu,这里k是某个固定的正整数。如果u2000=2000,求k的所有可能的值。
8.求证:存在无穷有界数列{xn},使得对任何不同的m,k,有|xm-xk|≥
9.已知n个正整数a0,a1,…,an和实数q,其中0q1,求证:n个实数b0,b1,…,bn和满足:(1)akbk(k=1,2,…,n);
(2)q(k=1,2,…,n);
(3)b1+b2+…+bn(a0+a1+…+an).

第十四章极限与导数(高中数学竞赛标准教材)


第十四章极限与导数

一、基础知识
1.极限定义:(1)若数列{un}满足,对任意给定的正数ε,总存在正数m,当nm且n∈N时,恒有|un-A|ε成立(A为常数),则称A为数列un当n趋向于无穷大时的极限,记为,另外=A表示x大于x0且趋向于x0时f(x)极限为A,称右极限。类似地表示x小于x0且趋向于x0时f(x)的左极限。
2.极限的四则运算:如果f(x)=a,g(x)=b,那么[f(x)±g(x)]=a±b,[f(x)g(x)]=ab,
3.连续:如果函数f(x)在x=x0处有定义,且f(x)存在,并且f(x)=f(x0),则称f(x)在x=x0处连续。
4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。
5.导数:若函数f(x)在x0附近有定义,当自变量x在x0处取得一个增量Δx时(Δx充分小),因变量y也随之取得增量Δy(Δy=f(x0+Δx)-f(x0)).若存在,则称f(x)在x0处可导,此极限值称为f(x)在点x0处的导数(或变化率),记作(x0)或或,即。由定义知f(x)在点x0连续是f(x)在x0可导的必要条件。若f(x)在区间I上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x0处导数(x0)等于曲线y=f(x)在点P(x0,f(x0))处切线的斜率。
6.几个常用函数的导数:(1)=0(c为常数);(2)(a为任意常数);(3)(4);(5);(6);(7);(8)
7.导数的运算法则:若u(x),v(x)在x处可导,且u(x)≠0,则
(1);(2);(3)(c为常数);(4);(5)。
8.复合函数求导法:设函数y=f(u),u=(x),已知(x)在x处可导,f(u)在对应的点u(u=(x))处可导,则复合函数y=f[(x)]在点x处可导,且(f[(x)]=.
9.导数与函数的性质:(1)若f(x)在区间I上可导,则f(x)在I上连续;(2)若对一切x∈(a,b)有,则f(x)在(a,b)单调递增;(3)若对一切x∈(a,b)有,则f(x)在(a,b)单调递减。
10.极值的必要条件:若函数f(x)在x0处可导,且在x0处取得极值,则
11.极值的第一充分条件:设f(x)在x0处连续,在x0邻域(x0-δ,x0+δ)内可导,(1)若当x∈(x-δ,x0)时,当x∈(x0,x0+δ)时,则f(x)在x0处取得极小值;(2)若当x∈(x0-δ,x0)时,当x∈(x0,x0+δ)时,则f(x)在x0处取得极大值。
12.极值的第二充分条件:设f(x)在x0的某领域(x0-δ,x0+δ)内一阶可导,在x=x0处二阶可导,且。(1)若,则f(x)在x0处取得极小值;(2)若,则f(x)在x0处取得极大值。
13.罗尔中值定理:若函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b),则存在ξ∈(a,b),使
[证明]若当x∈(a,b),f(x)≡f(a),则对任意x∈(a,b),.若当x∈(a,b)时,f(x)≠f(a),因为f(x)在[a,b]上连续,所以f(x)在[a,b]上有最大值和最小值,必有一个不等于f(a),不妨设最大值mf(a)且f(c)=m,则c∈(a,b),且f(c)为最大值,故,综上得证。
14.Lagrange中值定理:若f(x)在[a,b]上连续,在(a,b)上可导,则存在ξ∈(a,b),使
[证明]令F(x)=f(x)-,则F(x)在[a,b]上连续,在(a,b)上可导,且F(a)=F(b),所以由13知存在ξ∈(a,b)使=0,即
15.曲线凸性的充分条件:设函数f(x)在开区间I内具有二阶导数,(1)如果对任意x∈I,,则曲线y=f(x)在I内是下凸的;(2)如果对任意x∈I,,则y=f(x)在I内是上凸的。通常称上凸函数为凸函数,下凸函数为凹函数。
16.琴生不等式:设α1,α2,…,αn∈R+,α1+α2+…+αn=1。(1)若f(x)是[a,b]上的凸函数,则x1,x2,…,xn∈[a,b]有f(a1x1+a2x2+…+anxn)≤a1f(x1)+a2f(x2)+…+anf(xn).
二、方法与例题
1.极限的求法。
例1求下列极限:(1);(2);(3);(4)
[解](1)=;
(2)当a1时,
当0a1时,
当a=1时,
(3)因为

所以
(4)
例2求下列极限:(1)(1+x)(1+x2)(1+)…(1+)(|x|1);
(2);(3)。
[解](1)(1+x)(1+x2)(1+)…(1+)
=
(2)
=
(3)
=
2.连续性的讨论。
例3设f(x)在(-∞,+∞)内有定义,且恒满足f(x+1)=2f(x),又当x∈[0,1)时,f(x)=x(1-x)2,试讨论f(x)在x=2处的连续性。
[解]当x∈[0,1)时,有f(x)=x(1-x)2,在f(x+1)=2f(x)中令x+1=t,则x=t-1,当x∈[1,2)时,利用f(x+1)=2f(x)有f(t)=2f(t-1),因为t-1∈[0,1),再由f(x)=x(1-x)2得f(t-1)=(t-1)(2-t)2,从而t∈[1,2)时,有f(t)=2(t-1)(2-t)2;同理,当x∈[1,2)时,令x+1=t,则当t∈[2,3)时,有f(t)=2f(t-1)=4(t-2)(3-t)2.从而f(x)=所以
,所以f(x)=f(x)=f(2)=0,所以f(x)在x=2处连续。
3.利用导数的几何意义求曲线的切线方程。
[解]因为点(2,0)不在曲线上,设切点坐标为(x0,y0),则,切线的斜率为,所以切线方程为y-y0=,即。又因为此切线过点(2,0),所以,所以x0=1,所以所求的切线方程为y=-(x-2),即x+y-2=0.
