88教案网

你的位置: 教案 > 高中教案 > 导航 > 高一数学下册《集合》知识点

高中集合教案

发表时间:2020-04-01

高一数学下册《集合》知识点。

一名优秀的教师在每次教学前有自己的事先计划,高中教师在教学前就要准备好教案,做好充分的准备。教案可以让学生更好的消化课堂内容,帮助授课经验少的高中教师教学。怎么才能让高中教案写的更加全面呢?以下是小编为大家收集的“高一数学下册《集合》知识点”仅供您在工作和学习中参考。

高一数学下册《集合》知识点

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性如:世界上最高的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N*或N+整数集Z有理数集Q实数集R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR|x-32},{x|x-32}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”

即:①任何一个集合是它本身的子集。AA

②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)

③如果AB,BC,那么AC

④如果AB同时BA那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

练习题:

1.(2010年高考广东卷)若集合A={x|-2<x<1},B={x|0<x<2},则集合A∩B=()

A.{x|-1<x<1}B.{x|-2<x<1}

C.{x|-2<x<2}D.{x|0<x<1}

解析:选D.因为A={x|-2<x<1},B={x|0<x<2},所以A∩B={x|0<x<1}.

2.(2010年高考湖南卷)已知集合M={1,2,3},N={2,3,4}则()

A.MNB.NM

C.M∩N={2,3}D.M∪N={1,4}

解析:选C.∵M={1,2,3},N={2,3,4}.

∴选项A、B显然不对.M∪N={1,2,3,4},

∴选项D错误.又M∩N={2,3},故选C.

3.已知集合M={y|y=x2},N={y|x=y2},则M∩N=()

A.{(0,0),(1,1)}B.{0,1}

C.{y|y≥0}D.{y|0≤y≤1}

解析:选C.M={y|y≥0},N=R,∴M∩N=M={y|y≥0}.

4.已知集合A={x|x≥2},B={x|x≥m},且A∪B=A,则实数m的取值范围是________.

解析:A∪B=A,即BA,∴m≥2.

答案:m≥2

相关阅读

高一数学上册《集合》知识点


经验告诉我们,成功是留给有准备的人。作为高中教师准备好教案是必不可少的一步。教案可以让上课时的教学氛围非常活跃,有效的提高课堂的教学效率。你知道怎么写具体的高中教案内容吗?小编经过搜集和处理,为您提供高一数学上册《集合》知识点,相信能对大家有所帮助。

高一数学上册《集合》知识点

1、集合的概念

集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。

对象――即集合中的元素。集合是由它的元素唯一确定的。

整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。

确定的――集合元素的确定性――元素与集合的“从属”关系。

不同的――集合元素的互异性。

2、有限集、无限集、空集的意义

有限集和无限集是针对非空集合来说的。我们理解起来并不困难。

我们把不含有任何元素的集合叫做空集,记做Φ。理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。

几个常用数集N、N*、N+、Z、Q、R要记牢。

3、集合的表示方法

(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:

①元素不太多的有限集,如{0,1,8}

②元素较多但呈现一定的规律的有限集,如{1,2,3,…,100}

③呈现一定规律的无限集,如{1,2,3,…,n,…}

●注意a与{a}的区别

●注意用列举法表示集合时,集合元素的“无序性”。

(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。但关键点也是难点。学习时多加练习就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三个不同的集合。

4、集合之间的关系

●注意区分“从属”关系与“包含”关系

“从属”关系是元素与集合之间的关系。

“包含”关系是集合与集合之间的关系。掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号,会用Venn图描述集合之间的关系是基本要求。

●注意辨清Φ与{Φ}两种关系。

高一数学下册《集合与函数概念》知识点汇总


作为杰出的教学工作者,能够保证教课的顺利开展,教师要准备好教案,这是教师工作中的一部分。教案可以让讲的知识能够轻松被学生吸收,帮助教师缓解教学的压力,提高教学质量。你知道如何去写好一份优秀的教案呢?下面是小编为大家整理的“高一数学下册《集合与函数概念》知识点汇总”,欢迎阅读,希望您能阅读并收藏。

高一数学下册《集合与函数概念》知识点汇总

第一章集合与函数概念

一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性.第一章集合与函数概念

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1.元素的确定性;2.元素的互异性;3.元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{…}如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}

1.用拉丁字母表示集合:A={我校的篮球队员}B={12345}

2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N*或N+整数集Z有理数集Q实数集R

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-32的解集是{x?R|x-32}或{x|x-32}

4、集合的分类:

1.有限集含有有限个元素的集合

2.无限集含有无限个元素的集合

3.空集不含任何元素的集合例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA

2.“相等”关系(5≥5,且5≤5,则5=5)

实例:设A={x|x2-1=0}B={-11}“元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

①任何一个集合是它本身的子集。A?A

②真子集:如果A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA)

③如果A?BB?C那么A?C

④如果A?B同时B?A那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的运算

1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集.