4.导数的计算。
例5求下列函数的导数:(1)y=sin(3x+1);(2);(3)y=ecos2x;(4);(5)y=(1-2x)x(x0且)。
[解](1)3cos(3x+1).
(2)
(3)
(4)
(5)
5.用导数讨论函数的单调性。
例6设a0,求函数f(x)=-ln(x+a)(x∈(0,+∞))的单调区间。
[解],因为x0,a0,所以x2+(2a-4)x+a20;x2+(2a-4)x+a+0.
(1)当a1时,对所有x0,有x2+(2a-4)x+a20,即(x)0,f(x)在(0,+∞)上单调递增;(2)当a=1时,对x≠1,有x2+(2a-4)x+a20,即,所以f(x)在(0,1)内单调递增,在(1,+∞)内递增,又f(x)在x=1处连续,因此f(x)在(0,+∞)内递增;(3)当0a1时,令,即x2+(2a-4)x+a20,解得x2-a-或x2-a+,因此,f(x)在(0,2-a-)内单调递增,在(2-a+,+∞)内也单调递增,而当2-a-x2-a+时,x2+(2a-4)x+a20,即,所以f(x)在(2-a-,2-a+)内单调递减。
6.利用导数证明不等式。
例7设,求证:sinx+tanx2x.
[证明]设f(x)=sinx+tanx-2x,则=cosx+sec2x-2,当时,(因为0cosx1),所以=cosx+sec2x-2=cosx+.又f(x)在上连续,所以f(x)在上单调递增,所以当x∈时,f(x)f(0)=0,即sinx+tanx2x.
7.利用导数讨论极值。
例8设f(x)=alnx+bx2+x在x1=1和x2=2处都取得极值,试求a与b的值,并指出这时f(x)在x1与x2处是取得极大值还是极小值。
[解]因为f(x)在(0,+∞)上连续,可导,又f(x)在x1=1,x2=2处取得极值,所以,又+2bx+1,所以解得
所以.
所以当x∈(0,1)时,,所以f(x)在(0,1]上递减;
当x∈(1,2)时,,所以f(x)在[1,2]上递增;
当x∈(2,+∞)时,,所以f(x)在[2,+∞)上递减。
综上可知f(x)在x1=1处取得极小值,在x2=2处取得极大值。
例9设x∈[0,π],y∈[0,1],试求函数f(x,y)=(2y-1)sinx+(1-y)sin(1-y)x的最小值。
[解]首先,当x∈[0,π],y∈[0,1]时,
f(x,y)=(2y-1)sinx+(1-y)sin(1-y)x=(1-y)2x=(1-y)2x,令g(x)=,
当时,因为cosx0,tanxx,所以;
当时,因为cosx0,tanx0,x-tanx0,所以;
又因为g(x)在(0,π)上连续,所以g(x)在(0,π)上单调递减。
又因为0(1-y)xxπ,所以g[(1-y)x]g(x),即,
又因为,所以当x∈(0,π),y∈(0,1)时,f(x,y)0.
其次,当x=0时,f(x,y)=0;当x=π时,f(x,y)=(1-y)sin(1-y)π≥0.
当y=1时,f(x,y)=-sinx+sinx=0;当y=1时,f(x,y)=sinx≥0.
综上,当且仅当x=0或y=0或x=π且y=1时,f(x,y)取最小值0。
三、基础训练题
1.=_________.
2.已知,则a-b=_________.
3._________.
4._________.
5.计算_________.
6.若f(x)是定义在(-∞,+∞)上的偶函数,且存在,则_________.
7.函数f(x)在(-∞,+∞)上可导,且,则_________.
8.若曲线f(x)=x4-x在点P处的切线平行于直线3x-y=0,则点P坐标为_________.
9.函数f(x)=x-2sinx的单调递增区间是_________.
10.函数的导数为_________.
11.若曲线在点处的切线的斜率为,求实数a.
12.求sin290的近似值。
13.设0ba,求证:
四、高考水平练习题
1.计算=_________.
2.计算_________.
3.函数f(x)=2x3-6x2+7的单调递增区间是_________.。
4.函数的导数是_________.
5.函数f(x)在x0邻域内可导,a,b为实常数,若,则_________.
6.函数f(x)=ex(sinx+cosx),x的值域为_________.
7.过抛物线x2=2py上一点(x0,y0)的切线方程为_________.
8.当x0时,比较大小:ln(x+1)_________x.
9.函数f(x)=x5-5x4+5x3+1,x∈[-1,2]的最大值为_________,最小值为_________.
10.曲线y=e-x(x≥0)在点M(t,e-t)处的切线l与x轴、y轴所围成的三角形面积为S(t),则S(t)的最大值为_________.
11.若x0,求证:(x2-1)lnx≥(x-1)2.
12.函数y=f(x)在区间(0,+∞)内可导。导函数是减函数,且0,x0∈(0,+∞).y=kx+m是曲线y=f(x)在点(x0,f(x0))处的切线方程,另设g(x)=kx+m,(1)用x0,f(x0),表示m;(2)证明:当x∈(0,+∞)时,g(x)≥f(x);(3)若关于x的不等式x2+1≥ax+b≥在(0,+∞)上恒成立,其中a,b为实数,求b的取值范围及a,b所满足的关系。
13.设各项为正的无穷数列{xn}满足lnxn+,证明:xn≤1(n∈N+).
五、联赛一试水平训练题
1.设Mn={(十进制)n位纯小数0只取0或1(i=1,2,…,n-1),an=1},Tn是Mn中元素的个数,Sn是Mn中所有元素的和,则_________.
2.若(1-2x)9展开式的第3项为288,则_________.
3.设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x0时,
,且g(-3)=0,则不等式f(x)g(x)0的解集为_________.
4.曲线与的交点处的切线夹角是_________.
5.已知a∈R+,函数f(x)=x2eax的单调递增区间为_________.
6.已知在(a,3-a2)上有最大值,则a的取值范围是_________.
7.当x∈(1,2]时,f(x)=恒成立,则y=lg(a2-a+3)的最小值为_________.
8.已知f(x)=ln(ex+a)(a0),若对任意x∈[ln(3a),ln(4a)],不等式|m-f-1(x)|+ln[]0恒成立,则实数m取值范围是_________.
9.已知函数f(x)=ln(1+x)-x,g(x)=xlnx,(1)求函数f(x)的最大值;(2)设0ab,证明:0g(a)+g(b)-(b-a)ln2.
10.(1)设函数f(x)=xlog2x+(1-x)log2(1-x)(0x1),求f(x)的最小值;(2)设正数p1,p2,…,满足p1+p2+p3+…+=1,求证:p1log2p1+p2log2p2+…+log2≥-n.
11.若函数gA(x)的定义域A=[a,b),且gA(x)=,其中a,b为任意的正实数,且ab,(1)求gA(x)的最小值;
(2)讨论gA(x)的单调性;
(3)若x1∈Ik=[k2,(k+1)2],x2∈Ik+1=[(k+1)2,(k+2)2],证明:
六、联赛二试水平训练题
1.证明下列不等式:(1);
(2)。
2.当0a≤b≤c≤d时,求f(a,b,c,d)=的最小值。
3.已知x,y∈(0,1)求证:xy+yx1.

第十五章复数(高中数学竞赛标准教材)


第十五章复数
一、基础知识
1.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i与实数进行加、减、乘、除等运算。便产生形如a+bi(a,b∈R)的数,称为复数。所有复数构成的集合称复数集。通常用C来表示。
2.复数的几种形式。对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b称虚部记作Im(z).z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcosθ,b=rsinθ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。若z=r(cosθ+isinθ),则θ称为z的辐角。若0≤θ2π,则θ称为z的辐角主值,记作θ=Arg(z).r称为z的模,也记作|z|,由勾股定理知|z|=.如果用eiθ表示cosθ+isinθ,则z=reiθ,称为复数的指数形式。
3.共轭与模,若z=a+bi,(a,b∈R),则a-bi称为z的共轭复数。模与共轭的性质有:(1);(2);(3);(4);(5);(6);(7)||z1|-|z2||≤|z1±z2|≤|z1|+|z2|;(8)|z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,则。
4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),则z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z1z2=r1r2ei(θ1+θ2),
5.棣莫弗定理:[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ).
6.开方:若r(cosθ+isinθ),则,k=0,1,2,…,n-1。
7.单位根:若wn=1,则称w为1的一个n次单位根,简称单位根,记Z1=,则全部单位根可表示为1,,.单位根的基本性质有(这里记,k=1,2,…,n-1):(1)对任意整数k,若k=nq+r,q∈Z,0≤r≤n-1,有Znq+r=Zr;(2)对任意整数m,当n≥2时,有=特别1+Z1+Z2+…+Zn-1=0;(3)xn-1+xn-2+…+x+1=(x-Z1)(x-Z2)…(x-Zn-1)=(x-Z1)(x-)…(x-).
8.复数相等的充要条件:(1)两个复数实部和虚部分别对应相等;(2)两个复数的模和辐角主值分别相等。
9.复数z是实数的充要条件是z=;z是纯虚数的充要条件是:z+=0(且z≠0).
10.代数基本定理:在复数范围内,一元n次方程至少有一个根。
11.实系数方程虚根成对定理:实系数一元n次方程的虚根成对出现,即若z=a+bi(b≠0)是方程的一个根,则=a-bi也是一个根。
12.若a,b,c∈R,a≠0,则关于x的方程ax2+bx+c=0,当Δ=b2-4ac0时方程的根为
二、方法与例题
1.模的应用。
例1求证:当n∈N+时,方程(z+1)2n+(z-1)2n=0只有纯虚根。
[证明]若z是方程的根,则(z+1)2n=-(z-1)2n,所以|(z+1)2n|=|-(z-1)2n|,即|z+1|2=|z-1|2,即(z+1)(+1)=(z-1)(-1),化简得z+=0,又z=0不是方程的根,所以z是纯虚数。
例2设f(z)=z2+az+b,a,b为复数,对一切|z|=1,有|f(z)|=1,求a,b的值。
[解]因为4=(1+a+b)+(1-a+b)-(-1+ai+b)-(-1-ai+b)
=|f(1)+f(-1)-f(i)-f(-i)|

≥|f(1)|+|f(-1)|+|f(i)|+|f(-i)|=4,其中等号成立。
所以f(1),f(-1),-f(i),-f(-i)四个向量方向相同,且模相等。
所以f(1)=f(-1)=-f(i)=-f(-i),解得a=b=0.