记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

3、交集与并集的性质:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A

A∪φ=AA∪B=B∪A.

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

记作:CSA即CSA={x?x?S且x?A}

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U

高一数学《集合有关概念》知识点总结


俗话说,居安思危,思则有备,有备无患。作为高中教师准备好教案是必不可少的一步。教案可以让学生能够听懂教师所讲的内容,帮助高中教师在教学期间更好的掌握节奏。那么,你知道高中教案要怎么写呢?下面是由小编为大家整理的“高一数学《集合有关概念》知识点总结”,供大家借鉴和使用,希望大家分享!

高一数学《集合有关概念》知识点总结

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性如:世界上最高的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

u注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N*或N+整数集Z有理数集Q实数集R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR|x-32},{x|x-32}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”

即:①任何一个集合是它本身的子集。AA

②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)

③如果AB,BC,那么AC

④如果AB同时BA那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

u有n个元素的集合,含有2n个子集,2n-1个真子集

三、集合的运算

运算类型
交集
并集
补集
定义
由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).
设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

S
A
记作,即
CSA=


S
A


AA=A

AΦ=Φ

AB=BA

ABA

ABB
AA=A

AΦ=A

AB=BA

ABA

ABB
(CuA)(CuB)

=Cu(AB)

(CuA)(CuB)

=Cu(AB)

A(CuA)=U

A(CuA)=Φ.

例题:

1.下列四组对象,能构成集合的是()

A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数

2.集合{a,b,c}的真子集共有个

3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},则M与N的关系是.

4.设集合A=,B=,若AB,则的取值范围是

5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,

两种实验都做错得有4人,则这两种实验都做对的有人。

6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=.

7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值

高一数学下册《抽样》知识点复习


高一数学下册《抽样》知识点复习

(1)抽签法

一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

(抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体搅拌均匀就比较困难,用抽签法产生的样本代表性差的可能性很大)

(2)随机数法

随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

分层抽样

简介

分层抽样(StratifiedRandomSampling)主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。共同点:每个个体被抽到的概率都相等N/M。

定义

一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样(stratifiedsampling)。

整群抽样

定义

什么是整群抽样(Clustersampling)

整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。

应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。

优缺点

整群抽样的优点是实施方便、节省经费;

整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。

实施步骤

先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内所有个体或单元均进行调查。抽样过程可分为以下几个步骤:

一、确定分群的标注

二、总体(N)分成若干个互不重叠的部分,每个部分为一群。

三、据各样本量,确定应该抽取的群数。

四、采用简单随机抽样或系统抽样方法,从i群中抽取确定的群数。

例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。

与分层抽样的区别

整群抽样与分层抽样在形式上有相似之处,但实际上差别很大。

分层抽样要求各层之间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大;

分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。

系统抽样

定义

当总体中的个体数较多时,采用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样(systematicsample)。

步骤

一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:

(1)先将总体的N个个体编号。有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;

(2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n;

(3)在第一段用简单随机抽样确定第一个个体编号l(l

(4)按照一定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。

练习题:

1、抽样推断的基本内容是:()

A.参数估计

B.假设检验

C.参数估计和假设检验两方面

D.数据的收集

2、抽样平均误差的实质是()

A.总体标准差

B.抽样总体的标准差

C.抽样总体方差

D.样本平均数(成数〉的标准差

3、不重复抽样平均误差:()

A.总是大于重复抽样平均误差

B.总是小于重复抽样平均误差

C.总是等于重复抽样平均误差

D.上情况都可能发生

4、在其它条件不变的情况下,抽样单位数增加一半,抽样平差:()

A.缩小为原来的81.6%

B.缩小为原来的50%

C.缩小为原来的25%

D.扩大为原来的四倍

5、样本的形成是:()

A.随机的

B.随意的

C.非随机的

D.确定的

6、抽样误差之所以产生是由于:()

A.破坏了随机抽样的原则。

B.抽样总体的结构不足以代表总体的结构。

C.破坏了抽样的系统。

D.调查人员的素质。