2.复数相等。
例3设λ∈R,若二次方程(1-i)x2+(λ+i)x+1+λi=0有两个虚根,求λ满足的充要条件。
[解]若方程有实根,则方程组有实根,由方程组得(λ+1)x+λ+1=0.若λ=-1,则方程x2-x+1=0中Δ0无实根,所以λ≠-1。所以x=-1,λ=2.所以当λ≠2时,方程无实根。所以方程有两个虚根的充要条件为λ≠2。
3.三角形式的应用。
例4设n≤2000,n∈N,且存在θ满足(sinθ+icosθ)n=sinnθ+icosnθ,那么这样的n有多少个?
[解]由题设得
,所以n=4k+1.又因为0≤n≤2000,所以1≤k≤500,所以这样的n有500个。
4.二项式定理的应用。
例5计算:(1);(2)
[解](1+i)100=[(1+i)2]50=(2i)50=-250,由二项式定理(1+i)100==)+()i,比较实部和虚部,得=-250,=0。
5.复数乘法的几何意义。
例6以定长线段BC为一边任作ΔABC,分别以AB,AC为腰,B,C为直角顶点向外作等腰直角ΔABM、等腰直角ΔACN。求证:MN的中点为定点。
[证明]设|BC|=2a,以BC中点O为原点,BC为x轴,建立直角坐标系,确定复平面,则B,C对应的复数为-a,a,点A,M,N对应的复数为z1,z2,z3,,由复数乘法的几何意义得:,①,②由①+②得z2+z3=i(z1+a)-i(z1-a)=2ai.设MN的中点为P,对应的复数z=,为定值,所以MN的中点P为定点。
例7设A,B,C,D为平面上任意四点,求证:ABAD+BCAD≥ACBD。
[证明]用A,B,C,D表示它们对应的复数,则(A-B)(C-D)+(B-C)(A-D)=(A-C)(B-D),因为|A-B||C-D|+|B-C||A-D|≥(A-B)(C-D)+(B-C)(A-D).
所以|A-B||C-D|+|B-C||A-D|≥|A-C||B-D|,“=”成立当且仅当,即=π,即A,B,C,D共圆时成立。不等式得证。
6.复数与轨迹。
例8ΔABC的顶点A表示的复数为3i,底边BC在实轴上滑动,且|BC|=2,求ΔABC的外心轨迹。
[解]设外心M对应的复数为z=x+yi(x,y∈R),B,C点对应的复数分别是b,b+2.因为外心M是三边垂直平分线的交点,而AB的垂直平分线方程为|z-b|=|z-3i|,BC的垂直平分线的方程为|z-b|=|z-b-2|,所以点M对应的复数z满足|z-b|=|z-3i|=|z-b-2|,消去b解得
所以ΔABC的外心轨迹是轨物线。
7.复数与三角。
例9已知cosα+cosβ+cosγ=sinα+sinβ+sinγ=0,求证:cos2α+cos2β+cos2γ=0。
[证明]令z1=cosα+isinα,z2=cosβ+isinβ,z3=cosγ+isinγ,则
z1+z2+z3=0。所以又因为|zi|=1,i=1,2,3.
所以zi=1,即
由z1+z2+z3=0得①

所以
所以cos2α+cos2β+cos2γ+i(sin2α+sin2β+sin2γ)=0.
所以cos2α+cos2β+cos2γ=0。
例10求和:S=cos200+2cos400+…+18cos18×200.
[解]令w=cos200+isin200,则w18=1,令P=sin200+2sin400+…+18sin18×200,则S+iP=w+2w2+…+18w18.①由①×w得w(S+iP)=w2+2w3+…+17w18+18w19,②由①-②得(1-w)(S+iP)=w+w2+…+w18-18w19=,所以S+iP=,所以
8.复数与多项式。
例11已知f(z)=c0zn+c1zn-1+…+cn-1z+cn是n次复系数多项式(c0≠0).
求证:一定存在一个复数z0,|z0|≤1,并且|f(z0)|≥|c0|+|cn|.
[证明]记c0zn+c1zn-1+…+cn-1z=g(z),令=Arg(cn)-Arg(z0),则方程g(Z)-c0eiθ=0为n次方程,其必有n个根,设为z1,z2,…,zn,从而g(z)-c0eiθ=(z-z1)(z-z2)…(z-zn)c0,令z=0得-c0eiθ=(-1)nz1z2…znc0,取模得|z1z2…zn|=1。所以z1,z2,…,zn中必有一个zi使得|zi|≤1,从而f(zi)=g(zi)+cn=c0eiθ=cn,所以|f(zi)|=|c0eiθ+cn|=|c0|+|cn|.
9.单位根的应用。
例12证明:自⊙O上任意一点p到正多边形A1A2…An各个顶点的距离的平方和为定值。
[证明]取此圆为单位圆,O为原点,射线OAn为实轴正半轴,建立复平面,顶点A1对应复数设为,则顶点A2A3…An对应复数分别为ε2,ε3,…,εn.设点p对应复数z,则|z|=1,且=2n-
=2n-命题得证。
10.复数与几何。
例13如图15-2所示,在四边形ABCD内存在一点P,使得ΔPAB,ΔPCD都是以P为直角顶点的等腰直角三角形。求证:必存在另一点Q,使得ΔQBC,ΔQDA也都是以Q为直角顶点的等腰直角三角形。
[证明]以P为原点建立复平面,并用A,B,C,D,P,Q表示它们对应的复数,由题设及复数乘法的几何意义知D=iC,B=iA;取,则C-Q=i(B-Q),则ΔBCQ为等腰直角三角形;又由C-Q=i(B-Q)得,即A-Q=i(D-Q),所以ΔADQ也为等腰直角三角形且以Q为直角顶点。综上命题得证。
例14平面上给定ΔA1A2A3及点p0,定义As=As-3,s≥4,构造点列p0,p1,p2,…,使得pk+1为绕中心Ak+1顺时针旋转1200时pk所到达的位置,k=0,1,2,…,若p1986=p0.证明:ΔA1A2A3为等边三角形。
[证明]令u=,由题设,约定用点同时表示它们对应的复数,取给定平面为复平面,则p1=(1+u)A1-up0,
p2=(1+u)A2-up1,
p3=(1+u)A3-up2,
①×u2+②×(-u)得p3=(1+u)(A3-uA2+u2A1)+p0=w+p0,w为与p0无关的常数。同理得p6=w+p3=2w+p0,…,p1986=662w+p0=p0,所以w=0,从而A3-uA2+u2A1=0.由u2=u-1得A3-A1=(A2-A1)u,这说明ΔA1A2A3为正三角形。
三、基础训练题
1.满足(2x2+5x+2)+(y2-y-2)i=0的有序实数对(x,y)有__________组。
2.若z∈C且z2=8+6i,且z3-16z-=__________。
3.复数z满足|z|=5,且(3+4i)z是纯虚数,则__________。
4.已知,则1+z+z2+…+z1992=__________。
5.设复数z使得的一个辐角的绝对值为,则z辐角主值的取值范围是__________。
6.设z,w,λ∈C,|λ|≠1,则关于z的方程-Λz=w的解为z=__________。
7.设0x1,则2arctan__________。
8.若α,β是方程ax2+bx+c=0(a,b,c∈R)的两个虚根且,则__________。
9.若a,b,c∈C,则a2+b2c2是a2+b2-c20成立的__________条件。
10.已知关于x的实系数方程x2-2x+2=0和x2+2mx+1=0的四个不同的根在复平面上对应的点共圆,则m取值的集合是__________。
11.二次方程ax2+x+1=0的两根的模都小于2,求实数a的取值范围。
12.复平面上定点Z0,动点Z1对应的复数分别为z0,z1,其中z0≠0,且满足方程|z1-z0|=|z1|,①另一个动点Z对应的复数z满足z1z=-1,②求点Z的轨迹,并指出它在复平面上的形状和位置。
13.N个复数z1,z2,…,zn成等比数列,其中|z1|≠1,公比为q,|q|=1且q≠±1,复数w1,w2,…,wn满足条件:wk=zk++h,其中k=1,2,…,n,h为已知实数,求证:复平面内表示w1,w2,…,wn的点p1,p2,…,pn都在一个焦距为4的椭圆上。
四、高考水平训练题
1.复数z和cosθ+isinθ对应的点关于直线|iz+1|=|z+i|对称,则z=__________。
2.设复数z满足z+|z|=2+i,那么z=__________。
3.有一个人在草原上漫步,开始时从O出发,向东行走,每走1千米后,便向左转角度,他走过n千米后,首次回到原出发点,则n=__________。
4.若,则|z|=__________。
5.若ak≥0,k=1,2,…,n,并规定an+1=a1,使不等式恒成立的实数λ的最大值为__________。
6.已知点P为椭圆上任意一点,以OP为边逆时针作正方形OPQR,则动点R的轨迹方程为__________。
7.已知P为直线x-y+1=0上的动点,以OP为边作正ΔOPQ(O,P,Q按顺时针方向排列)。则点Q的轨迹方程为__________。
8.已知z∈C,则命题“z是纯虚数”是命题“”的__________条件。
9.若n∈N,且n≥3,则方程zn+1+zn-1=0的模为1的虚根的个数为__________。
10.设(x2006+x2008+3)2007=a0+a1x+a2x2+…+anxn,则+…+a3k-__________。
11.设复数z1,z2满足z1,其中A≠0,A∈C。证明:
(1)|z1+A||z2+A|=|A|2;(2)
12.若z∈C,且|z|=1,u=z4-z3-3z2i-z+1.求|u|的最大值和最小值,并求取得最大值、最小值时的复数z.
13.给定实数a,b,c,已知复数z1,z2,z3满足求
|az1+bz2+cz3|的值。
三、联赛一试水平训练题
1.已知复数z满足则z的辐角主值的取值范围是__________。
2.设复数z=cosθ+isinθ(0≤θ≤π),复数z,(1+i)z,2在复平面上对应的三个点分别是P,Q,R,当P,Q,R不共线时,以PQ,PR为两边的平行四边形第四个顶点为S,则S到原点距离的最大值为__________。
3.设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为z1,z2,…,z20,则复数所对应的不同点的个数是__________。
4.已知复数z满足|z|=1,则|z+iz+1|的最小值为__________。
5.设,z1=w-z,z2=w+z,z1,z2对应复平面上的点A,B,点O为原点,∠AOB=900,|AO|=|BO|,则ΔOAB面积是__________。
6.设,则(x-w)(x-w3)(x-w7)(x-w9)的展开式为__________。
7.已知()m=(1+i)n(m,n∈N+),则mn的最小值是__________。
8.复平面上,非零复数z1,z2在以i为圆心,1为半径的圆上,z2的实部为零,z1的辐角主值为,则z2=__________。
9.当n∈N,且1≤n≤100时,的值中有实数__________个。
10.已知复数z1,z2满足,且,,,则的值是__________。
11.集合A={z|z18=1},B={w|w48=1},C={zw|z∈A,w∈B},问:集合C中有多少个不同的元素?
12.证明:如果复数A的模为1,那么方程的所有根都是不相等的实根(n∈N+).
13.对于适合|z|≤1的每一个复数z,要使0|αz+β|2总能成立,试问:复数α,β应满足什么条件?
六、联赛二试水平训练题
1.设非零复数a1,a2,a3,a4,a5满足
其中S为实数且|S|≤2,求证:复数a1,a2,a3,a4,a5在复平面上所对应的点位于同一圆周上。
2.求证:。
3.已知p(z)=zn+c1zn-1+c2zn-2+…+cn是复变量z的实系数多项式,且|p(i)|1,求证:存在实数a,b,使得p(a+bi)=0且(a2+b2+1)24b2+1.
4.运用复数证明:任给8个非零实数a1,a2,…,a8,证明六个数a1a3+a2a4,a1a5+a2a6,a1a7+a2a8,a3a5+a4a6,a3a7+a4a8,a5a7+a6a8中至少有一个是非负数。
5.已知复数z满足11z10+10iz9+10iz-11=0,求证:|z|=1.
6.设z1,z2,z3为复数,求证:
|z1|+|z2|+|z3|+|z1+z2+z3|≥|z1+z2|+|z2+z3|+|z3+z1|。

第二章二次函数与命题(高中数学竞赛标准教材)


第二章二次函数与命题

一、基础知识
1.二次函数:当0时,y=ax2+bx+c或f(x)=ax2+bx+c称为关于x的二次函数,其对称轴为直线x=-,另外配方可得f(x)=a(x-x0)2+f(x0),其中x0=-,下同。
2.二次函数的性质:当a0时,f(x)的图象开口向上,在区间(-∞,x0]上随自变量x增大函数值减小(简称递减),在[x0,-∞)上随自变量增大函数值增大(简称递增)。当a0时,情况相反。
3.当a0时,方程f(x)=0即ax2+bx+c=0…①和不等式ax2+bx+c0…②及ax2+bx+c0…③与函数f(x)的关系如下(记△=b2-4ac)。
1)当△0时,方程①有两个不等实根,设x1,x2(x1x2),不等式②和不等式③的解集分别是{x|xx1或xx2}和{x|x1xx2},二次函数f(x)图象与x轴有两个不同的交点,f(x)还可写成f(x)=a(x-x1)(x-x2).
2)当△=0时,方程①有两个相等的实根x1=x2=x0=,不等式②和不等式③的解集分别是{x|x}和空集,f(x)的图象与x轴有唯一公共点。
3)当△0时,方程①无解,不等式②和不等式③的解集分别是R和.f(x)图象与x轴无公共点。
当a0时,请读者自己分析。
4.二次函数的最值:若a0,当x=x0时,f(x)取最小值f(x0)=,若a0,则当x=x0=时,f(x)取最大值f(x0)=.对于给定区间[m,n]上的二次函数f(x)=ax2+bx+c(a0),当x0∈[m,n]时,f(x)在[m,n]上的最小值为f(x0);当x0m时。f(x)在[m,n]上的最小值为f(m);当x0n时,f(x)在[m,n]上的最小值为f(n)(以上结论由二次函数图象即可得出)。
定义1能判断真假的语句叫命题,如“35”是命题,“萝卜好大”不是命题。不含逻辑联结词“或”、“且”、“非”的命题叫做简单命题,由简单命题与逻辑联结词构成的命题由复合命题。
注1“p或q”复合命题只有当p,q同为假命题时为假,否则为真命题;“p且q”复合命题只有当p,q同时为真命题时为真,否则为假命题;p与“非p”即“p”恰好一真一假。
定义2原命题:若p则q(p为条件,q为结论);逆命题:若q则p;否命题:若非p则q;逆否命题:若非q则非p。
注2原命题与其逆否命题同真假。一个命题的逆命题和否命题同真假。
注3反证法的理论依据是矛盾的排中律,而未必是证明原命题的逆否命题。
定义3如果命题“若p则q”为真,则记为pq否则记作pq.在命题“若p则q”中,如果已知pq,则p是q的充分条件;如果qp,则称p是q的必要条件;如果pq但q不p,则称p是q的充分非必要条件;如果p不q但pq,则p称为q的必要非充分条件;若pq且qp,则p是q的充要条件。
二、方法与例题
1.待定系数法。
例1设方程x2-x+1=0的两根是α,β,求满足f(α)=β,f(β)=α,f(1)=1的二次函数f(x).
【解】设f(x)=ax2+bx+c(a0),
则由已知f(α)=β,f(β)=α相减并整理得(α-β)[(α+β)a+b+1]=0,
因为方程x2-x+1=0中△0,
所以αβ,所以(α+β)a+b+1=0.
又α+β=1,所以a+b+1=0.
又因为f(1)=a+b+c=1,
所以c-1=1,所以c=2.
又b=-(a+1),所以f(x)=ax2-(a+1)x+2.
再由f(α)=β得aα2-(a+1)α+2=β,
所以aα2-aα+2=α+β=1,所以aα2-aα+1=0.
即a(α2-α+1)+1-a=0,即1-a=0,
所以a=1,
所以f(x)=x2-2x+2.
2.方程的思想。
例2已知f(x)=ax2-c满足-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围。
【解】因为-4≤f(1)=a-c≤-1,
所以1≤-f(1)=c-a≤4.
又-1≤f(2)=4a-c≤5,f(3)=f(2)-f(1),
所以×(-1)+≤f(3)≤×5+×4,
所以-1≤f(3)≤20.
3.利用二次函数的性质。
例3已知二次函数f(x)=ax2+bx+c(a,b,c∈R,a0),若方程f(x)=x无实根,求证:方程f(f(x))=x也无实根。
【证明】若a0,因为f(x)=x无实根,所以二次函数g(x)=f(x)-x图象与x轴无公共点且开口向上,所以对任意的x∈R,f(x)-x0即f(x)x,从而f(f(x))f(x)。
所以f(f(x))x,所以方程f(f(x))=x无实根。
注:请读者思考例3的逆命题是否正确。
4.利用二次函数表达式解题。
例4设二次函数f(x)=ax2+bx+c(a0),方程f(x)=x的两根x1,x2满足0x1x2,
(Ⅰ)当x∈(0,x1)时,求证:xf(x)x1;
(Ⅱ)设函数f(x)的图象关于x=x0对称,求证:x0
【证明】因为x1,x2是方程f(x)-x=0的两根,所以f(x)-x=a(x-x1)(x-x2),
即f(x)=a(x-x1)(x-x2)+x.
(Ⅰ)当x∈(0,x1)时,x-x10,x-x20,a0,所以f(x)x.
其次f(x)-x1=(x-x1)[a(x-x2)+1]=a(x-x1)[x-x2+]0,所以f(x)x1.
综上,xf(x)x1.
(Ⅱ)f(x)=a(x-x1)(x-x2)+x=ax2+[1-a(x1+x2)]x+ax1x2,
所以x0=,
所以,
所以
5.构造二次函数解题。
例5已知关于x的方程(ax+1)2=a2(a-x2),a1,求证:方程的正根比1小,负根比-1大。
【证明】方程化为2a2x2+2ax+1-a2=0.
构造f(x)=2a2x2+2ax+1-a2,
f(1)=(a+1)20,f(-1)=(a-1)20,f(0)=1-a20,即△0,
所以f(x)在区间(-1,0)和(0,1)上各有一根。
即方程的正根比1小,负根比-1大。
6.定义在区间上的二次函数的最值。
例6当x取何值时,函数y=取最小值?求出这个最小值。
【解】y=1-,令u,则0u≤1。
y=5u2-u+1=5,
且当即x=3时,ymin=.
例7设变量x满足x2+bx≤-x(b-1),并且x2+bx的最小值是,求b的值。
【解】由x2+bx≤-x(b-1),得0≤x≤-(b+1).
ⅰ)-≤-(b+1),即b≤-2时,x2+bx的最小值为-,所以b2=2,所以(舍去)。
ⅱ)--(b+1),即b-2时,x2+bx在[0,-(b+1)]上是减函数,
所以x2+bx的最小值为b+1,b+1=-,b=-.
综上,b=-.
7.一元二次不等式问题的解法。
例8已知不等式组①②的整数解恰好有两个,求a的取值范围。
【解】因为方程x2-x+a-a2=0的两根为x1=a,x2=1-a,
若a≤0,则x1x2.①的解集为ax1-a,由②得x1-2a.
因为1-2a≥1-a,所以a≤0,所以不等式组无解。
若a0,ⅰ)当0a时,x1x2,①的解集为ax1-a.
因为0ax1-a1,所以不等式组无整数解。
ⅱ)当a=时,a=1-a,①无解。
ⅲ)当a时,a1-a,由②得x1-2a,
所以不等式组的解集为1-axa.
又不等式组的整数解恰有2个,
所以a-(1-a)1且a-(1-a)≤3,
所以1a≤2,并且当1a≤2时,不等式组恰有两个整数解0,1。
综上,a的取值范围是1a≤2.
8.充分性与必要性。
例9设定数A,B,C使得不等式
A(x-y)(x-z)+B(y-z)(y-x)+C(z-x)(z-y)≥0①
对一切实数x,y,z都成立,问A,B,C应满足怎样的条件?(要求写出充分必要条件,而且限定用只涉及A,B,C的等式或不等式表示条件)
【解】充要条件为A,B,C≥0且A2+B2+C2≤2(AB+BC+CA).
先证必要性,①可改写为A(x-y)2-(B-A-C)(y-z)(x-y)+C(y-z)2≥0②
若A=0,则由②对一切x,y,z∈R成立,则只有B=C,再由①知B=C=0,若A0,则因为②恒成立,所以A0,△=(B-A-C)2(y-z)2-4AC(y-z)2≤0恒成立,所以(B-A-C)2-4AC≤0,即A2+B2+C2≤2(AB+BC+CA)
同理有B≥0,C≥0,所以必要性成立。
再证充分性,若A≥0,B≥0,C≥0且A2+B2+C2≤2(AB+BC+CA),
1)若A=0,则由B2+C2≤2BC得(B-C)2≤0,所以B=C,所以△=0,所以②成立,①成立。
2)若A0,则由③知△≤0,所以②成立,所以①成立。
综上,充分性得证。
9.常用结论。
定理1若a,b∈R,|a|-|b|≤|a+b|≤|a|+|b|.
【证明】因为-|a|≤a≤|a|,-|b|≤b≤|b|,所以-(|a|+|b|)≤a+b≤|a|+|b|,
所以|a+b|≤|a|+|b|(注:若m0,则-m≤x≤m等价于|x|≤m).
又|a|=|a+b-b|≤|a+b|+|-b|,
即|a|-|b|≤|a+b|.综上定理1得证。
定理2若a,b∈R,则a2+b2≥2ab;若x,y∈R+,则x+y≥
(证略)
注定理2可以推广到n个正数的情况,在不等式证明一章中详细论证。
三、基础训练题
1.下列四个命题中属于真命题的是________,①“若x+y=0,则x、y互为相反数”的逆命题;②“两个全等三角形的面积相等”的否命题;③“若q≤1,则x2+x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”的逆否命题。
2.由上列各组命题构成“p或q”,“p且q”,“非p”形式的复合命题中,p或q为真,p且q为假,非p为真的是_________.①p;3是偶数,q:4是奇数;②p:3+2=6,q:③p:a∈(a,b),q:{a}{a,b};④p:QR,q:N=Z.
3.当|x-2|a时,不等式|x2-4|1成立,则正数a的取值范围是________.
4.不等式ax2+(ab+1)x+b0的解是1x2,则a,b的值是____________.
5.x1且x2是x-1的__________条件,而-2m0且0n1是关于x的方程x2+mx+n=0有两个小于1的正根的__________条件.
6.命题“垂直于同一条直线的两条直线互相平行”的逆命题是_________.
7.若S={x|mx2+5x+2=0}的子集至多有2个,则m的取值范围是_________.
8.R为全集,A={x|3-x≥4},B=,则(CRA)∩B=_________.
9.设a,b是整数,集合A={(x,y)|(x-a)2+3b≤6y},点(2,1)∈A,但点(1,0)A,(3,2)A则a,b的值是_________.
10.设集合A={x||x|4},B={x|x2-4x+30},则集合{x|x∈A且xA∩B}=_________.
11.求使不等式ax2+4x-1≥-2x2-a对任意实数x恒成立的a的取值范围。
12.对任意x∈[0,1],有①②成立,求k的取值范围。
四、高考水平训练题
1.若不等式|x-a|x的解集不空,则实数a的取值范围是_________.
2.使不等式x2+(x-6)x+90当|a|≤1时恒成立的x的取值范围是_________.
3.若不等式-x2+kx-40的解集为R,则实数k的取值范围是_________.
4.若集合A={x||x+7|10},B={x||x-5|k},且A∩B=B,则k的取值范围是_________.
5.设a1、a2,b1、b2,c1、c2均为非零实数,不等式a1x2+b1x+c10和a2x2+b2x+c20解集分别为M和N,那么“”是“M=N”的_________条件。
6.若下列三个方程x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实根,则实数a的取值范围是_________.
7.已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,则r是q的_________条件。
8.已知p:|1-|≤2,q:x2-2x+1-m2≤0(m0),若非p是非q的必要不充分条件,则实数m的取值范围是_________.
9.已知a0,f(x)=ax2+bx+c,对任意x∈R有f(x+2)=f(2-x),若f(1-2x2)f(1+2x-x2),求x的取值范围。
10.已知a,b,c∈R,f(x)=ax2+bx+c,g(x)=ax+b,当|x|≤1时,|f(x)|≤1,
(1)求证:|c|≤1;
(2)求证:当|x|≤1时,|g(x)|≤2;
(3)当a0且|x|≤1时,g(x)最大值为2,求f(x).
11.设实数a,b,c,m满足条件:=0,且a≥0,m0,求证:方程ax2+bx+c=0有一根x0满足0x01.
五、联赛一试水平训练题
1.不等式|x|3-2x2-4|x|+30的解集是_________.
2.如果实数x,y满足:,那么|x|-|y|的最小值是_________.
3.已知二次函数f(x)=ax2+bx+c的图象经过点(1,1),(3,5),f(0)0,当函数的最小值取最大值时,a+b2+c3=_________.
4.已知f(x)=|1-2x|,x∈[0,1],方程f(f(f)(x)))=x有_________个实根。
5.若关于x的方程4x2-4x+m=0在[-1,1]上至少有一个实根,则m取值范围是_________.
6.若f(x)=x4+px3+qx2+x对一切x∈R都有f(x)≥x且f(1)=1,则p+q2=_________.
7.对一切x∈R,f(x)=ax2+bx+c(ab)的值恒为非负实数,则的最小值为_________.
8.函数f(x)=ax2+bx+c的图象如图,且=b-2ac.那么b2-4ac_________4.(填、=、)
9.若abcd,求证:对任意实数t-1,关于x的方程(x-a)(x-c)+t(x-b)(x-d)=0都有两个不等的实根。
10.某人解二次方程时作如下练习:他每解完一个方程,如果方程有两个实根,他就给出下一个二次方程:它的常数项等于前一个方程较大的根,x的系数等于较小的根,二次项系数都是1。证明:这种练习不可能无限次继续下去,并求最多能延续的次数。
11.已知f(x)=ax2+bx+c在[0,1]上满足|f(x)|≤1,试求|a|+|b|+|c|的最大值。

六、联赛二试水平训练题
1.设f(x)=ax2+bx+c,a,b,c∈R,a100,试问满足|f(x)|≤50的整数x最多有几个?
2.设函数f(x)=ax2+8x+3(a0),对于给定的负数a,有一个最大的正数l(a),使得在整个区间[0,l(a)]上,不等式|f(x)|≤5都成立。求l(a)的最大值及相应a的值。
3.设x1,x2,…,xn∈[a,a+1],且设x=,y=,求f=y-x2的最大值。
4.F(x)=ax2+bx+c,a,b,c∈R,且|F(0)|≤1,|F(1)|≤1,|F(-1)|≤1,则对于|x|≤1,求|F(x)|的最大值。
5.已知f(x)=x2+ax+b,若存在实数m,使得|f(m)|≤,|f(m+1)|≤,求△=a2-4b的最大值和最小值。
6.设二次函数f(x)=ax2+bx+c(a,b,c∈R,a0)满足下列条件:
1)当x∈R时,f(x-4)=f(2-x),且f(x)≥x;
2)当x∈(0,2)时,f(x)≤;
3)f(x)在R上最小值为0。
求最大的m(m1),使得存在t∈R,只要x∈[1,m]就有f(x+t)≤x.
7.求证:方程3ax2+2bx-(a+b)=0(b0)在(0,1)内至少有一个实根。
8.设a,b,A,B∈R+,aA,bB,若n个正数a1,a2,…,an位于a与A之间,n个正数b1,b2,…,bn位于b与B之间,求证:
9.设a,b,c为实数,g(x)=ax2+bx+c,|x|≤1,求使下列条件同时满足的a,b,c的值:
(ⅰ)=381;
(ⅱ)g(x)max=444;
(ⅲ)g(x)min=364.